Skip to content

Model for Cu FF stresses

  • Description: This is an AI benchmark to evaluate how accurately a machine learning force-field (MLFF) can predict the stresses of Cu using the relaxation trajectories (energy and forces of intermediate steps) of the mlearn dataset, calculated with the PBE density functional. The dataset contains different types of chemical formula and atomic structures. Here we use multi-mean absolute error (multi-MAE) to compare MLFFs with respect to DFT (PBE) accuracy. External links: https://github.com/materialsvirtuallab/mlearn


Reference(s): https://github.com/usnistgov/chipsff, https://doi.org/10.1021/acs.jpca.9b08723

Model benchmarks

Model nameDataset Accuracy Team name Dataset size Date submitted Notes
mlearn_analysis_Cu_eqV2_153M_omatmlearnall_Cu0.83001784736667JARVIS29311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Cu_eqV2_31M_omat_mp_salexmlearnall_Cu0.9164108360938416JARVIS29311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Cu_orb-v2mlearnall_Cu0.8733650784061342JARVIS29311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Cu_macemlearnall_Cu0.9461480640633075JARVIS29311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Cu_sevennetmlearnall_Cu0.8108623774400346JARVIS29311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Cu_matglmlearnall_Cu1.6320352079339664JARVIS29311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Cu_eqV2_86M_omatmlearnall_Cu0.7851344511480789JARVIS29311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Cu_eqV2_31M_omatmlearnall_Cu0.7554832245122134JARVIS29311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Cu_chgnetmlearnall_Cu0.7825148805802685JARVIS29311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Cu_mace-alexandriamlearnall_Cu1.3789098612006476JARVIS29311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Cu_matgl-directmlearnall_Cu2.141215634363112JARVIS29311-22-2024CSV, JSON, run.sh, Info
mlearn_analysis_Cu_eqV2_86M_omat_mp_salexmlearnall_Cu0.8857537869968742JARVIS29311-22-2024CSV, JSON, run.sh, Info