Skip to content

Runs - Health Misinformation 2022

bm25

Results | Participants | Input | Summary | Appendix

  • Run ID: bm25
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: 1fef723cf7718a7b10c0ec33a4bbcf28
  • Run description: Anserini/Pyserini BM25

citius.base

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: citius.base
  • Participant: CiTIUS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 7/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: 7e50c9f7b28074f46cd1a8a2c99c76c3
  • Run description: First, a Bm25 search over the index is performed using the question field to obtain the top 1000 documents per topic. Afterwards, we reorder the top 100 based on MonoT5 reranker technology and the question field.

citius.gpt-3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: citius.gpt-3
  • Participant: CiTIUS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 7/31/2022
  • Type: auto
  • Task: prediction
  • MD5: fc9a964b1c3d8b8e906b56dfc2cd726e
  • Run description: To predict the answer we utilised the encoder model GPT-3. We used no fine-tuned and no prompt. The model was fed with the topic question + "Yes or No?" and the answer was automatically analyzed and categorized into "yes", "no" or "inconclusive". Finally, the "yes" topics were assigned score 1, the "no", score 0, and the "inconclusive" turned into "no" with 0.5 probability.

citius.r1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: citius.r1
  • Participant: CiTIUS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 7/31/2022
  • Type: auto
  • Task: retrieval
  • MD5: 74264095f914293ccaa39decf939ed12
  • Run description: First, a Bm25 search over the index is performed using the question field to obtain the top 1000 documents per topic. Afterwards, we reorder the top 100 based on the fusion of two signals: a MonoT5 reranker technology using the question field and a RF classifier that identifies credibility. Those signals were weighted.

citius.r2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: citius.r2
  • Participant: CiTIUS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 7/31/2022
  • Type: auto
  • Task: retrieval
  • MD5: f7423aba3f448f9692e29d3a1eeb2452
  • Run description: First, a Bm25 search over the index is performed using the question field to obtain the top 1000 documents per topic. Afterwards, we reorder the top 100 based on the fusion of three signals: a MonoT5 reranker technology using the question field, a RF classifier that identifies credibility and a BERT model that discerns readable from non-readable excerpts. Those signals were weighted.

citius.r3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: citius.r3
  • Participant: CiTIUS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 7/31/2022
  • Type: auto
  • Task: retrieval
  • MD5: 729129ffd7979b3467e1370c0e86e5f6
  • Run description: First, a Bm25 search over the index is performed using the question field to obtain the top 1000 documents per topic. Afterwards, we reorder the top 100 based on MonoT5 reranker technology and the "predicted" correct sentence. To do so, we utilised a GPT-3 encoder model (see run citius.gpt-3 from Answer Prediction) to estimate the answer and for those identified as inconclusive we mantain the default Bm25 ordering.

citius.r4

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: citius.r4
  • Participant: CiTIUS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 7/31/2022
  • Type: auto
  • Task: retrieval
  • MD5: 6ce645c221e3f6b1f980a045b6d168de
  • Run description: First, a Bm25 search over the index is performed using the question field to obtain the top 1000 documents per topic. Afterwards, we reorder the top 100 based on MonoT5 reranker technology and the "predicted" correct sentence. To do so, we utilised a GPT-3 encoder model (see run citius.gpt-3 from Answer Prediction) to estimate the answer and for those identified as inconclusive we kept the MonoT5 score based on the question field.

citius.r5

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: citius.r5
  • Participant: CiTIUS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 7/31/2022
  • Type: auto
  • Task: retrieval
  • MD5: 4c5cbfc51796d9d67e4cefef5cee3377
  • Run description: First, a Bm25 search over the index is performed using the question field to obtain the top 1000 documents per topic. Afterwards, we reorder the top 100 based on MonoT5 reranker technology and the "predicted" correct sentence. To do so, we launched the query against a SE API and scraped the top 1 result. Finally, we extracted the most on topic passage and compared it with both variants (correct and incorrect) and we kept the one with highest probability.

