Ensemble¶
-
class
Ensemble
¶ Perform reweighting and ensemble averages using macrostate distributions
Subclassed by feasst::GrandCanonicalEnsemble
Public Functions
-
Ensemble
(const Histogram ¯ostates, const LnProbability &ln_prob, const double conjugate = 0.)¶ Store the original conjugate, macrostate and distribution.
-
Ensemble
(const FlatHistogram &flat_hist)¶ Same as above, but taken from FlatHistogram.
-
const LnProbability &
ln_prob_original
() const¶ Return the stored macrostate distribution from the original simulation.
-
const LnProbability &
ln_prob
() const¶ Return the LnProbability (that may have been reweighted).
-
const Histogram &
macrostates
() const¶ Return the stored Histogram representing the macrostates of the original simulation.
-
void
phase_boundary
(const int phase, int *min, int *max) const¶ Determine min and max macrostate indices for a given phase Return 1 if no phase boundary, or 0 for success.
-
bool
is_phase_boundary
() const¶ Return true if phase boundary is found.
-
double
original_conjugate
() const¶ Return the conjugate thermodynamic variable of the macrostate from the original simulation.
-
-
class
GrandCanonicalEnsemble
: public feasst::Ensemble¶ Grand canonical ensemble currently implemented for single component systems.
Subclassed by feasst::ExtrapolateBetaGCE
-
class
ExtrapolateBetaGCE
: public feasst::GrandCanonicalEnsemble¶ Public Functions
-
ExtrapolateBetaGCE
(const MonteCarlo &monte_carlo, const FlatHistogram &flat_histogram, const argtype &args = argtype())¶ Extrapolate the original simulation data to a different \(\beta\). See: https://doi.org/10.1063/1.4975331 Assumes a single component. In this implementation, extrapolation should be done before reweighting because this function changes ln_prob_original, not ln_prob.
args:
beta_new: \(\beta\) to extrapolate toward.
beta_original: original \(\beta\) of the simulation.
order: truncate Taylor series at this order (default: 2).
-