Skip to content

Model for bulk_modulus_kv

  • Description: This is a benchmark to evaluate how accurately an AI model can predict the bulk modulus (Kv) using the JARVIS-DFT (dft_3d) dataset. The dataset contains different types of chemical formula and atomic structures. Here we use mean absolute error (MAE) to compare models with respect to DFT accuracy.


Reference(s): https://www.nature.com/articles/s41524-021-00650-1, https://hackingmaterials.lbl.gov/matminer/, https://github.com/aimat-lab/gcnn_keras, https://www.nature.com/articles/s41524-020-00440-1, https://doi.org/10.48550/arXiv.2305.11842, https://doi.org/10.1103/PhysRevMaterials.2.083801, https://www.nature.com/articles/s41524-023-01012-9;https://hackingmaterials.lbl.gov/matminer

Model benchmarks

Model nameDataset MAE Team name Dataset size Date submitted Notes
cfid_chemdft_3d15.5726JARVIS1968001-14-2023CSV, JSON, run.sh, Info
matminer_lgbmdft_3d15.4752Matminer1968001-14-2023CSV, JSON, run.sh, Info
kgcnn_dimenetPPdft_3d13.3743kgcnn1968005-06-2023CSV, JSON, run.sh, Info
kgcnn_coNGNdft_3d8.7022kgcnn1968005-06-2023CSV, JSON, run.sh, Info
kgcnn_coGNdft_3d8.992kgcnn1968005-06-2023CSV, JSON, run.sh, Info
alignn_modeldft_3d10.3988ALIGNN1968001-14-2023CSV, JSON, run.sh, Info
cfiddft_3d14.1999JARVIS1968001-14-2023CSV, JSON, run.sh, Info
matminer_rfdft_3d14.1108UofT1968005-22-2023CSV, JSON, run.sh, Info
kgcnn_schnetdft_3d10.7105kgcnn1968009-26-2023CSV, JSON, run.sh, Info
kgcnn_cgcnndft_3d11.0148kgcnn1968009-26-2023CSV, JSON, run.sh, Info
kgcnn_megnetdft_3d11.4287kgcnn1968005-06-2023CSV, JSON, run.sh, Info
matminer_xgboostdft_3d12.7411UofT1968005-22-2023CSV, JSON, run.sh, Info