citius.r6

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: citius.r6
  • Participant: CiTIUS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 7/31/2022
  • Type: auto
  • Task: retrieval
  • MD5: c3f565a34c9f13496b04663c1a7f0617
  • Run description: First, a Bm25 search over the index is performed using the question field to obtain the top 1000 documents per topic. Afterwards, we reorder the top 100 based on MonoT5 reranker technology and the "predicted" correct sentence. To do so, we combined our GPT-3 estimator and our SE one. We simply apply an "and" operation. The inconclusive ones were kept like that, and they were reordered based on the MonoT5 score of the unmodified question.

citius.se

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: citius.se
  • Participant: CiTIUS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 7/31/2022
  • Type: auto
  • Task: prediction
  • MD5: e336250c9d62fdb0f3a6a94934359381
  • Run description: To predict the answer, we launched the question into a SE API and we scraped the top 1 result. Then, using passage reranking technology, the most on topic passage was selected. Finally, the positive and negative versions of the sentences were compared against the passage and the highest probability determined the answer.

citius.se_gpt

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: citius.se_gpt
  • Participant: CiTIUS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 7/31/2022
  • Type: auto
  • Task: prediction
  • MD5: b4eaaef007441b25ddcc3ba3d9c98036
  • Run description: To predict the answer, we applied an "and" operation to the output of our runs with GPT-3 and SE.

gpt3a

Results | Participants | Input | Summary | Appendix

  • Run ID: gpt3a
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: prediction
  • MD5: d8b5a8d34c85d994ab9b30f108c2f7e3
  • Run description: GPT3 prompted with 21 topics to generate label predictions

gpt3a_fc

Results | Participants | Input | Summary | Appendix

  • Run ID: gpt3a_fc
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: prediction
  • MD5: 851f0da9750f60da09b43d8c28d6846f
  • Run description: Rounds gpt3a to 1.0 or 0.0.

gpt3a_neg

Results | Participants | Input | Summary | Appendix

  • Run ID: gpt3a_neg
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: prediction
  • MD5: 5061028559b23d282824887135134e00
  • Run description: gpt3a but invert the predictions

gpt3b

Results | Participants | Input | Summary | Appendix

  • Run ID: gpt3b
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: prediction
  • MD5: 0da2ab7bf04b7b2a3baad0df578e51a9
  • Run description: gpt3a without normalized scoring scheme

gpt3b_neg

Results | Participants | Input | Summary | Appendix

  • Run ID: gpt3b_neg
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: prediction
  • MD5: c88a08173273391037baa53538107bba
  • Run description: gpt3b but invert the predictions

hm22.mdt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22.mdt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: 5ad409a1e822bb954c53cf2566348dec
  • Run description: mdt5 - mdt5 on original

hm22.mt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22.mt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: ba5f438e0fd0d3e6cf8413ecc1572e85
  • Run description: mt5 - mt5 on original

hm22.vera

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22.vera
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: bbb5d2ec47a429cd390f3579e03294a0
  • Run description: hm22 - label prediction by GPT3 (prompted with 2021 topics + stances) vera - vera without linear combinations

hm22.vera_mdt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22.vera_mdt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: 97d93032045771d82d2d749cbf1cfc65
  • Run description: hm22 - label prediction by GPT3 (prompted with 2021 topics + stances) vera_mdt5 - mdt5 on original followed by vera(0.95, duo1)

hm22.vera_mt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22.vera_mt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: 2697b0f7b27b8499c0fe35498d47b945
  • Run description: hm22 - label prediction by GPT3 (prompted with 2021 topics + stances) vera_mt5 - mt5 on original followed by vera(0.95, mono)

hm22_ref.mdt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref.mdt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: 75e283af8c8eefed518dfdb93f9a38bf
  • Run description: hm22_ref - label prediction by GPT3 (prompted with 2021 topics + stances) followed by reformulation by GPT3 mdt5 - mdt5

