Data handlers (data
)#
The general scheme is to use the following:
uv, xv -> samples (values) for u, x
u, xu -> averages of u and x*u
u[i] = <u**i>
xu[i] = <x * u**i>
xu[i, j] = <d^i x/d beta^i * u**j
Classes:
Basic version of DataCallbackABC. |
|
Base class for handling callbacks to adjust data. |
|
|
Data class using |
|
Data object based on central co-moments array. |
|
Class to hold uv/xv data. |
|
Data class using values and central moments. |
Functions:
|
Factory function to produce a DataValues object. |
- class thermoextrap.data.DataCallback[source]#
Bases:
DataCallbackABC
Basic version of DataCallbackABC.
Implemented to pass things through unchanged. Will be used for default construction
Methods:
check
(data)Perform any consistency checks between self and data.
derivs_args
(data, *, derivs_args)Adjust derivs args from data class.
resample
(data, *, meta_kws, sampler, **kws)Adjust create new object.
reduce
(data, *, meta_kws, **kws)Reduce along dimension.
asdict
()Convert object to dictionary.
assign
(**kws)Alias to
new_like()
.new_like
(**kws)Create a new object with optional parameters.
set_params
(**kws)Set parameters of self, and return self (for chaining).
- derivs_args(data, *, derivs_args)[source]#
Adjust derivs args from data class.
should return a tuple
- resample(data, *, meta_kws, sampler, **kws)[source]#
Adjust create new object.
Should return new instance of class or self no change
- assign(**kws)[source]#
Alias to
new_like()
.
- class thermoextrap.data.DataCallbackABC[source]#
Bases:
MyAttrsMixin
Base class for handling callbacks to adjust data.
For some cases, the default Data classes don’t quite cut it. For example, for volume extrapolation, extrap parameters need to be included in the derivatives. To handle this generally, the Data class include self.meta which performs these actions.
DataCallback can be subclassed to fine tune things.
Methods:
check
(data)Perform any consistency checks between self and data.
derivs_args
(data, *, derivs_args)Adjust derivs args from data class.
resample
(data, *, meta_kws, sampler, **kws)Adjust create new object.
reduce
(data, *, meta_kws, **kws)Reduce along dimension.
asdict
()Convert object to dictionary.
assign
(**kws)Alias to
new_like()
.new_like
(**kws)Create a new object with optional parameters.
set_params
(**kws)Set parameters of self, and return self (for chaining).
- abstract derivs_args(data, *, derivs_args)[source]#
Adjust derivs args from data class.
should return a tuple
- resample(data, *, meta_kws, sampler, **kws)[source]#
Adjust create new object.
Should return new instance of class or self no change
- assign(**kws)[source]#
Alias to
new_like()
.
- class thermoextrap.data.DataCentralMoments(dxduave, *, meta, umom_dim='umom', deriv_dim=None, xmom_dim='xmom', rec_dim='rec', central=False, x_is_u=None, use_cache=True)[source]#
Bases:
DataCentralMomentsBase
Data class using
cmomy.CentralMomentsData
to handle central moments.- Parameters:
dxduave (
CentralMomentsData
) – Central moments object.meta (
dict
, optional) – extra meta data/parameters to be carried along with object and child objects. if ‘checker’ in meta, then perform a callback of the form meta[‘checker](self, meta) this can also be used to override things like derivs_args. Values passed through method resample_metaumom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativexmom_dim (
str
, default'xmom'
) – Name of dimension for moments of observable x.rec_dim (hashable) – Name of dimension for ‘records’, i.e., multiple observations.
central (
bool
) – If True, Use central moments. Otherwise, use raw moments.x_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordinglyuse_cache (
bool
) – IfTrue
(default), cache intermediate result. Speeds up calculations, but can lead to large objects.
