fipy.terms.firstOrderAdvectionTerm¶
Classes
|
The FirstOrderAdvectionTerm object constructs the b vector contribution for the advection term given by |
- class fipy.terms.firstOrderAdvectionTerm.FirstOrderAdvectionTerm(coeff=None)¶
Bases:
_NonDiffusionTerm
The FirstOrderAdvectionTerm object constructs the b vector contribution for the advection term given by
\[u \abs{\nabla \phi}\]from the advection equation given by:
\[\frac{\partial \phi}{\partial t} + u \abs{\nabla \phi} = 0\]The construction of the gradient magnitude term requires upwinding. The formula used here is given by:
\[u_P \abs{\nabla \phi}_P = \max \left( u_P , 0 \right) \left[ \sum_A \min \left( \frac{ \phi_A - \phi_P } { d_{AP}}, 0 \right)^2 \right]^{1/2} + \min \left( u_P , 0 \right) \left[ \sum_A \max \left( \frac{ \phi_A - \phi_P } { d_{AP}}, 0 \right)^2 \right]^{1/2}\]Here are some simple test cases for this problem:
>>> from fipy.meshes import Grid1D >>> from fipy.solvers import * >>> SparseMatrix = LinearLUSolver()._matrixClass >>> mesh = Grid1D(dx = 1., nx = 3) >>> from fipy.variables.cellVariable import CellVariable
Trivial test:
>>> var = CellVariable(value = numerix.zeros(3, 'd'), mesh = mesh) >>> v, L, b = FirstOrderAdvectionTerm(0.)._buildMatrix(var, SparseMatrix) >>> print(numerix.allclose(b, numerix.zeros(3, 'd'), atol = 1e-10)) True
Less trivial test:
>>> var = CellVariable(value = numerix.arange(3), mesh = mesh) >>> v, L, b = FirstOrderAdvectionTerm(1.)._buildMatrix(var, SparseMatrix) >>> print(numerix.allclose(b, numerix.array((0., -1., -1.)), atol = 1e-10)) True
Even less trivial
>>> var = CellVariable(value = numerix.arange(3), mesh = mesh) >>> v, L, b = FirstOrderAdvectionTerm(-1.)._buildMatrix(var, SparseMatrix) >>> print(numerix.allclose(b, numerix.array((1., 1., 0.)), atol = 1e-10)) True
Another trivial test case (more trivial than a trivial test case standing on a harpsichord singing “trivial test cases are here again”)
>>> vel = numerix.array((-1, 2, -3)) >>> var = CellVariable(value = numerix.array((4, 6, 1)), mesh = mesh) >>> v, L, b = FirstOrderAdvectionTerm(vel)._buildMatrix(var, SparseMatrix) >>> print(numerix.allclose(b, -vel * numerix.array((2, numerix.sqrt(5**2 + 2**2), 5)), atol = 1e-10)) True
Somewhat less trivial test case:
>>> from fipy.meshes import Grid2D >>> mesh = Grid2D(dx = 1., dy = 1., nx = 2, ny = 2) >>> vel = numerix.array((3, -5, -6, -3)) >>> var = CellVariable(value = numerix.array((3, 1, 6, 7)), mesh = mesh) >>> v, L, b = FirstOrderAdvectionTerm(vel)._buildMatrix(var, SparseMatrix) >>> answer = -vel * numerix.array((2, numerix.sqrt(2**2 + 6**2), 1, 0)) >>> print(numerix.allclose(b, answer, atol = 1e-10)) True
Create a Term.
- Parameters:
coeff (float or CellVariable or FaceVariable) – Coefficient for the term. FaceVariable objects are only acceptable for diffusion or convection terms.
- property RHSvector¶
Return the RHS vector calculated in solve() or sweep(). The cacheRHSvector() method should be called before solve() or sweep() to cache the vector.
- __eq__(other)¶
Return self==value.
- __hash__()¶
Return hash(self).
- __mul__(other)¶
Multiply a term
>>> 2. * __NonDiffusionTerm(coeff=0.5) __NonDiffusionTerm(coeff=1.0)
Test for ticket:291.
>>> from fipy import PowerLawConvectionTerm >>> PowerLawConvectionTerm(coeff=[[1], [0]]) * 1.0 PowerLawConvectionTerm(coeff=array([[ 1.], [ 0.]]))
- __neg__()¶
Negate a Term.
>>> -__NonDiffusionTerm(coeff=1.) __NonDiffusionTerm(coeff=-1.0)
- __repr__()¶
The representation of a Term object is given by,
>>> print(__UnaryTerm(123.456)) __UnaryTerm(coeff=123.456)
- __rmul__(other)¶
Multiply a term
>>> 2. * __NonDiffusionTerm(coeff=0.5) __NonDiffusionTerm(coeff=1.0)
Test for ticket:291.
>>> from fipy import PowerLawConvectionTerm >>> PowerLawConvectionTerm(coeff=[[1], [0]]) * 1.0 PowerLawConvectionTerm(coeff=array([[ 1.], [ 0.]]))
- cacheMatrix()¶
Informs solve() and sweep() to cache their matrix so that matrix can return the matrix.
- cacheRHSvector()¶
Informs solve() and sweep() to cache their right hand side vector so that getRHSvector() can return it.