hm22_ref.mt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref.mt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: d94474cd58112fcdcae96155e347c7fe
  • Run description: hm22_ref - label prediction by GPT3 (prompted with 2021 topics + stances) followed by reformulation by GPT3 mt5 - mt5

hm22_ref.vera

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref.vera
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: aada542cf73adc2938f351d13b3eae1a
  • Run description: hm22_ref - label prediction by GPT3 (prompted with 2021 topics + stances) and reformulation by GPT3 vera - vera without linear combinations

hm22_ref.vera_mdt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref.vera_mdt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: a2313f2fceb7d5c3bfb65a819365a1cf
  • Run description: hm22_ref - label prediction by GPT3 (prompted with 2021 topics + stances) followed by reformulation by GPT3 vera_mdt5 - mdt5 on ref followed by vera(0.95, duo1)

hm22_ref.vera_mt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref.vera_mt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: 8423f6d1dc925a34f12c93c1c76b3294
  • Run description: hm22_ref - label prediction by GPT3 (prompted with 2021 topics + stances) followed by reformulation by GPT3 vera_mdt5 - mdt5 on ref followed by vera(0.95, mono)

hm22_ref_comb.mdt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref_comb.mdt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: 5a33c1fc4d57d77fa0b76ce77fc4e3bc
  • Run description: hm22_ref_comb - combination of label prediction by GPT3 (prompted with 2021 topics + stances) and answer prediction run vera, followed by reformulation by GPT3 mdt5 - mdt5

hm22_ref_comb.mt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref_comb.mt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: 73ce4aa576bb1511f7ee87070520cb16
  • Run description: hm22_ref_comb - combination of label prediction by GPT3 (prompted with 2021 topics + stances) and answer prediction run vera, followed by reformulation by GPT3 mt5 - mt5

hm22_ref_comb.vera_mdt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref_comb.vera_mdt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: 1e2913d8a3af1fad8194c3bd169b2973
  • Run description: hm22_ref_comb - combination of label prediction by GPT3 (prompted with 2021 topics + stances) and answer prediction run vera, followed by reformulation by GPT3 vera_mdt5 - mdt5 on ref followed by vera(0.95, duo1)

hm22_ref_comb.vera_mt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref_comb.vera_mt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: f2fd6f3bdfd63dba41326f8a5f02e203
  • Run description: hm22_ref_comb - combination of label prediction by GPT3 (prompted with 2021 topics + stances) and answer prediction run vera, followed by reformulation by GPT3 vera_mt5 - mt5 on ref followed by vera(0.95, mono)

hm22_ref_neg.mdt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref_neg.mdt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: 492a95aaeb770afd391d4bdce102b32c
  • Run description: hm22 - label prediction by GPT3 (prompted with 2021 topics + stances) is inverted mdt5 - mdt5 on inverted reformulations

hm22_ref_neg.mt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref_neg.mt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: d34df0734db8a6ee1d7a831db5380015
  • Run description: hm22 - label prediction by GPT3 (prompted with 2021 topics + stances) is inverted mt5 - mt5 on inverted reformulations

hm22_ref_neg.vera

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref_neg.vera
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: b15d84c6534fb3697b5f3d74805ad124
  • Run description: hm22 - label prediction by GPT3 (prompted with 2021 topics + stances) is inverted vera - vera without linear combinations

hm22_ref_neg.vera_mdt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref_neg.vera_mdt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: bcf868497d6e9be8837ea09d0ea753d9
  • Run description: hm22 - label prediction by GPT3 (prompted with 2021 topics + stances) is inverted vera_mdt5 - mdt5 on inverted reformulations followed by vera(0.95, duo1)

hm22_ref_neg.vera_mt5

Results | Participants | Input | Summary | Appendix

  • Run ID: hm22_ref_neg.vera_mt5
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: retrieval
  • MD5: b39a09cdf20f889cf0a004c1f85a62fc
  • Run description: hm22 - label prediction by GPT3 (prompted with 2021 topics + stances) is inverted vera_mdt5 - mt5 on inverted reformulations followed by vera(0.95, mono)

vera

Results | Participants | Input | Summary | Appendix

  • Run ID: vera
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: prediction
  • MD5: 4b491b70a8eaa83d5932daa38eebdb4b
  • Run description: Vera scores from top-50 Med-MonoT5 results

vera_abs

Results | Participants | Input | Summary | Appendix

  • Run ID: vera_abs
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: prediction
  • MD5: 6051cf5efb1533a86f14797cebccc0fa
  • Run description: Rounds vera to 1.0 or 0.0.