Methods:
reduce
([dim, axis, meta_kws])Reduce along axis.
resample
(sampler[, dim, axis, rep_dim, ...])Resample data.
from_raw
(raw[, rec_dim, xmom_dim, umom_dim, ...])Convert raw moments to data object.
from_vals
(uv, xv, order[, xmom_dim, ...])Create DataCentralMoments object from individual (unaveraged) samples.
from_data
(data[, rec_dim, xmom_dim, ...])Create DataCentralMoments object from data.
from_resample_vals
(xv, uv, order, sampler[, ...])Create DataCentralMoments object from unaveraged samples with resampling.
from_ave_raw
(u, xu[, weight, rec_dim, ...])Create object with <u**n>, <x * u**n> arrays.
from_ave_central
(du, dxdu[, weight, xave, ...])Constructor from central moments, with reduction along axis.
asdict
()Convert object to dictionary.
assign
(**kws)Alias to
new_like()
.cmom
()Central co-moments.
new_like
(**kws)Create a new object with optional parameters.
rmom
()Raw co-moments.
set_params
(**kws)Set parameters of self, and return self (for chaining).
Attributes:
Whether central or raw moments are used
Derivative dimension
Arguments to be passed to derivative function.
Averages of
du ** n
.Selector for
du_selector[n] = du ** n
.Averages of form
dx * dx ** n
.Selector for
dxdu_selector[n] = dx * du ** n
.cmomy.CentralMomentsData
objectCallback
Order of expansion.
Records dimension
Averages of form
u ** n
.Indexer for
u_selector[n] = u ** n
.Energy moments dimension
Data underlying
dxduave
.Whether observable x is same as energy u
Whether X has explicit dependence on alpha.
Averages of form observable
x
.Selector for
xave
.Overvable moment dimension
Averages of form
x * u ** n
.Indexer for
xu_select[n] = x * u ** n
.- reduce(dim=MISSING, axis=MISSING, meta_kws=None, **kwargs)[source]#
Reduce along axis.
- Parameters:
dim (hashable) – Dimension to reduce/sample along.
axis (
int
) – Axis to reduce/sample along.meta_kws (mapping, optional) – Optional parameters for meta.
**kwargs – Keyword arguments to
cmomy.CentralMomentsData.reduce()
- resample(sampler, dim=MISSING, axis=MISSING, rep_dim='rep', parallel=None, meta_kws=None, **kwargs)[source]#
Resample data.
- Parameters:
sampler (
int
or array-like orIndexSampler
or mapping) – Passed throughresample.factory_sampler()
to create anIndexSampler
. Value can either benrep
(the number of replicates),freq
(frequency array), aIndexSampler
object, or a mapping of parameters. The mapping can have form ofFactoryIndexSamplerKwargs
. Allowable keys arefreq
,indices
,ndat
,nrep
,nsamp
,paired
,rng
,replace
,shuffle
.dim (hashable) – Dimension to reduce/sample along.
axis (
int
) – Axis to reduce/sample along.rep_dim (hashable) – Name of new ‘replicated’ dimension:
parallel (
bool
, optional) – IfTrue
, use parallel numbanumba.njit
ornumba.guvectorized
code if possible. IfNone
, use a heuristic to determine if should attempt to use parallel method.meta_kws (mapping, optional) – Parameters to self.meta.resample
- classmethod from_raw(raw, rec_dim='rec', xmom_dim='xmom', umom_dim='umom', deriv_dim=None, central=False, x_is_u=False, meta=None, **kwargs)[source]#
Convert raw moments to data object.
The raw moments have the form
raw[..., i, j] = weight
ifi = j = 0
. Otherwise,raw[..., i, j] = <x ** i * u ** j>
.- Parameters:
raw (array-like) – raw moments. The form of this array is such that The shape should be
(..., 2, order+1)
rec_dim (hashable) – Name of dimension for ‘records’, i.e., multiple observations.
xmom_dim (
str
, default'xmom'
) – Name of dimension for moments of observable x.umom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativecentral (
bool
) – If True, Use central moments. Otherwise, use raw moments.dims (hashable or sequence of hashable) – Dimension of resulting
xarray.DataArray
.If
len(dims) == self.ndim
, then dims specifies all dimensions.If
len(dims) == self.val_ndim
,dims = dims + mom_dims
Default to
('dim_0', 'dim_1', ...)
