Skip to content

Model for Ge FF stresses

  • Description: This is an AI benchmark to evaluate how accurately a machine learning force-field (MLFF) can predict the stresses of Ge using the relaxation trajectories (energy and forces of intermediate steps) of the mlearn dataset, calculated with the PBE density functional. The dataset contains different types of chemical formula and atomic structures. Here we use multi-mean absolute error (multi-MAE) to compare MLFFs with respect to DFT (PBE) accuracy. External links: https://github.com/materialsvirtuallab/mlearn


Reference(s): https://github.com/usnistgov/chipsff, https://doi.org/10.1021/acs.jpca.9b08723

Model benchmarks

Model nameDataset Accuracy Team name Dataset size Date submitted Notes
mlearn_analysis_Ge_mace-alexandriamlearnall_Ge0.8587984863720529JARVIS25311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Ge_eqV2_31M_omatmlearnall_Ge0.8668551979889011JARVIS25311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Ge_macemlearnall_Ge0.9869619804778348JARVIS25311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Ge_eqV2_86M_omatmlearnall_Ge0.8691674971957749JARVIS25311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Ge_eqV2_153M_omatmlearnall_Ge0.8754167684593929JARVIS25311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Ge_sevennetmlearnall_Ge0.8972114868212063JARVIS25311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Ge_matglmlearnall_Ge1.53868585938209JARVIS25311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Ge_eqV2_86M_omat_mp_salexmlearnall_Ge0.8417424601893769JARVIS25311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Ge_orb-v2mlearnall_Ge0.6689165250433147JARVIS25311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Ge_matgl-directmlearnall_Ge1.4930905819436757JARVIS25311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Ge_chgnetmlearnall_Ge0.892920900028619JARVIS25311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Ge_eqV2_31M_omat_mp_salexmlearnall_Ge0.8473627607072759JARVIS25311-22-2024CSV, JSON, run.sh, Info