Skip to content

Model for mbj_bandgap

  • Description: This is a benchmark to evaluate how accurately an AI model can classify a material as a semiconductor/insulator vs. metal based on the band gap computed with the TBmBJ meta-GGA density functional using the JARVIS-DFT (dft_3d) dataset. The dataset contains different types of chemical formula and atomic structures. Here we use accuracy of classification (ACC) to compare models with respect to DFT accuracy.


Reference(s): https://www.nature.com/articles/s41524-020-00440-1, https://www.nature.com/articles/s41524-023-01012-9;https://hackingmaterials.lbl.gov/matminer, https://doi.org/10.48550/arXiv.2305.11842, https://www.nature.com/articles/s41524-021-00650-1

Model benchmarks

Model nameDataset ACC Team name Dataset size Date submitted Notes
alignn_modeldft_3d0.9229ALIGNN1816701-14-2023CSV, JSON, run.sh, Info
matminer_rfdft_3d0.9328UofT1816705-22-2023CSV, JSON, run.sh, Info
matminer_xgboostdft_3d0.9399UofT1816705-22-2023CSV, JSON, run.sh, Info