attrs (mapping) – Attributes of output
coords (mapping) – Coordinates of output
name (hashable) – Name of output
indexes (
Any
) – indexes attribute. This is ignored.template (
DataArray
) – If present, output will have attributes of template. Overrides other options.meta (
dict
, optional) – extra meta data/parameters to be carried along with object and child objects. if ‘checker’ in meta, then perform a callback of the form meta[‘checker](self, meta) this can also be used to override things like derivs_args. Values passed through method resample_metax_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordingly**kwargs – Extra arguments to
cmomy.wrap_raw()
- Returns:
output (
DataCentralMoments
)
See also
- classmethod from_vals(uv, xv, order, xmom_dim='xmom', umom_dim='umom', rec_dim='rec', deriv_dim=None, central=False, weight=None, axis=MISSING, dim=MISSING, meta=None, x_is_u=False, **kwargs)[source]#
Create DataCentralMoments object from individual (unaveraged) samples.
- Parameters:
xv (
xarray.DataArray
) – raw values of x (observable)uv (
xarray.DataArray
) – raw values of u (energy)order (
int
) – maximum order of moments/expansion to calculatexmom_dim (
str
, default'xmom'
) – Name of dimension for moments of observable x.umom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.rec_dim (hashable) – Name of dimension for ‘records’, i.e., multiple observations.
deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativecentral (
bool
) – If True, Use central moments. Otherwise, use raw moments.weight (array-like or
DataArray
, optional) – optional weight array. Note that this array/xarray must be conformable to uv, xvdim (hashable) – Dimension to reduce/sample along.
axis (
int
) – Axis to reduce/sample along.meta (
dict
, optional) – extra meta data/parameters to be carried along with object and child objects. if ‘checker’ in meta, then perform a callback of the form meta[‘checker](self, meta) this can also be used to override things like derivs_args. Values passed through method resample_metax_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordingly**kwargs – Extra arguments to
cmomy.wrap_reduce_vals()
- Returns:
output (
DataCentralMoments
)
See also
- classmethod from_data(data, rec_dim='rec', xmom_dim='xmom', umom_dim='umom', deriv_dim=None, central=False, meta=None, x_is_u=False, **kwargs)[source]#
Create DataCentralMoments object from data.
- data[…, i, j] = weight i = j = 0
= < x > i = 1 and j = 0 = < u > i = 0 and j = 1 = <(x - <x>)**i * (u - <u>)**j > otherwise
If pass in
x_is_u = True
, then treatdata
as a moments array for energy (i.e., usingumom_dim
). This is then converted to a comoments array usingcmomy.convert.moments_to_comoments()
.- Parameters:
data (
DataArray
)rec_dim (hashable) – Name of dimension for ‘records’, i.e., multiple observations.
xmom_dim (
str
, default'xmom'
) – Name of dimension for moments of observable x.umom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativecentral (
bool
) – If True, Use central moments. Otherwise, use raw moments.meta (
dict
, optional) – extra meta data/parameters to be carried along with object and child objects. if ‘checker’ in meta, then perform a callback of the form meta[‘checker](self, meta) this can also be used to override things like derivs_args. Values passed through method resample_metax_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordingly**kwargs – Extra arguments to
cmomy.wrap()
- Returns:
output (
DataCentralMoments
)
See also
- classmethod from_resample_vals(xv, uv, order, sampler, weight=None, axis=MISSING, dim=MISSING, xmom_dim='xmom', umom_dim='umom', rep_dim='rep', deriv_dim=None, central=False, meta=None, meta_kws=None, x_is_u=False, parallel=None, **kwargs)[source]#
Create DataCentralMoments object from unaveraged samples with resampling.
- Parameters:
xv (
xarray.DataArray
) – raw values of x (observable)uv (
xarray.DataArray
) – raw values of u (energy)order (
int
) – maximum order of moments/expansion to calculateweight (array-like or
DataArray
, optional) – optional weight array. Note that this array/xarray must be conformable to uv, xvaxis (
int
) – Axis to reduce/sample along.dim (hashable) – Dimension to reduce/sample along.
xmom_dim (
str
, default'xmom'
) – Name of dimension for moments of observable x.umom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.rep_dim (hashable) – Name of new ‘replicated’ dimension:
deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativecentral (
bool
) – If True, Use central moments. Otherwise, use raw moments.meta (
dict
, optional) – extra meta data/parameters to be carried along with object and child objects. if ‘checker’ in meta, then perform a callback of the form meta[‘checker](self, meta) this can also be used to override things like derivs_args. Values passed through method resample_metameta_kws (mapping, optional) – Optional parameters for meta.
x_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordingly**kwargs – Extra arguments to
cmomy.wrap_resample_vals()
- classmethod from_ave_raw(u, xu, weight=None, rec_dim='rec', xmom_dim='xmom', umom_dim='umom', deriv_dim=None, central=False, meta=None, x_is_u=False)[source]#
Create object with <u**n>, <x * u**n> arrays.