vera_gpt3

Results | Participants | Input | Summary | Appendix

  • Run ID: vera_gpt3
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: prediction
  • MD5: 7a790fe6029cd2974d5e05081b9bae0c
  • Run description: Mean of runs vera and gpt3

vera_gpt3_abs

Results | Participants | Input | Summary | Appendix

  • Run ID: vera_gpt3_abs
  • Participant: h2oloo
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/28/2022
  • Type: auto
  • Task: prediction
  • MD5: 1a12140d60057d438661fbdd7138d703
  • Run description: Rounds vera_gpt3 to 1.0 or 0.0.

WatS-AP-Baseline

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-AP-Baseline
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: prediction
  • MD5: e7f27ae8ef2473c1766809a6f1d6f7f3
  • Run description: Logistic Regression-based Trust Model

WatS-AP-Baseline-L1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-AP-Baseline-L1
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: prediction
  • MD5: 4449d20ab133385cf86539a94e8ebc14
  • Run description: Logistic Regression-based Trust Model with L1 regularization

WatS-AP-Manual

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-AP-Manual
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/29/2022
  • Type: manual
  • Task: prediction
  • MD5: 4a0b1f9bbaf8983de6a2db953b09b934
  • Run description: This a manual run where the answers to topics were judged with google search results.

WatS-AP-MT5

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-AP-MT5
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: prediction
  • MD5: 2c9dd2e73354b7073f3708b5774ec1d0
  • Run description: Logistic Regression-based Trust Model with mt5 for reranking

WatS-AP-MT5-L1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-AP-MT5-L1
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: prediction
  • MD5: 2469fd5a0c4d6a847b94e05c1de27fcb
  • Run description: Logistic Regression-based Trust Model with mt5 for reranking and L1 regularization

WatS-BB75-MT5-TA

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-BB75-MT5-TA
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: prediction
  • MD5: c6b6a174880f1ef1d37d611252146290
  • Run description: "Initial Retrieval: Top 1k BM25 Rerank: MT5 Passage extraction: MeshQA QA: BERT , PubMedQA (+ tuning on 2019 2021 qrels) Answer prediction: mean_topk (bert(passage plus host plus hon))"

WatS-Bigbird2_75-MT5

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-Bigbird2_75-MT5
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: retrieval
  • MD5: f5ccf579ff71492183a633ae7fa32f1a
  • Run description: "Initial Retrieval: Top 1k BM25 Passage Extraction: Bigbird ss=0.75 Rerank: MT5"

WatS-Bigbird2_75-MT5-TA1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-Bigbird2_75-MT5-TA1
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: retrieval
  • MD5: 46e1b9db6370f699bc31c2afe09cd13f
  • Run description: Same as TA2 but with no fine tuning on previous years topics

WatS-Bigbird2_75-MT5-TA2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-Bigbird2_75-MT5-TA2
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: retrieval
  • MD5: fb248f61863db9fd79333d803a88583c
  • Run description: "Initial Retrieval: Top 1k BM25 Rerank: MT5 Passage extraction: MeshQA QA: BERT , PubMedQA (+ tuning on 2019 2021 qrels) Answer prediction: mean_topk (bert(passage plus host plus hon)) Second Rerank: MT5 * agreement alpha=.2"

WatS-BM25-Query

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-BM25-Query
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: retrieval
  • MD5: 9d8709d0421e2a7b72fc63a3ccdd5b3d
  • Run description: BM25 baseline (k1=0.9, b=0.4) using the query field

