Model for mepsz¶
- Description: This is a benchmark to evaluate how accurately an AI model can predict the static dielectric constant (z-direction) at the meta-GGA TBmBJ level of theory using the JARVIS-DFT (dft_3d) dataset. The dataset contains different types of chemical formula and atomic structures. Here we use mean absolute error (MAE) to compare models with respect to DFT (meta-GGA TBmBJ) accuracy.
Reference(s): https://www.nature.com/articles/s41524-021-00650-1, https://hackingmaterials.lbl.gov/matminer/, https://github.com/aimat-lab/gcnn_keras, https://www.nature.com/articles/s41524-020-00440-1, https://doi.org/10.48550/arXiv.2305.11842, https://doi.org/10.1103/PhysRevMaterials.2.083801, https://www.nature.com/articles/s41524-023-01012-9;https://hackingmaterials.lbl.gov/matminer
Model benchmarks
Model name | Dataset | MAE | Team name | Dataset size | Date submitted | Notes |
---|---|---|---|---|---|---|
cfid_chem | dft_3d | 30.8879 | JARVIS | 16809 | 01-14-2023 | CSV, JSON, run.sh, Info |
matminer_lgbm | dft_3d | 26.2827 | Matminer | 16809 | 01-14-2023 | CSV, JSON, run.sh, Info |
kgcnn_dimenetPP | dft_3d | 30.3644 | kgcnn | 16809 | 05-06-2023 | CSV, JSON, run.sh, Info |
kgcnn_coNGN | dft_3d | 22.842 | kgcnn | 16809 | 05-06-2023 | CSV, JSON, run.sh, Info |
kgcnn_coGN | dft_3d | 24.1081 | kgcnn | 16809 | 05-06-2023 | CSV, JSON, run.sh, Info |
alignn_model | dft_3d | 23.7313 | ALIGNN | 16809 | 01-14-2023 | CSV, JSON, run.sh, Info |
cfid | dft_3d | 29.3445 | JARVIS | 16809 | 01-14-2023 | CSV, JSON, run.sh, Info |
matminer_rf | dft_3d | 24.6651 | UofT | 16809 | 05-22-2023 | CSV, JSON, run.sh, Info |
kgcnn_schnet | dft_3d | 25.668 | kgcnn | 16809 | 09-26-2023 | CSV, JSON, run.sh, Info |
kgcnn_cgcnn | dft_3d | 26.6292 | kgcnn | 16809 | 09-26-2023 | CSV, JSON, run.sh, Info |
kgcnn_megnet | dft_3d | 27.292 | kgcnn | 16809 | 05-06-2023 | CSV, JSON, run.sh, Info |
matminer_xgboost | dft_3d | 24.8442 | UofT | 16809 | 05-22-2023 | CSV, JSON, run.sh, Info |