tracking#
Note
See the Glossary for the meaning of the acronyms used in this guide.
mlflow.py#
A task plugin module for using the MLFlow Tracking service.
- log_metrics(metrics: Dict[str, float]) None [source]#
Logs metrics to the MLFlow Tracking service for the current run.
- Parameters
metrics – A dictionary with the metrics to be logged. The keys are the metric names and the values are the metric values.
See also
- log_parameters(parameters: Dict[str, float]) None [source]#
Logs parameters to the MLFlow Tracking service for the current run.
Parameters can only be set once per run.
- Parameters
parameters – A dictionary with the parameters to be logged. The keys are the parameter names and the values are the parameter values.
See also
- log_tensorflow_keras_estimator(estimator: tensorflow.keras.models.Sequential, model_dir: str) None [source]#
Logs a Keras estimator trained during the current run to the MLFlow registry.
- Parameters
estimator – A trained Keras estimator.
model_dir – The relative artifact directory where MLFlow should save the model.