examples.elphf

The following examples exhibit various parts of a model to study electrochemical interfaces. In a pair of papers, Guyer, Boettinger, Warren and McFadden [22] [23] have shown that an electrochemical interface can be modeled by an equation for the phase field \(\xi\)

(1)\[ \underbrace{ \frac{1}{M_\xi}\frac{\partial \xi}{\partial t} \vphantom{\sum_{j=1}^{n} C_j} }_{\text{transient}} = \underbrace{ \kappa_{\xi}\nabla^2 \xi \vphantom{\sum_{j=1}^{n} C_j} }_{\text{diffusion}} - \underbrace{ \overbrace{ \sum_{j=1}^{n} C_j \left[ p'(\xi) \Delta\mu_j^\circ + g'(\xi) W_j \right] }^{\text{phase transformation}} + \overbrace{ \frac{\epsilon'(\xi)}{2}\left(\nabla\phi\right)^2 \vphantom{\sum_{j=1}^{n} C_j} }^{\text{dielectric}} }_{\text{source}}\]

a set of diffusion equations for the concentrations \(C_j\), for the substitutional elements \(j = 2,\ldots, n-1\)

(2)\[\begin{split}\underbrace{ \frac{\partial C_j}{\partial t} }_{\text{transient}} &= \underbrace{ D_{j}\nabla^2 C_j \vphantom{\frac{\partial C_j}{\partial t}} }_{\text{diffusion}} \\ & \qquad + \underbrace{ D_{j}\nabla\cdot \frac{C_j}{1 - \sum_{\substack{k=2\\ k \neq j}}^{n-1} C_k} \left\{ \overbrace{ \sum_{\substack{i=2\\ i \neq j}}^{n-1} \nabla C_i }^{\text{counter diffusion}} + \overbrace{ C_n \left[ p'(\xi) \Delta\mu_{jn}^{\circ} + g'(\xi) W_{jn} \right] \nabla\xi \vphantom{\sum_{\substack{i=2\\ i \neq j}}^{n-1} \nabla C_i} }^{\text{phase transformation}} + \overbrace{ C_n z_{jn} \nabla \phi \vphantom{\sum_{\substack{i=2\\ i \neq j}}^{n-1} \nabla C_i} }^{\text{electromigration}} \right\} }_{\text{convection}}\end{split}\]

a diffusion equation for the concentration \(C_{\text{e}^{-}}\) of electrons

(3)\[\begin{split}\underbrace{ \frac{\partial C_{\text{e}^{-}}}{\partial t} \vphantom{\left\{ \overbrace{ \left[p'(\xi)\right] }^{\text{phase transformation}} \right\}} }_{\text{transient}} = \underbrace{ D_{\text{e}^{-}}\nabla^2 C_{\text{e}^{-}} \vphantom{\left\{ \overbrace{ \left[p'(\xi)\right] }^{\text{phase transformation}} \right\}} }_{\text{diffusion}} \\ + \underbrace{ D_{\text{e}^{-}}\nabla\cdot C_{\text{e}^{-}} \left\{ \overbrace{ \left[ p'(\xi) \Delta\mu_{\text{e}^{-}}^{\circ} + g'(\xi) W_{\text{e}^{-}} \right] \nabla\xi }^{\text{phase transformation}} + \overbrace{ z_{\text{e}^{-}} \nabla \phi \vphantom{\left[p'(\xi)\right]} }^{\text{electromigration}} \right\} }_{\text{convection}}\end{split}\]

and Poisson’s equation for the electrostatic potential \(\phi\)

(4)\[\underbrace{ \nabla\cdot\left(\epsilon\nabla\phi\right) \vphantom{\sum_{j=1}^n z_j C_j} }_{\text{diffusion}} + \underbrace{ \sum_{j=1}^n z_j C_j }_{\text{source}} = 0\]

\(M_\xi\) is the phase field mobility, \(\kappa_\xi\) is the phase field gradient energy coefficient, \(p'(\xi) = 30\xi^2\left(1-\xi\right)^2\), and \(g'(\xi) = 2\xi\left(1-\xi\right)\left(1-2\xi\right)\). For a given species \(j\), \(\Delta\mu_j^{\circ}\) is the standard chemical potential difference between the electrode and electrolyte for a pure material, \(W_j\) is the magnitude of the energy barrier in the double-well free energy function, \(z_j\) is the valence, and \(D_{j}\) is the self diffusivity. \(\Delta\mu_{jn}^{\circ}\), \(W_{jn}\), and \(z_{jn}\) are the differences of the respective quantities \(\Delta\mu_{j}^{\circ}\), \(W_{j}\), and \(z_{j}\) between substitutional species \(j\) and the solvent species \(n\). The total charge is denoted by \(\sum_{j=1}^n z_j C_j\).

Although unresolved stiffnesses make the full solution of this coupled set of equations intractable in FiPy, the following examples demonstrate the setup and solution of various parts.

Modules

examples.elphf.diffusion

examples.elphf.input

This example adds two more components to examples/elphf/input1DphaseBinary.py one of which is another substitutional species and the other represents electrons and diffuses interstitially.

examples.elphf.phase

A simple 1D example to test the setup of the phase field equation.

examples.elphf.phaseDiffusion

This example combines a phase field problem, as given in examples.elphf.phase, with a binary diffusion problem, such as described in the ternary example examples.elphf.diffusion.mesh1D, on a 1D mesh

examples.elphf.poisson

A simple 1D example to test the setup of the Poisson equation.

examples.elphf.test

Last updated on Jun 26, 2024. Created using Sphinx 7.1.2.