WatS-BM25-Question

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-BM25-Question
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: retrieval
  • MD5: fa40dd2a07944eed25884f1248e22871
  • Run description: BM25 baseline (k1=0.9, b=0.4) using the query field

WatS-Manual

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-Manual
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/29/2022
  • Type: manual
  • Task: retrieval
  • MD5: 44e16c086d862c3316c192d976de8d1a
  • Run description: This a manual run where topics were judged by their snippets which were produced with MT5. the top 1k bm25 docs for each topic were reranked with MT5 and the first very useful correct 10 documents were found and placed first. incorrect documents were placed last.

WatS-manual-pred

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-manual-pred
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: manual
  • Task: prediction
  • MD5: d55cde64c2cce1cc53a1be29e7eb72f3
  • Run description: Paste question into google, mean 28s to determine answer

WatS-MT5-MT5

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-MT5-MT5
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: retrieval
  • MD5: 8422bbb74041fb891fdf6bd921ffce12
  • Run description: "Initial Retrieval: Top 1k BM25 Passage Extraction: MT5 Rerank: MT5"

WatS-Trust

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-Trust
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: retrieval
  • MD5: 1d1b4e992658f4dd052342c5490b668b
  • Run description: Soft reranking BM25 using the predicted answers from WatS-AP-Baseline

WatS-Trust-L1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-Trust-L1
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: retrieval
  • MD5: cb3eec9594d18527d82c513428e8b37a
  • Run description: Soft reranking BM25 using the predicted answer from WatS-AP-Baseline-L1

WatS-Trust-MT5

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-Trust-MT5
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: retrieval
  • MD5: eaa17132850030736ac19e36f75e4f58
  • Run description: Soft reranking MT5 using the predicted answer from WatS-AP-MT5

WatS-Trust-MT5-L1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WatS-Trust-MT5-L1
  • Participant: UWaterlooMDS
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/2/2022
  • Type: auto
  • Task: retrieval
  • MD5: f26ccb8ec2b902671e09143eeede5de7
  • Run description: Soft reranking MT5 using the predicted answer from WatS-AP-MT5-L1

webis-goo-boolq-abs

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-goo-boolq-abs
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: prediction
  • MD5: 758097d69ca42b400deaf1538b3c9575
  • Run description: Retrieve up to 20 abstracts through Google Custom Search Engine using provided questions. Apply pre-trained RoBERTa-base-BoolQ model to abstracts using questions. Aggregate results.

webis-goo-lbert-abs

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-goo-lbert-abs
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: prediction
  • MD5: 651ea09b1792730297bbaa72d9b8a6d3
  • Run description: Retrieve up to 20 abstracts through Google Custom Search Engine using provided questions. Apply pre-trained BioLinkBERT-large model to abstracts using questions. Aggregate results.

webis-goo-lbert-title-abs

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-goo-lbert-title-abs
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: prediction
  • MD5: 037a9a647a99ee499ab3f0fda03e3010
  • Run description: Retrieve up to 20 abstracts along with titles through Google Custom Search Engine using provided questions. Apply pre-trained BioLinkBERT-large model to titles and abstracts using questions. Aggregate results.

webis-longck-ax-com

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-longck-ax-com
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: retrieval
  • MD5: aefaaa92b41fb358380b61e8e4904b02
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using LongChecker (fever_sci checkpoint, using abstract and title as context). Resolve answer conflicts with axiomatic re-ranking (most recently published abstract first). Aggregate abstract-wise answer score with ranking position discount. Retrieve 1000 documents from C4 using BM25 (Elasticsearch). Predict answer per document using LongChecker (fever_sci checkpoint, using abstract and title as context). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Combine retrieval score with similarity to predicted topic answer (tradeoff 0.75).