- Parameters:
u (array-like) – u[n] = <u**n>.
xu (array_like) – xu[n] = <x * u**n>.
w (array-like, optional) – sample weights
umom_axis (
int
, optional) – axis of u array corresponding to moments. Ignored if xu is an xarray.DataArray objectxumom_axis (
int
, optional) – axis of xu array corresponding to moments Ignored if xu is an xarray.DataArray objectaxis (
int
, default-1
) – if umom_axis or xumom_axis is None, set to axis Ignored if xu is an xarray.DataArray objectrec_dim (hashable) – Name of dimension for ‘records’, i.e., multiple observations.
xmom_dim (
str
, default'xmom'
) – Name of dimension for moments of observable x.umom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativecentral (
bool
) – If True, Use central moments. Otherwise, use raw moments.mom (
int
ortuple
ofint
) – Order or moments. If integer or length one tuple, then moments are for a single variable. If length 2 tuple, then comoments of two variablesdims (hashable or sequence of hashable) – Dimension of resulting
xarray.DataArray
.If
len(dims) == self.ndim
, then dims specifies all dimensions.If
len(dims) == self.val_ndim
,dims = dims + mom_dims
Default to
('dim_0', 'dim_1', ...)
attrs (mapping) – Attributes of output
coords (mapping) – Coordinates of output
name (hashable) – Name of output
indexes (
Any
) – indexes attribute. This is ignored.template (
DataArray
) – If present, output will have attributes of template. Overrides other options.meta (
dict
, optional) – extra meta data/parameters to be carried along with object and child objects. if ‘checker’ in meta, then perform a callback of the form meta[‘checker](self, meta) this can also be used to override things like derivs_args. Values passed through method resample_metax_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordingly
See also
- classmethod from_ave_central(du, dxdu, weight=None, xave=None, uave=None, axis=-1, umom_axis=None, xumom_axis=None, rec_dim='rec', xmom_dim='xmom', umom_dim='umom', deriv_dim=None, central=False, dtype=None, dims=None, attrs=None, coords=None, name=None, meta=None, x_is_u=False)[source]#
Constructor from central moments, with reduction along axis.
- Parameters:
du (array-like) – du[0] = 1 or weight, du[1] = <u> or uave du[n] = <(u-<u>)**n>, n >= 2
dxdu (array-like) – dxdu[0] = <x> or xave, dxdu[n] = <(x-<x>) * (u - <u>)**n>, n >= 1
weight (array-like, optional) – sample weights
xave (array-like, optional) – if present, set dxdu[0] to xave
uave (array-like, optional) – if present, set du[0] to uave
umom_axis (
int
, optional) – axis of u array corresponding to moments. Ignored if xu is an xarray.DataArray objectxumom_axis (
int
, optional) – axis of xu array corresponding to moments Ignored if xu is an xarray.DataArray objectaxis (
int
, default-1
) – if umom_axis or xumom_axis is None, set to axis Ignored if xu is an xarray.DataArray objectrec_dim (hashable) – Name of dimension for ‘records’, i.e., multiple observations.
xmom_dim (
str
, default'xmom'
) – Name of dimension for moments of observable x.umom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativecentral (
bool
) – If True, Use central moments. Otherwise, use raw moments.mom (
int
ortuple
ofint
) – Order or moments. If integer or length one tuple, then moments are for a single variable. If length 2 tuple, then comoments of two variablesval_shape (
tuple
) – Shape of values part of data. That is, the non-moment dimensions.dims (hashable or sequence of hashable) – Dimension of resulting
xarray.DataArray
.If
len(dims) == self.ndim
, then dims specifies all dimensions.If
len(dims) == self.val_ndim
,dims = dims + mom_dims
Default to
('dim_0', 'dim_1', ...)
