"""
Prefetching Grand Canonical Ensemble Monte Carlo simulation of Lennard Jones particles.
"""
import os
import argparse
from pyfeasst import fstio
def parse():
""" Parse arguments from command line or change their default values. """
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--feasst_install', type=str, default='../../../build/', help='FEASST install directory (e.g., the path to build)')
parser.add_argument('--fstprt', type=str, default='/feasst/particle/lj_new.txt', help='FEASST particle definition')
parser.add_argument('--beta', type=float, default=1./0.88, help='inverse temperature')
parser.add_argument('--beta_mu', type=float, default=-2.837, help='beta mu')
parser.add_argument('--cubic_side_length', type=int, default=8, help='cubic periodic boundary length')
parser.add_argument('--tpc', type=int, default=int(1e4), help='trials per cycle')
parser.add_argument('--equilibration', type=int, default=int(1e2), help='number of cycles for equilibraiton')
parser.add_argument('--production', type=int, default=int(1e3), help='number of cycles for production')
parser.add_argument('--hours_checkpoint', type=float, default=1, help='hours per checkpoint')
parser.add_argument('--hours_terminate', type=float, default=1, help='hours until termination')
parser.add_argument('--procs_per_node', type=int, default=32, help='number of processors')
parser.add_argument('--procs_per_sim', type=int, default=4, help='number of processors')
parser.add_argument('--run_type', '-r', type=int, default=0, help='0: run, 1: submit to queue, 2: post-process')
parser.add_argument('--seed', type=int, default=-1,help='Random number generator seed. If -1, assign random seed to each sim.')
parser.add_argument('--max_restarts', type=int, default=0, help='Number of restarts in queue')
parser.add_argument('--num_nodes', type=int, default=1, help='Number of nodes in queue')
parser.add_argument('--scratch', type=str, default=None, help='Optionally write scheduled job to scratch/logname/jobid.')
parser.add_argument('--queue_flags', type=str, default="", help='extra flags for queue (e.g., for slurm, "-p queue")')
parser.add_argument('--node', type=int, default=0, help='node ID')
parser.add_argument('--queue_id', type=int, default=-1, help='If != -1, read args from file')
parser.add_argument('--queue_task', type=int, default=0, help='If > 0, restart from checkpoint')
# Convert arguments into a parameter dictionary, and add argument-dependent parameters.
args, unknown_args = parser.parse_known_args()
assert len(unknown_args) == 0, 'An unknown argument was included: '+str(unknown_args)
params = vars(args)
params['script'] = __file__
params['prefix'] = 'muvt'
params['sim_id_file'] = params['prefix']+ '_sim_ids.txt'
params['minutes'] = int(params['hours_terminate']*60) # minutes allocated on queue
params['hours_terminate'] = 0.99*params['hours_terminate'] - 0.0333 # terminate before queue
assert params['procs_per_node'] % params['procs_per_sim'] == 0
params['num_sims'] = int(params['num_nodes']*params['procs_per_node']/params['procs_per_sim'])
params['mu'] = params['beta_mu']/params['beta']
params['weights'] = 4*[2, 0.1]
print(params['weights'])
assert len(params['weights']) == params['num_sims']
return params, args
def sim_node_dependent_params(params):
""" Set parameters that depent upon the sim or node here. """
params['weight'] = params['weights'][params['sim']]
params['nvt_acceptance'] = fstio.prefetch_acceptance(
acceptance=0.2,
num_processors=params['procs_per_sim'])
def write_feasst_script(params, script_file):
""" Write fst script for a single simulation with keys of params {} enclosed. """
with open(script_file, 'w', encoding='utf-8') as myfile:
myfile.write("""
Prefetch synchronize=true load_balance=8
RandomMT19937 seed={seed}
Configuration cubic_side_length={cubic_side_length} particle_type=lj:{fstprt}
Potential Model=LennardJones
Potential VisitModel=LongRangeCorrections
ThermoParams beta={beta} chemical_potential={mu}
Metropolis
TrialTranslate weight=1 tunable_param=0.2 tunable_target_acceptance={nvt_acceptance}
#Checkpoint checkpoint_file={prefix}{sim:03d}_checkpoint.fst num_hours={hours_checkpoint} num_hours_terminate={hours_terminate}
CheckEnergy trials_per_update={tpc} decimal_places=4
# gcmc equilibration
ThermoParams beta={beta} chemical_potential={mu}
Metropolis trials_per_cycle={tpc} cycles_to_complete={equilibration}
TrialAddRemove weight={weight} particle_type=lj
Tune
Let [write]=trials_per_write={tpc} output_file={prefix}{sim:03d}
Log [write]_eq.csv
#Movie [write]_eq.xyz
Run until=complete
Remove name=Tune,Log
# npt production
Metropolis trials_per_cycle={tpc} cycles_to_complete={production}
Log [write].csv
#Movie [write].xyz
For [an]:[ext]=Energy:_en.csv,CPUTime:_cpu.csv,NumParticles:_num.csv
[an] [write][ext] append=true
EndFor
Run until=complete
""".format(**params))
def linear_fit(x, b):
return -0.5*x + b
def post_process(params):
""" Compute efficiency from standard deviation of energy with time """
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
zrs = params['num_sims']*[0.]
df = pd.DataFrame(data={'wt': zrs, 'b': zrs})
for sim,wt in enumerate(params['weights']):
time = pd.read_csv("{}{:03d}_cpu.csv".format(params['prefix'], sim), sep='\s+', header=None)
en = pd.read_csv("{}{:03d}_en.csv".format(params['prefix'], sim), header=None, comment="a")
equil=200
logt = np.log(time[1][equil:])
logs = np.log(en[2][equil:])
popt, pcov = curve_fit(linear_fit, logt, logs)
df.loc[sim, 'wt'] = wt
df.loc[sim, 'b'] = popt[0]
color='red'
if wt == 2:
color='blue'
plt.scatter(np.log(time[1]), np.log(en[2]), color=color)
plt.plot(logt, linear_fit(logt, popt[0]), color=color)
grp = df.groupby('wt')
bmin = grp.mean()['b'][2].min()
df['z'] = np.exp(2*(bmin-df['b']))
grp = df.groupby('wt')
df = pd.DataFrame(data={'b': grp.mean()['b'], 'b_std': grp.std()['b']/2,
'z': grp.mean()['z'], 'z_std': grp.std()['z']/2})
df.to_csv(params['prefix']+'_summary.csv')
print('Need to run longer, but apparent efficiency of 0.1 versus 2 muvt weight:', df['z'][0.1], 'stdev', df['z_std'][0.1])
#plt.show()
assert df['z'][0.1] < 1
if __name__ == '__main__':
parameters, arguments = parse()
fstio.run_simulations(params=parameters,
sim_node_dependent_params=sim_node_dependent_params,
write_feasst_script=write_feasst_script,
post_process=post_process,
queue_function=fstio.slurm_single_node,
args=arguments)