webis-longck-ax-lin

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-longck-ax-lin
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: retrieval
  • MD5: 282443effae1b7623ed138a6c00786e6
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using LongChecker (fever_sci checkpoint, using abstract and title as context). Resolve answer conflicts with axiomatic re-ranking (most recently published abstract first). Aggregate abstract-wise answer score with ranking position discount. Retrieve 1000 documents from C4 using BM25 (Elasticsearch). Predict answer per document using LongChecker (fever_sci checkpoint, using abstract and title as context). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Boost retrieval score linearly based on similarity to predicted topic answer.

webis-longck-ax-pol

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-longck-ax-pol
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: retrieval
  • MD5: 7781c7de503b293ebf2967e3ef947d4c
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using LongChecker (fever_sci checkpoint, using abstract and title as context). Resolve answer conflicts with axiomatic re-ranking (most recently published abstract first). Aggregate abstract-wise answer score with ranking position discount. Retrieve 1000 documents from C4 using BM25 (Elasticsearch). Predict answer per document using LongChecker (fever_sci checkpoint, using abstract and title as context). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Boost retrieval score polynomially (x^2) based on similarity to predicted topic answer.

webis-longck-dis

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-longck-dis
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: prediction
  • MD5: f26f35390a9d9ee3ffb25e0a4299bb8b
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using LongChecker (fever_sci checkpoint, using abstract and title as context). Aggregate abstract-wise answer score with ranking position discount.

webis-longck-uniqa-ax-com

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-longck-uniqa-ax-com
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: retrieval
  • MD5: 7cf56c247b69190c10388ce59f636ca8
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using LongChecker (fever_sci checkpoint, using abstract and title as context) and UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Average answer score of both predictors. Resolve answer conflicts with axiomatic re-ranking (most recently published abstract first). Aggregate abstract-wise answer score with ranking position discount. Retrieve 1000 documents from C4 using BM25 (Elasticsearch). Predict answer per document using LongChecker (fever_sci checkpoint, using abstract and title as context) and UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Average answer score of both predictors. Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Combine retrieval score with similarity to predicted topic answer (tradeoff 0.75).

webis-longck-uniqa-ax-dis

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-longck-uniqa-ax-dis
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: prediction
  • MD5: cc701bf1f6596ae28655e2c082d145c0
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using LongChecker (fever_sci checkpoint, using abstract and title as context) and UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Average answer score of both predictors. Resolve answer conflicts with axiomatic re-ranking (most recently published abstract first). Aggregate abstract-wise answer score with ranking position discount.

webis-longck-uniqa-ax-lin

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-longck-uniqa-ax-lin
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: retrieval
  • MD5: 88ee57623c25b308a4c914905d98843c
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using LongChecker (fever_sci checkpoint, using abstract and title as context) and UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Average answer score of both predictors. Resolve answer conflicts with axiomatic re-ranking (most recently published abstract first). Aggregate abstract-wise answer score with ranking position discount. Retrieve 1000 documents from C4 using BM25 (Elasticsearch). Predict answer per document using LongChecker (fever_sci checkpoint, using abstract and title as context) and UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Average answer score of both predictors. Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Boost retrieval score linearly based on similarity to predicted topic answer.

webis-longck-uniqa-ax-pol

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-longck-uniqa-ax-pol
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: retrieval
  • MD5: 1b65c66bdfd733e005e3034176185a79
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using LongChecker (fever_sci checkpoint, using abstract and title as context) and UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Average answer score of both predictors. Resolve answer conflicts with axiomatic re-ranking (most recently published abstract first). Aggregate abstract-wise answer score with ranking position discount. Retrieve 1000 documents from C4 using BM25 (Elasticsearch). Predict answer per document using LongChecker (fever_sci checkpoint, using abstract and title as context) and UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Average answer score of both predictors. Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Boost retrieval score polynomially (x^2) based on similarity to predicted topic answer.

webis-longck-uniqa-dis

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-longck-uniqa-dis
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: prediction
  • MD5: 317c29d464cbd2a6590e166bd61cd1b9
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using LongChecker (fever_sci checkpoint, using abstract and title as context) and UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Average answer score of both predictors. Aggregate abstract-wise answer score with ranking position discount.

