cmomy.wrap#
- cmomy.wrap(obj, *, mom_ndim=None, mom_axes=None, mom_dims=None, mom_params=None, dtype=None, copy=False, fastpath=False)[source]#
Wrap object with central moments class.
This will choose the correct wrapper class given the type of array (
ndarray
orxarray
object).- Parameters:
obj (array-like or
DataArray
orDataset
) – Central Moments array.mom_ndim (
{1, 2}
, optional) – Value indicates if moments (mom_ndim = 1
) or comoments (mom_ndim=2
). If not specified and data is anxarray
object attempt to infermom_ndim
frommom_dims
. Otherwise, default tomom_ndim = 1
.mom_dims (hashable or
tuple
of hashable) – Name of moment dimensions. If specified, infermom_ndim
frommom_dims
. If also passmom_ndim
, check thatmom_dims
is consistent withmom_dims
. If not specified, defaults todata.dims[-mom_ndim:]
. This is primarily used ifdata
is aDataset
, or ifmom_dims
are not the last dimensions.copy (
bool
, optional) – If True, copy the data. If None or False, attempt to use view. Note thatFalse
values will be converted toNone
for numpy versions>2.0
. This will be changed to reflect the new behavior of thecopy
parameter tonumpy.array()
when the minimum numpy version>2.0
.fastpath (
bool
) – Internal variable.
- Returns:
wrapped (
CentralMomentsArray
orCentralMomentsData
) – Wrapped object. If input data is anxarray
object, then returnCentralMomentsData
instance. Otherwise, returnCentralMomentsArray
instance.
See also
Examples
>>> data = [10.0, 2.0, 3.0] >>> wrap(data) <CentralMomentsArray(mom_ndim=1)> array([10., 2., 3.])
>>> xdata = xr.DataArray(data, dims="mom") >>> wrap(xdata) <CentralMomentsData(mom_ndim=1)> <xarray.DataArray (mom: 3)> Size: 24B array([10., 2., 3.]) Dimensions without coordinates: mom