examples.elphf.diffusion.mesh2D

The same three-component diffusion problem as introduced in examples.elphf.diffusion.mesh1D but in 2D:
>>> from fipy import CellVariable, FaceVariable, Grid2D, TransientTerm, DiffusionTerm, PowerLawConvectionTerm, Viewer
>>> nx = 40
>>> dx = 1.
>>> L = nx * dx
>>> mesh = Grid2D(dx = dx, dy = dx, nx = nx, ny = nx)

One component in this ternary system will be designated the “solvent”

>>> class ComponentVariable(CellVariable):
...     def __init__(self, mesh, value = 0., name = '', standardPotential = 0.,
...                  barrier = 0., diffusivity = None, valence = 0, equation = None):
...         CellVariable.__init__(self, mesh = mesh, value = value, name = name)
...         self.standardPotential = standardPotential
...         self.barrier = barrier
...         self.diffusivity = diffusivity
...         self.valence = valence
...         self.equation = equation
...
...     def copy(self):
...         return self.__class__(mesh = self.mesh, value = self.value,
...                               name = self.name,
...                               standardPotential = self.standardPotential,
...                               barrier = self.barrier,
...                               diffusivity = self.diffusivity,
...                               valence = self.valence,
...                               equation = self.equation)
>>> solvent = ComponentVariable(mesh = mesh, name = 'Cn', value = 1.)

We can create an arbitrary number of components, simply by providing a Tuple or list of components

>>> substitutionals = [
...     ComponentVariable(mesh = mesh, name = 'C1', diffusivity = 1.,
...                       standardPotential = 1., barrier = 1.),
...     ComponentVariable(mesh = mesh, name = 'C2', diffusivity = 1.,
...                       standardPotential = 1., barrier = 1.),
...     ]
>>> interstitials = []
>>> for component in substitutionals:
...     solvent -= component

Although we are not interested in them for this problem, we create one field to represent the “phase” (1 everywhere)

>>> phase = CellVariable(mesh = mesh, name = 'xi', value = 1.)

and one field to represent the electrostatic potential (0 everywhere)

>>> potential = CellVariable(mesh = mesh, name = 'phi', value = 0.)

Although it is constant in this problem, in later problems we will need the following functions of the phase field

>>> def pPrime(xi):
...     return 30. * (xi * (1 - xi))**2
>>> def gPrime(xi):
...     return 2 * xi * (1 - xi) * (1 - 2 * xi)

We separate the solution domain into two different concentration regimes

>>> x = mesh.cellCenters[0]
>>> substitutionals[0].setValue(0.3)
>>> substitutionals[0].setValue(0.6, where=x > L / 2)
>>> substitutionals[1].setValue(0.6)
>>> substitutionals[1].setValue(0.3, where=x > L / 2)

We create one diffusion equation for each substitutional component

>>> for Cj in substitutionals:
...     CkSum = ComponentVariable(mesh = mesh, value = 0.)
...     CkFaceSum = FaceVariable(mesh = mesh, value = 0.)
...     for Ck in [Ck for Ck in substitutionals if Ck is not Cj]:
...         CkSum += Ck
...         CkFaceSum += Ck.harmonicFaceValue
...
...     counterDiffusion = CkSum.faceGrad
...     phaseTransformation = \
...         (pPrime(phase.harmonicFaceValue) * Cj.standardPotential \
...         + gPrime(phase.harmonicFaceValue) * Cj.barrier) \
...             * phase.faceGrad
...     electromigration = Cj.valence * potential.faceGrad
...     convectionCoeff = counterDiffusion \
...         + solvent.harmonicFaceValue \
...             * (phaseTransformation + electromigration)
...     convectionCoeff *= (Cj.diffusivity / (1. - CkFaceSum))
...
...     Cj.equation = (TransientTerm()
...                    == DiffusionTerm(coeff=Cj.diffusivity)
...                    + PowerLawConvectionTerm(coeff=convectionCoeff))

If we are running interactively, we create a viewer to see the results

>>> if __name__ == '__main__':
...     viewers = [Viewer(vars=field, datamin=0, datamax=1)
...                for field in [solvent] + substitutionals]
...     for viewer in viewers:
...         viewer.plot()
...     steps = 40
...     tol = 1e-7
... else:
...     steps = 20
...     tol = 1e-4

Now, we iterate the problem to equilibrium, plotting as we go

>>> from builtins import range
>>> for i in range(steps):
...     for Cj in substitutionals:
...         Cj.equation.solve(var = Cj,
...                           dt = 10000)
...     if __name__ == '__main__':
...         for viewer in viewers:
...             viewer.plot()

Since there is nothing to maintain the concentration separation in this problem, we verify that the concentrations have become uniform

>>> substitutionals[0].allclose(0.45, rtol = tol, atol = tol).value
1
>>> substitutionals[1].allclose(0.45, rtol = tol, atol = tol).value
1

We now rerun the problem with an initial condition that only has a concentration step in one corner.

>>> x, y = mesh.cellCenters
>>> substitutionals[0].setValue(0.3)
>>> substitutionals[0].setValue(0.6, where=(x > L / 2.) & (y > L / 2.))
>>> substitutionals[1].setValue(0.6)
>>> substitutionals[1].setValue(0.3, where=(x > L / 2.) & (y > L / 2.))

We iterate the problem to equilibrium again

>>> from builtins import range
>>> for i in range(steps):
...     for Cj in substitutionals:
...         Cj.equation.solve(var = Cj,
...                           dt = 10000)
...     if __name__ == '__main__':
...         for viewer in viewers:
...             viewer.plot()

and verify that the correct uniform concentrations are achieved

>>> substitutionals[0].allclose(0.375, rtol = tol, atol = tol).value
1
>>> substitutionals[1].allclose(0.525, rtol = tol, atol = tol).value
1
Last updated on Jun 26, 2024. Created using Sphinx 7.1.2.