webis-longck-uniqa-pol

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-longck-uniqa-pol
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: retrieval
  • MD5: 05e81f442166286aed6f5eea889bccc6
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using LongChecker (fever_sci checkpoint, using abstract and title as context) and UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Average answer score of both predictors. Aggregate abstract-wise answer score with ranking position discount. Retrieve 1000 documents from C4 using BM25 (Elasticsearch). Predict answer per document using LongChecker (fever_sci checkpoint, using abstract and title as context) and UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Average answer score of both predictors. Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Boost retrieval score polynomially (x^2) based on similarity to predicted topic answer.

webis-nlm-boolq-abs

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-nlm-boolq-abs
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: manual
  • Task: prediction
  • MD5: 7da710bb0b9b11d7167cf8c0e77935df
  • Run description: Retrieve up to 20 abstracts through PubMed search API using provided keyword queries. Reformulate queries for which only 0 or 1 documents are retrieved. Apply pre-trained RoBERTa-base-BoolQ model to abstracts using keyword queries. Aggregate results.

webis-nlm-lbert-abs

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-nlm-lbert-abs
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: manual
  • Task: prediction
  • MD5: da1a5842a2ff933519664365f7c03e95
  • Run description: Retrieve up to 20 abstracts through PubMed search API using provided keyword queries. Reformulate queries for which only 0 or 1 documents are retrieved. Apply pre-trained BioLinkBERT-large model to abstracts using keyword queries. Aggregate results.

webis-uniqa-ax-com

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-uniqa-ax-com
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: retrieval
  • MD5: ff7ac49642c2c9d283f70fb3a4dbb66c
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Average answer score of both predictors. Resolve answer conflicts with axiomatic re-ranking (most recently published abstract first). Aggregate abstract-wise answer score with ranking position discount. Retrieve 1000 documents from C4 using BM25 (Elasticsearch). Predict answer per document using UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Combine retrieval score with similarity to predicted topic answer (tradeoff 0.75).

webis-uniqa-ax-lin

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-uniqa-ax-lin
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: retrieval
  • MD5: 1dac5bdfe7f88109b9999a1897081785
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Average answer score of both predictors. Resolve answer conflicts with axiomatic re-ranking (most recently published abstract first). Aggregate abstract-wise answer score with ranking position discount. Retrieve 1000 documents from C4 using BM25 (Elasticsearch). Predict answer per document using UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Boost retrieval score linearly based on similarity to predicted topic answer.

webis-uniqa-ax-pol

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-uniqa-ax-pol
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: retrieval
  • MD5: f4a92799bab23a747e3460169e135683
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Average answer score of both predictors. Resolve answer conflicts with axiomatic re-ranking (most recently published abstract first). Aggregate abstract-wise answer score with ranking position discount. Retrieve 1000 documents from C4 using BM25 (Elasticsearch). Predict answer per document using UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Boost retrieval score polynomially (x^2) based on similarity to predicted topic answer.

webis-uniqa-dis

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-uniqa-dis
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: prediction
  • MD5: c853271e838783c5dd6c3772998396ef
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using UnifiedQA (allenai/unifiedqa-t5-large, using abstract as context). Aggregate abstract-wise answer score with ranking position discount.

webis-verasent-dis

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: webis-verasent-dis
  • Participant: Webis
  • Track: Health Misinformation
  • Year: 2022
  • Submission: 8/1/2022
  • Type: auto
  • Task: prediction
  • MD5: 746e38981983a918271feedd5f31146f
  • Run description: Retrieve 1000 abstracts from PubMed using BM25 (Elasticsearch). Re-rank top-1000 with monoT5 (castorini/monot5-3b-med-msmarco) and top-50 with duoT5 (castorini/duot5-3b-med-msmarco). Predict answer per abstract using Vera (gs://castorini/vera/experiments/3B, using abstract as context, select most 'relevant' sentences). Aggregate abstract-wise answer score with ranking position discount.