- justErrorVector(var=None, solver=None, boundaryConditions=(), dt=1.0, underRelaxation=None, residualFn=None)¶
Builds the Term’s linear system once.
This method also recalculates and returns the error as well as applying under-relaxation.
justErrorVector returns the overlapping local value in parallel (not the non-overlapping value).
>>> from fipy.solvers import DummySolver >>> from fipy import * >>> m = Grid1D(nx=10) >>> v = CellVariable(mesh=m) >>> len(DiffusionTerm().justErrorVector(v, solver=DummySolver())) == m.numberOfCells True
- Parameters:
var (CellVariable) – Variable to be solved for. Provides the initial condition, the old value and holds the solution on completion.
solver (Solver) – Iterative solver to be used to solve the linear system of equations. The default sovler depends on the solver package selected.
boundaryConditions (
tuple
ofBoundaryCondition
) –dt (float) – Timestep size.
underRelaxation (float) – Usually a value between 0 and 1 or None in the case of no under-relaxation
residualFn (function) – Takes var, matrix, and RHSvector arguments, used to customize the residual calculation.
- Returns:
error – The residual vector \(\vec{e}=\mathsf{L}\vec{x}_\text{old} - \vec{b}\)
- Return type:
- justResidualVector(var=None, solver=None, boundaryConditions=(), dt=None, underRelaxation=None, residualFn=None)¶
Builds the Term’s linear system once.
This method also recalculates and returns the residual as well as applying under-relaxation.
justResidualVector returns the overlapping local value in parallel (not the non-overlapping value).
>>> from fipy import * >>> m = Grid1D(nx=10) >>> v = CellVariable(mesh=m) >>> len(numerix.asarray(DiffusionTerm().justResidualVector(v))) == m.numberOfCells True
- Parameters:
var (CellVariable) – Variable to be solved for. Provides the initial condition, the old value and holds the solution on completion.
solver (Solver) – Iterative solver to be used to solve the linear system of equations. The default sovler depends on the solver package selected.
boundaryConditions (
tuple
ofBoundaryCondition
) –dt (float) – Timestep size.
underRelaxation (float) – Usually a value between 0 and 1 or None in the case of no under-relaxation
residualFn (function) – Takes var, matrix, and RHSvector arguments, used to customize the residual calculation.
- Returns:
residual – The residual vector \(\vec{r}=\mathsf{L}\vec{x} - \vec{b}\)
- Return type:
- property matrix¶
Return the matrix calculated in solve() or sweep(). The cacheMatrix() method should be called before solve() or sweep() to cache the matrix.
- residualVectorAndNorm(var=None, solver=None, boundaryConditions=(), dt=None, underRelaxation=None, residualFn=None)¶
Builds the Term’s linear system once.
This method also recalculates and returns the residual as well as applying under-relaxation.
- Parameters:
var (CellVariable) – Variable to be solved for. Provides the initial condition, the old value and holds the solution on completion.
solver (Solver) – Iterative solver to be used to solve the linear system of equations. The default sovler depends on the solver package selected.
boundaryConditions (
tuple
ofBoundaryCondition
) –dt (float) – Timestep size.
underRelaxation (float) – Usually a value between 0 and 1 or None in the case of no under-relaxation
residualFn (function) – Takes var, matrix, and RHSvector arguments, used to customize the residual calculation.
- Returns:
residual (~fipy.variables.cellVariable.CellVariable) – The residual vector \(\vec{r}=\mathsf{L}\vec{x} - \vec{b}\)
norm (float) – The L2 norm of residual, \(\|\vec{r}\|_2\)
- solve(var=None, solver=None, boundaryConditions=(), dt=None)¶
Builds and solves the Term’s linear system once. This method does not return the residual. It should be used when the residual is not required.
- Parameters:
var (CellVariable) – Variable to be solved for. Provides the initial condition, the old value and holds the solution on completion.
solver (Solver) – Iterative solver to be used to solve the linear system of equations. The default sovler depends on the solver package selected.
boundaryConditions (
tuple
ofBoundaryCondition
) –dt (float) – Timestep size.
- sweep(var=None, solver=None, boundaryConditions=(), dt=None, underRelaxation=None, residualFn=None, cacheResidual=False, cacheError=False)¶
Builds and solves the Term’s linear system once. This method also recalculates and returns the residual as well as applying under-relaxation.
- Parameters:
var (CellVariable) – Variable to be solved for. Provides the initial condition, the old value and holds the solution on completion.
solver (Solver) – Iterative solver to be used to solve the linear system of equations. The default sovler depends on the solver package selected.
boundaryConditions (
tuple
ofBoundaryCondition
) –dt (float) – Timestep size.
underRelaxation (float) – Usually a value between 0 and 1 or None in the case of no under-relaxation
residualFn (function) – Takes var, matrix, and RHSvector arguments, used to customize the residual calculation.
cacheResidual (bool) – If True, calculate and store the residual vector \(\vec{r}=\mathsf{L}\vec{x} - \vec{b}\) in the residualVector member of Term
cacheError (bool) – If True, use the residual vector \(\vec{r}\) to solve \(\mathsf{L}\vec{e}=\vec{r}\) for the error vector \(\vec{e}\) and store it in the errorVector member of Term
- Returns:
residual – The residual vector \(\vec{r}=\mathsf{L}\vec{x} - \vec{b}\)
- Return type: