optbayesexpt API¶
OptBayesExptis the core class that performs Bayesian inference and selects measurement settings. Typically, it is the only class that a user will need to interact with directly.OptBayesExptNoiseParameteris similar toOptBayesExptbut is designed for cases where the measurement uncertainty is a parameter to be estimated.ParticlePDFis inherited byOptBayesExptto handle the duties of a probability distribution functions.OBE_Serverclass provides communication with other processes through a mini-language of label-value commands.Socketclass is inherited byServerto handle TCP connections and message encoding/decoding.The obe_utils.py file provides
A
MeasurementSimulatorclass that uses “true value” parameters and added noise to simulate experimental outputs.For post-processing, a
trace_sort()function sorts measurement data by measurement setting and combines all measurements with settings in common.A
differential_entropy()function to calculate information entropy from samples of a distribution.
- OptBayesExpt class
OptBayesExptN_DRAWSallsettingschokeconscost_estimate()default_noise_stdenforce_parameter_constraints()eval_over_all_parameters()eval_over_all_settings()get_setting()good_setting()last_setting_indexlikelihood()measurement_resultsmodel_functionn_channelsopt_setting()parameterspdf_update()pickinessrandom_setting()set_n_draws()setting_indicessetting_valuesutility()utility_full_kld()utility_max_min()utility_pseudo()utility_variance()y_var_noise_model()yvar_from_entropy()yvar_from_parameter_draws()yvar_max_min()yvar_noise_model()
- OptBayesExptNoiseParam class
- OBE_Server class
- OBE_Socket class
- ParticlePDF class
- Utilities