attrs (mapping) – Attributes of output
coords (mapping) – Coordinates of output
name (hashable) – Name of output
indexes (
Any
) – indexes attribute. This is ignored.template (
DataArray
) – If present, output will have attributes of template. Overrides other options.meta (
dict
, optional) – extra meta data/parameters to be carried along with object and child objects. if ‘checker’ in meta, then perform a callback of the form meta[‘checker](self, meta) this can also be used to override things like derivs_args. Values passed through method resample_metax_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordingly
See also
- assign(**kws)[source]#
Alias to
new_like()
.
- central#
Whether central or raw moments are used
- deriv_dim#
Derivative dimension
- property derivs_args#
Arguments to be passed to derivative function.
For example,
derivs(*self.derivs_args)
.
- dxduave#
cmomy.CentralMomentsData
object
- meta#
Callback
- new_like(**kws)[source]#
Create a new object with optional parameters.
- Parameters:
**kws – attribute, value pairs.
- property order#
Order of expansion.
- rec_dim#
Records dimension
- umom_dim#
Energy moments dimension
- x_is_u#
Whether observable x is same as energy u
- property xalpha#
Whether X has explicit dependence on alpha.
That is, if self.deriv_dim is not None
- xmom_dim#
Overvable moment dimension
- class thermoextrap.data.DataCentralMomentsVals(uv, xv, *, meta, umom_dim='umom', deriv_dim=None, xmom_dim='xmom', rec_dim='rec', central=False, x_is_u=None, use_cache=True, order=None, weight=None, from_vals_kws=None, dxduave=None)[source]#
Bases:
DataCentralMomentsBase
Data object based on central co-moments array.
- Parameters:
dxduave (
CentralMomentsData
) – Central moments object.meta (
dict
, optional) – extra meta data/parameters to be carried along with object and child objects. if ‘checker’ in meta, then perform a callback of the form meta[‘checker](self, meta) this can also be used to override things like derivs_args. Values passed through method resample_metaumom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativexmom_dim (
str
, default'xmom'
) – Name of dimension for moments of observable x.rec_dim (hashable) – Name of dimension for ‘records’, i.e., multiple observations.
central (
bool
) – If True, Use central moments. Otherwise, use raw moments.x_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordinglyuse_cache (
bool
) – IfTrue
(default), cache intermediate result. Speeds up calculations, but can lead to large objects.
Attributes:
Stored energy values
Stored observable values
Expansion order
Stored weights
Optional parameters to
cmomy.wrap_reduce_vals()
cmomy.CentralMomentsData
objectWhether central or raw moments are used
Derivative dimension
Arguments to be passed to derivative function.
Averages of
du ** n
.Selector for
du_selector[n] = du ** n
.Averages of form
dx * dx ** n
.Selector for
dxdu_selector[n] = dx * du ** n
.Callback
Records dimension
Averages of form
u ** n
.Indexer for
u_selector[n] = u ** n
.Energy moments dimension
Data underlying
dxduave
.Whether observable x is same as energy u
Whether X has explicit dependence on alpha.
Averages of form observable
x
.Selector for
xave
.Overvable moment dimension
Averages of form
x * u ** n
.Indexer for
xu_select[n] = x * u ** n
.Methods:
from_vals
(xv, uv, order[, weight, rec_dim, ...])Constructor from arrays.
resample
(sampler[, dim, axis, rep_dim, ...])Resample data.
asdict
()Convert object to dictionary.
assign
(**kws)Alias to
new_like()
.cmom
()Central co-moments.
new_like
(**kws)Create a new object with optional parameters.
rmom
()Raw co-moments.
set_params
(**kws)Set parameters of self, and return self (for chaining).
- uv#
Stored energy values
- xv#
Stored observable values
- order#
Expansion order
- weight#
Stored weights
- from_vals_kws#
Optional parameters to
cmomy.wrap_reduce_vals()
- dxduave#
cmomy.CentralMomentsData
object
- classmethod from_vals(xv, uv, order, weight=None, rec_dim='rec', umom_dim='umom', xmom_dim='xmom', deriv_dim=None, central=False, from_vals_kws=None, meta=None, x_is_u=False)[source]#
Constructor from arrays.
