Model for mbj_bandgap¶
- Description: This is a benchmark to evaluate how accurately an AI model can predict the bandgap (at the meta-GGA TBmBJ functional level of theory) using the JARVIS-DFT (dft_3d) dataset. The dataset contains different types of chemical formula and atomic structures. Here we use mean absolute error (MAE) to compare models with respect to DFT (meta-GGA TBmBJ) accuracy.
Reference(s): https://doi.org/10.1103/PhysRevMaterials.2.083801, https://github.com/divelab/AIRS/tree/main/OpenMat/PotNet, https://www.nature.com/articles/s41524-021-00650-1, https://www.nature.com/articles/s41524-023-01012-9;https://hackingmaterials.lbl.gov/matminer, https://hackingmaterials.lbl.gov/matminer/, https://github.com/aimat-lab/gcnn_keras, https://arxiv.org/abs/2405.03680, https://doi.org/10.48550/arXiv.2305.11842, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.145301, https://www.nature.com/articles/s41524-020-00440-1
Model benchmarks
Model name | Dataset | MAE | Team name | Dataset size | Date submitted | Notes |
---|---|---|---|---|---|---|
kgcnn_cgcnn | dft_3d | 0.3261 | kgcnn | 18167 | 09-26-2023 | CSV, JSON, run.sh, Info |
kgcnn_schnet | dft_3d | 0.3289 | kgcnn | 18167 | 09-26-2023 | CSV, JSON, run.sh, Info |
kgcnn_coGN | dft_3d | 0.264 | kgcnn | 18167 | 05-06-2023 | CSV, JSON, run.sh, Info |
matminer_lgbm | dft_3d | 0.3909 | Matminer | 18167 | 01-14-2023 | CSV, JSON, run.sh, Info |
atomgpt_model | dft_3d | 0.3188 | AtomGPT | 18167 | 05-23-2024 | CSV, JSON, run.sh, Info |
alignn_model | dft_3d | 0.3104 | ALIGNN | 18167 | 01-14-2023 | CSV, JSON, run.sh, Info |
kgcnn_megnet | dft_3d | 0.297 | kgcnn | 18167 | 05-06-2023 | CSV, JSON, run.sh, Info |
cfid_chem | dft_3d | 0.6206 | JARVIS | 18167 | 01-14-2023 | CSV, JSON, run.sh, Info |
matminer_rf | dft_3d | 0.3516 | UofT | 18167 | 05-22-2023 | CSV, JSON, run.sh, Info |
cfid | dft_3d | 0.5313 | JARVIS | 18167 | 01-14-2023 | CSV, JSON, run.sh, Info |
matminer_xgboost | dft_3d | 0.3392 | UofT | 18167 | 05-22-2023 | CSV, JSON, run.sh, Info |
kgcnn_dimenetPP | dft_3d | 0.4764 | kgcnn | 18167 | 05-06-2023 | CSV, JSON, run.sh, Info |
cgcnn_model | dft_3d | 0.4067 | CGCNN | 18167 | 01-14-2023 | CSV, JSON, run.sh, Info |
kgcnn_coNGN | dft_3d | 0.2719 | kgcnn | 18167 | 05-06-2023 | CSV, JSON, run.sh, Info |
potnet | dft_3d | 0.2707 | DIVE@TAMU | 18167 | 06-02-2023 | CSV, JSON, run.sh, Info |