| Parameter | 
            Data
            Type | 
            Description | 
            Default | 
          
          
	    
            Unpolarized_Phase_Function: 
	      This model is a completely depolarizing phase function. 
	     | 
          
          
            | phase_function | 
            Phase_Function_Ptr | 
            The scalar part of the phase function. | 
            Henyey_Greenstein_Phase_Function | 
          
          
            | log_absorption | 
            double | 
            The natural logarithm of the Naperian absorption coefficient [1/µm]. | 
            -20 | 
          
          
            | log_scattering | 
            double | 
            The natural logarithm of the Naperian scattering coefficient [1/µm]. | 
            0 | 
          
          
	    
            CodeWhitney_Phase_Function: 
	      The phase function defined by Code and Whitney [A.D. Code and B.A. Whitney, "ePolarization from scattering in blobs,"e;
	      Astrophysical Journal 441, 400-407 (1995)], adapted to allow for any scalar phase function. That is, the polarized phase function is
	      given by
	      \begin{equation}
	      {\bf P}(\theta)=p(\theta)\times\left(
	      \begin{array}{cccc}
	      1 & - p_l \sin^2\theta-1)/(1+\cos^2\theta) & 0 & 0 \\
	      - p_l \sin^2\theta-1)/(1+\cos^2\theta) & 1 & 0 & 0 \\
	      0 & 0 & 2 \cos\theta/(1+\cos^2\theta) &  p_c \sin\theta_f/(1+\cos^2\theta_f) \\
	      0 & 0 &   - p_c \sin\theta_f/(1+\cos^2\theta_f) & 2 \cos\theta/(1+\cos^2\theta) 
	      \end{array}\right)
	      \end{equation}
	     where $p(\theta)$ is the scalar phase function, $\theta_f = \theta [1+3.13 s \exp(-7\theta/\pi)]$, and $p_l$, $p_c$, and $s$ are parameters.
	     | 
          
          
            | phase_function | 
            Phase_Function_Ptr | 
            The scalar part of the phase function. | 
            Henyey_Greenstein_Phase_Function | 
          
          
            | log_absorption | 
            double | 
            The natural logarithm of the Naperian absorption coefficient [1/µm]. | 
            -20 | 
          
          
            | log_scattering | 
            double | 
            The natural logarithm of the Naperian scattering coefficient [1/µm]. | 
            0 | 
          
          
            | plmax | 
            double | 
            The maximum degree of linear polarization, $p_l$. | 
            1 | 
          
          
            | pcmax | 
            double | 
            The maximum degree of circular polarization, $p_c$. | 
            0 | 
          
          
            | s | 
            double | 
            The circular polarization asymmetry parameter, $s$. | 
            0 | 
          
          
	    
            Constrained_Phase_Function: 
	      The phase function defined by Germer [T.A. Germer, "e;Polarized single-scattering phase function determined 
	      for a common reflectance standard from bidirectional reflectance 
	      measurements,"e; Proc. SPIE 10655, 1065504 (2018)]. It defines values for the polarized part of the phase function at
	      0°, 60°, 120°, and 180°, imposing requirements in the forward and backward scattering direction, and performing
	      a cubic spline for all other angles. The phase function is given by
	      \begin{equation}
	      {\bf P}(\theta)=p(\theta)\times\left(
	      \begin{array}{cccc}
	      1 & m_{01} & 0 & 0 \\
	      m_{01} & m_{11} & 0 & 0 \\
	      0 & 0 & m_{22} & m_{23} \\
	      0 & 0 & -m_{23} & m_{33}
	      \end{array}\right)
	      \end{equation}
	     | 
          
          
            | phase_function | 
            Phase_Function_Ptr | 
            The scalar part of the phase function. | 
            Henyey_Greenstein_Phase_Function | 
          
          
            | log_absorption | 
            double | 
            The natural logarithm of the Naperian absorption coefficient [1/µm]. | 
            -20 | 
          
          
            | log_scattering | 
            double | 
            The natural logarithm of the Naperian scattering coefficient [1/µm]. | 
            0 | 
          
          
            | m11_0 | 
            double | 
            The value of $m_{11}$ and $m_{22}$ at $\theta = 0^\circ$. | 
            1 | 
          
          
            | m11_60 | 
            double | 
            The value of $m_{11}$ at $\theta = 60^\circ$. | 
            0 | 
          
          
            | m11_120 | 
            double | 
            The value of $m_{11}$ at $\theta = 120^\circ$. | 
            0 | 
          
          
            | m11_180 | 
            double | 
            The value of $m_{11}$ and $-m{22}$ at $\theta = 180^\circ$. | 
            0 | 
          
          
            | m22_60 | 
            double | 
            The value of $m_{22}$ at $\theta = 60^\circ$. | 
            0 | 
          
          
            | m22_120 | 
            double | 
            The value of $m_{22}$ at $\theta = 120^\circ$. | 
            0 | 
          
          
            | m33_0 | 
            double | 
            The value of $m_{33}$ at $\theta = 0^\circ$. | 
            1 | 
          
          
            | m33_60 | 
            double | 
            The value of $m_{33}$ at $\theta = 60^\circ$. | 
            1 | 
          
          
            | m33_120 | 
            double | 
            The value of $m_{33}$ at $\theta = 120^\circ$. | 
            1 | 
          
          
            | m33_180 | 
            double | 
            The value of $m_{33}$ at $\theta = 180^\circ$. | 
            1 | 
          
          
            | m10_60 | 
            double | 
            The value of $m_{10}$ at $\theta = 60^\circ$. | 
            0 | 
          
          
            | m10_120 | 
            double | 
            The value of $m_{10}$ at $\theta = 120^\circ$. | 
            0 | 
          
          
            | m23_60 | 
            double | 
            The value of $m_{23}$ at $\theta = 60^\circ$. | 
            0 | 
          
          
            | m23_120 | 
            double | 
            The value of $m_{23}$ at $\theta = 120^\circ$. | 
            0 | 
          
          
	    
            SphericalScatterer_Phase_Function: 
	      This model uses a SphericalScatterer to determine the phase function. 
	     | 
          
          
            | scatterer | 
            SphericalScatterer_Ptr | 
            The model for a spherical scatterer. | 
            MieScatterer | 
          
          
            | volume_density | 
            double | 
            The volume number density of scatterers [&\micro;m-3]. | 
            1E-4 | 
          
	  
          
	    
            Distributed_Mie_Phase_Function: 
	      This model averages the Mie scattering function over a distribution of sphere sizes to determine the phase function. 
	     | 
          
          
            | lambda | 
            double | 
            The wavelength of the light in vacuum. | 
            0.532 | 
          
          
            | medium | 
            dielectric_function | 
            The optical constants of the medium surrounding the spheres, expressed as a complex number (n,k) or, optionally, as a function of wavelength. | 
            0.532 | 
          
          
            | sphere | 
            dielectric_function | 
            The optical constants of the spheres, expressed as a complex number (n,k) or, optionally, as a function of wavelength. | 
            0.532 | 
          
          
            | distribution | 
            VolumeParticleSizeDistribution_Ptr | 
            The diameter distribution and number of spheres. | 
            VolumeParticleSizeDistribution | 
          
          
            | integralStart | 
            double | 
            The starting diameter for the integral over diameter [µm]. | 
            0.1 | 
          
          
            | integralEnd | 
            double | 
            The ending diameter for the integral over diameter [µm]. | 
            100 | 
          
          
            | integralStep | 
            double | 
            The fractional step diameter for integration. (The integral is performed logarithmically.) | 
            0.01 |