- Parameters:
xv (
xarray.DataArray
) – raw values of x (observable)uv (
xarray.DataArray
) – raw values of u (energy)order (
int
) – maximum order of moments/expansion to calculatexmom_dim (
str
, default'xmom'
) – Name of dimension for moments of observable x.umom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.rec_dim (hashable) – Name of dimension for ‘records’, i.e., multiple observations.
deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativecentral (
bool
) – If True, Use central moments. Otherwise, use raw moments.weight (array-like or
DataArray
, optional) – optional weight array. Note that this array/xarray must be conformable to uv, xvval_shape (
tuple
) – Shape of values part of data. That is, the non-moment dimensions.dims (hashable or sequence of hashable) – Dimension of resulting
xarray.DataArray
.If
len(dims) == self.ndim
, then dims specifies all dimensions.If
len(dims) == self.val_ndim
,dims = dims + mom_dims
Default to
('dim_0', 'dim_1', ...)
attrs (mapping) – Attributes of output
coords (mapping) – Coordinates of output
name (hashable) – Name of output
indexes (
Any
) – indexes attribute. This is ignored.template (
DataArray
) – If present, output will have attributes of template. Overrides other options.meta (
dict
, optional) – extra meta data/parameters to be carried along with object and child objects. if ‘checker’ in meta, then perform a callback of the form meta[‘checker](self, meta) this can also be used to override things like derivs_args. Values passed through method resample_metax_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordingly
- Returns:
output (
DataCentralMomentsVals
)
See also
- resample(sampler, dim=MISSING, axis=MISSING, rep_dim='rep', parallel=None, meta_kws=None, **kwargs)[source]#
Resample data.
- Parameters:
sampler (
int
or array-like orIndexSampler
or mapping) – Passed throughresample.factory_sampler()
to create anIndexSampler
. Value can either benrep
(the number of replicates),freq
(frequency array), aIndexSampler
object, or a mapping of parameters. The mapping can have form ofFactoryIndexSamplerKwargs
. Allowable keys arefreq
,indices
,ndat
,nrep
,nsamp
,paired
,rng
,replace
,shuffle
.dim (hashable) – Dimension to reduce/sample along.
axis (
int
) – Axis to reduce/sample along.rep_dim (hashable) – Name of new ‘replicated’ dimension:
parallel (
bool
, optional) – IfTrue
, use parallel numbanumba.njit
ornumba.guvectorized
code if possible. IfNone
, use a heuristic to determine if should attempt to use parallel method.meta_kws (mapping, optional) – Optional parameters for meta.
**kwargs – Keyword arguments to
cmomy.wrap_resample_vals()
See also
- assign(**kws)[source]#
Alias to
new_like()
.
- central#
Whether central or raw moments are used
- deriv_dim#
Derivative dimension
- property derivs_args#
Arguments to be passed to derivative function.
For example,
derivs(*self.derivs_args)
.
- meta#
Callback
- new_like(**kws)[source]#
Create a new object with optional parameters.
- Parameters:
**kws – attribute, value pairs.
- rec_dim#
Records dimension
- umom_dim#
Energy moments dimension
- x_is_u#
Whether observable x is same as energy u
- property xalpha#
Whether X has explicit dependence on alpha.
That is, if self.deriv_dim is not None
- xmom_dim#
Overvable moment dimension
- class thermoextrap.data.DataValues(uv, xv, order, *, meta, umom_dim='umom', deriv_dim=None, x_is_u=False, rec_dim='rec')[source]#
Bases:
DataValuesBase
Class to hold uv/xv data.
- Parameters:
uv (
xarray.DataArray
) – raw values of u (energy)xv (
xarray.DataArray
) – raw values of x (observable)order (
int
) – maximum order of moments/expansion to calculatemeta (
dict
, optional) – extra meta data/parameters to be carried along with object and child objects. if ‘checker’ in meta, then perform a callback of the form meta[‘checker](self, meta) this can also be used to override things like derivs_args. Values passed through method resample_metaumom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativex_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordinglyrec_dim (hashable) – Name of dimension for ‘records’, i.e., multiple observations.
