Model for slme¶
- Description: This is a benchmark to evaluate how accurately an AI model can predict the Spectroscopic Limited Maximum Efficiency (SLME) using the JARVIS-DFT (dft_3d) dataset. The dataset contains different types of chemical formula and atomic structures. Here we use mean absolute error (MAE) to compare models with respect to DFT accuracy.
Reference(s): https://www.nature.com/articles/s41524-021-00650-1, https://hackingmaterials.lbl.gov/matminer/, https://github.com/aimat-lab/gcnn_keras, https://www.nature.com/articles/s41524-020-00440-1, https://doi.org/10.48550/arXiv.2305.11842, https://doi.org/10.1103/PhysRevMaterials.2.083801, https://www.nature.com/articles/s41524-023-01012-9;https://hackingmaterials.lbl.gov/matminer, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.145301
Model benchmarks
Model name | Dataset | MAE | Team name | Dataset size | Date submitted | Notes |
---|---|---|---|---|---|---|
cfid_chem | dft_3d | 6.5321 | JARVIS | 9062 | 01-14-2023 | CSV, JSON, run.sh, Info |
matminer_lgbm | dft_3d | 5.4242 | Matminer | 9062 | 01-14-2023 | CSV, JSON, run.sh, Info |
kgcnn_dimenetPP | dft_3d | 5.6403 | kgcnn | 9062 | 05-06-2023 | CSV, JSON, run.sh, Info |
kgcnn_coNGN | dft_3d | 4.4428 | kgcnn | 9062 | 05-06-2023 | CSV, JSON, run.sh, Info |
kgcnn_coGN | dft_3d | 4.4507 | kgcnn | 9062 | 05-06-2023 | CSV, JSON, run.sh, Info |
alignn_model | dft_3d | 4.5207 | ALIGNN | 9062 | 01-14-2023 | CSV, JSON, run.sh, Info |
cgcnn_model | dft_3d | 5.6603 | CGCNN | 9062 | 01-14-2023 | CSV, JSON, run.sh, Info |
cfid | dft_3d | 6.2607 | JARVIS | 9062 | 01-14-2023 | CSV, JSON, run.sh, Info |
matminer_rf | dft_3d | 5.1235 | UofT | 9062 | 05-22-2023 | CSV, JSON, run.sh, Info |
kgcnn_schnet | dft_3d | 5.3222 | kgcnn | 9062 | 09-26-2023 | CSV, JSON, run.sh, Info |
kgcnn_cgcnn | dft_3d | 5.0139 | kgcnn | 9062 | 09-26-2023 | CSV, JSON, run.sh, Info |
kgcnn_megnet | dft_3d | 5.0614 | kgcnn | 9062 | 05-06-2023 | CSV, JSON, run.sh, Info |
matminer_xgboost | dft_3d | 4.9255 | UofT | 9062 | 05-22-2023 | CSV, JSON, run.sh, Info |