Attributes:
Average of x * u ** n.
Average of u ** n.
Indexer for self.u.
Indexer for self.xu.
Sequence of arguments to derivative calculation function.
Whether central (True) or raw (False) moments are used.
Derivative dimension
Callback
Expansion order
Records dimension
Energy moments dimension
Energy values
Whether the observable x is the same as energy u
Whether X has explicit dependence on alpha.
Obervable values
Methods:
asdict
()Convert object to dictionary.
assign
(**kws)Alias to
new_like()
.from_vals
(uv, xv, *, order[, rec_dim, ...])Constructor from arrays.
new_like
(**kws)Create a new object with optional parameters.
resample
(sampler, *[, rep_dim, meta_kws])Resample object.
set_params
(**kws)Set parameters of self, and return self (for chaining).
- property derivs_args#
Sequence of arguments to derivative calculation function.
- assign(**kws)[source]#
Alias to
new_like()
.
- property central#
Whether central (True) or raw (False) moments are used.
- deriv_dim#
Derivative dimension
- classmethod from_vals(uv, xv, *, order, rec_dim='rec', umom_dim='umom', deriv_dim=None, meta=None, x_is_u=False)[source]#
Constructor from arrays.
- Parameters:
uv (array-like) – raw values of u (energy) if not DataArray, wrap with xrwrap_uv
xv (
xarray.DataArray
) – raw values of x (observable) if not DataArray, wrap with xrwrap_xvorder (
int
) – maximum order of moments/expansion to calculaterec_dim (hashable) – Name of dimension for ‘records’, i.e., multiple observations.
umom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativemeta (
dict
, optional) – extra meta data/parameters to be carried along with object and child objects. if ‘checker’ in meta, then perform a callback of the form meta[‘checker](self, meta) this can also be used to override things like derivs_args. Values passed through method resample_metax_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordingly
- meta#
Callback
- new_like(**kws)[source]#
Create a new object with optional parameters.
- Parameters:
**kws – attribute, value pairs.
- order#
Expansion order
- rec_dim#
Records dimension
- resample(sampler, *, rep_dim='rep', meta_kws=None)[source]#
Resample object.
- Parameters:
sampler (
int
or array-like orIndexSampler
or mapping) – Passed throughresample.factory_sampler()
to create anIndexSampler
. Value can either benrep
(the number of replicates),freq
(frequency array), aIndexSampler
object, or a mapping of parameters. The mapping can have form ofFactoryIndexSamplerKwargs
. Allowable keys arefreq
,indices
,ndat
,nrep
,nsamp
,paired
,rng
,replace
,shuffle
.rep_dim (hashable) – Name of new ‘replicated’ dimension:
meta_kws (mapping, optional) – Optional parameters for meta.
- umom_dim#
Energy moments dimension
- uv#
Energy values
- x_is_u#
Whether the observable x is the same as energy u
- property xalpha#
Whether X has explicit dependence on alpha.
That is, if self.deriv_dim is not None
- xv#
Obervable values
- class thermoextrap.data.DataValuesCentral(uv, xv, order, *, meta, umom_dim='umom', deriv_dim=None, x_is_u=False, rec_dim='rec')[source]#
Bases:
DataValuesBase
Data class using values and central moments.
- Parameters:
uv (
xarray.DataArray
) – raw values of u (energy)xv (
xarray.DataArray
) – raw values of x (observable)order (
int
) – maximum order of moments/expansion to calculatemeta (
dict
, optional) – extra meta data/parameters to be carried along with object and child objects. if ‘checker’ in meta, then perform a callback of the form meta[‘checker](self, meta) this can also be used to override things like derivs_args. Values passed through method resample_metaumom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativex_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordinglyrec_dim (hashable) – Name of dimension for ‘records’, i.e., multiple observations.
Attributes:
Averages of x.
Averages of dx * du ** n.
Averages of du ** n.
Sequence of arguments to derivative calculation function.
Whether central (True) or raw (False) moments are used.
Derivative dimension
Callback
Expansion order
Records dimension
Energy moments dimension
Energy values
Whether the observable x is the same as energy u
Whether X has explicit dependence on alpha.
Obervable values
Methods:
asdict
()Convert object to dictionary.
assign
(**kws)Alias to
new_like()
.from_vals
(uv, xv, *, order[, rec_dim, ...])Constructor from arrays.
new_like
(**kws)Create a new object with optional parameters.
resample
(sampler, *[, rep_dim, meta_kws])Resample object.
set_params
(**kws)Set parameters of self, and return self (for chaining).
- property derivs_args#
Sequence of arguments to derivative calculation function.
- assign(**kws)[source]#
Alias to
new_like()
.
- property central#
Whether central (True) or raw (False) moments are used.
- deriv_dim#
Derivative dimension
- classmethod from_vals(uv, xv, *, order, rec_dim='rec', umom_dim='umom', deriv_dim=None, meta=None, x_is_u=False)[source]#
Constructor from arrays.
- Parameters:
uv (array-like) – raw values of u (energy) if not DataArray, wrap with xrwrap_uv
xv (
xarray.DataArray
) – raw values of x (observable) if not DataArray, wrap with xrwrap_xvorder (
int
) – maximum order of moments/expansion to calculaterec_dim (hashable) – Name of dimension for ‘records’, i.e., multiple observations.
umom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativemeta (
dict
, optional) – extra meta data/parameters to be carried along with object and child objects. if ‘checker’ in meta, then perform a callback of the form meta[‘checker](self, meta) this can also be used to override things like derivs_args. Values passed through method resample_metax_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordingly
- meta#
Callback
- new_like(**kws)[source]#
Create a new object with optional parameters.
- Parameters:
**kws – attribute, value pairs.
- order#
Expansion order
- rec_dim#
Records dimension
- resample(sampler, *, rep_dim='rep', meta_kws=None)[source]#
Resample object.
- Parameters:
sampler (
int
or array-like orIndexSampler
or mapping) – Passed throughresample.factory_sampler()
to create anIndexSampler
. Value can either benrep
(the number of replicates),freq
(frequency array), aIndexSampler
object, or a mapping of parameters. The mapping can have form ofFactoryIndexSamplerKwargs
. Allowable keys arefreq
,indices
,ndat
,nrep
,nsamp
,paired
,rng
,replace
,shuffle
.rep_dim (hashable) – Name of new ‘replicated’ dimension:
meta_kws (mapping, optional) – Optional parameters for meta.
- umom_dim#
Energy moments dimension
- uv#
Energy values
- x_is_u#
Whether the observable x is the same as energy u
- property xalpha#
Whether X has explicit dependence on alpha.
That is, if self.deriv_dim is not None
- xv#
Obervable values
- thermoextrap.data.factory_data_values(order, uv, xv, central=False, xalpha=False, rec_dim='rec', umom_dim='umom', val_dims='val', rep_dim='rep', deriv_dim=None, x_is_u=False, **kws)[source]#
Factory function to produce a DataValues object.
- Parameters:
order (
int
) – Highest moment <x * u ** order>. For the case x_is_u, highest order is <u ** (order+1)>uv (array-like) – raw values of u (energy) if not DataArray, wrap with xrwrap_uv
xv (
xarray.DataArray
) – raw values of x (observable) if not DataArray, wrap with xrwrap_xvcentral (
bool
) – If True, Use central moments. Otherwise, use raw moments.xalpha (
bool
, defaultFalse
) – Flag whether u depends on variable alpha.rec_dim (hashable) – Name of dimension for ‘records’, i.e., multiple observations.
umom_dim (
str
, default'umom'
) – Name of dimension for moment of energy u.val_dims (
str
or sequence ofstr
) – Names of extra dimensionsrep_dim (hashable) – Name of new ‘replicated’ dimension:
deriv_dim (
str
, defaultNone
) – if deriv_dim is a string, then this is the name of the derivative dimension and xarray objects will have a derivativex_is_u (
bool
, defaultFalse
) – if True, treat xv = uv and do adjust u/du accordingly**kws – Extra arguments passed to constructor
- Returns:
output (
DataValues
orDataValuesCentral
)
See also