class ZernikeExpansion_BRDF_Model


The class ZernikeExpansion_BRDF_Model is a phenomenological model that is based on the work of Koenderink and van Doorn and extended to account for the full Mueller matrix BRDF. The Mueller matrix BRDF is treated as the sum of surface scattering modes, which are related to the Zernike polynomials. The set of surface scattering modes is complete for valid scattering functions obeying reciprocity. See the references below for a complete description, including a link to data taken for sintered polytetrafluoroethylene (PTFE), which can be used for this model.

Parameters:

Parameter Data Type Description Default
lambda double Wavelength of the light in vacuum [µm].
(Inherited from BRDF_Model.)
0.532
type int Indicates whether the light is incident from above the substrate or from within the substrate and whether the scattering is evaluated in reflection or transmission. The choices are:
0 : Light is incident from the above the substrate, and scattering is evaluated in reflection.
1 : Light is incident from the above the substrate, and scattering is evaluated in transmission.
2 : Light is incident from the within the substrate, and scattering is evaluated in reflection.
3 : Light is incident from the within the substrate, and scattering is evaluated in transmission.
For 1, 2, and 3, the substrate must be non-absorbing.
(Inherited from BRDF_Model).
NOTE: Only type=0 is implemented by this model.
0
substrate dielectric_function The optical constants of the substrate, expressed as a complex number (n,k) or, optionally, as a function of wavelength.
(Inherited from BRDF_Model.)
NOTE: This parameter is ignored by this model
(4.05,0.05)
coefficientfile std::string Name of the CSV file containing the list of coefficients. The description of this file is given below. blank
scale Table A scaling factor $r(\lambda)$, usually the diffuse reflectance. 1

See also:

SCATMECH Home,   Conventions,   BRDF_Model,  

J. J. Koenderink and A. J. van Doorn, "Phenomenological description of bidirectional surface reflection," J. Opt. Soc. Am. A. 15, 2903–2912 (1998).

T. A. Germer, "Full four-dimensional and reciprocal Mueller matrix bidirectional reflectance distribution function of sintered polytetrafluoroethylene," Appl. Opt., 56, 9333-9340 (2017).

T. A. Germer, “Supplementary Data for ‘Full four-dimensional and reciprocal Mueller matrix bidirectional reflectance distribution function of sintered polytetrafluoroethylene,’ ” Figshare (2017)

Include file:

#include "zernikeexpansion.h"

Source code:

zernikeexpansion.cpp

Description of Coefficient File

The paper by Germer (see above) shows that the Mueller matrix BRDF elements in the xyxy basis can be expressed as an expansion based upon the Zernike polynomials. The unpolarized 11 element is given by \begin{equation} f_{{\rm r},11}(\theta_{\rm i},\theta_{\rm r},\Delta\phi_{\rm ir})=r(\lambda) \sum_{nmkp} a_{11,nm}^{kp}\lambda^p I_{nm}^{k}(\theta_{\rm i},\theta_{\rm r},\Delta\phi_{\rm ir}), \end{equation} where $\phi_{\rm ir}$ is the azimuthal scattering angle $\phi_{\rm s}$, $\lambda$ is the wavelength, \begin{equation} I_{nm}^{k}(\theta_{\rm i},\theta_{\rm r},\Delta\phi_{\rm ir})= \frac{1}{2\pi}\left[\frac{(n+1)(m+1)}{A_{nm}^k}\right]^{1/2} \left[R_n^k\left(\sqrt{2}\sin\frac{\theta_{\rm i}}{2}\right)R_m^k\left(\sqrt{2}\sin\frac{\theta_{\rm r}}{2}\right)+\right. \left.R_m^k\left(\sqrt{2}\sin\frac{\theta_{\rm i}}{2}\right)R_n^k\left(\sqrt{2}\sin\frac{\theta_{\rm r}}{2}\right)\right] \cos k\Delta\phi_{\rm ir}, \end{equation} \begin{equation} A_{nm}^k= \left\{\begin{array}{ll} 4 & \mbox{if $(n=0)$ or $((n=m)$ and $(k=0))$}\\ 2 & \mbox{if $((n=m)$ or $(k=0))$}\\ 1 & \mbox{otherwise,} \end{array}\right. \end{equation} and the radial Zernike polynomials are given by \begin{equation} R_n^m(\rho) = \sum_{s=0}^{(n-\vert m \vert)/2}(-1)^s\frac{(n-s)!}{s!\left(\frac{n+m}{2}-s\right)!\left(\frac{n-m}{2}-s\right)!}\rho^{n-2s}. \end{equation} The parameter $r(\lambda)$ is a scaling factor that accounts for the wavelength dependence of the directional-hemispherical reflectance. The model parameter scale is used to store $r(\lambda)$. The other diagonal elements are given by \begin{equation} f_{{\rm r},ii}(\theta_{\rm i},\theta_{\rm r},\Delta\phi_{\rm ir})= f_{{\rm r},11}(\theta_{\rm i},\theta_{\rm r},\Delta\phi_{\rm ir}) \sum_{nmklp} a_{ii,nm}^{klp}\lambda^p H_{nm}^{kl}(\theta_{\rm i},\phi_{\rm i},\theta_{\rm r},\phi_{\rm r}), \end{equation} where \begin{equation} H_{nm}^{kl}(\theta_{\rm i},\phi_{\rm i},\theta_{\rm r},\phi_{\rm r}) = \frac{ K_n^k(\theta_{\rm i},\phi_{\rm i})K_m^l(\theta_{\rm r},\phi_{\rm r})+K_n^k(\theta_{\rm r},\phi_{\rm r})K_m^l(\theta_{\rm i},\phi_{\rm i}) }{(2+2\delta_{nm}\delta_{kl})^{1/2}}. \end{equation} The upper-diagonal elements are given by \begin{equation} f_{{\rm r},ij}(\theta_{\rm i},\phi_{\rm i},\theta_{\rm r},\phi_{\rm r}) = f_{{\rm r},11}(\theta_{\rm i},\theta_{\rm r},\Delta\phi_{\rm ir}) \sum_{nkmlp} a_{ij,nm}^{klp}\lambda^p K_n^k(\theta_{\rm i},\phi_{\rm i})K_m^l(\theta_{\rm r},\phi_{\rm r}), \end{equation} and the lower-diagonal elements are given by \begin{equation} f_{{\rm r},ji}(\theta_{\rm i},\phi_{\rm i},\theta_{\rm r},\phi_{\rm r}) = \pm f_{{\rm r},11}(\theta_{\rm i},\theta_{\rm r},\Delta\phi_{\rm ir}) \sum_{nkmlp} a_{ij,nm}^{klp}\lambda^p K_m^l(\theta_{\rm i},\phi_{\rm i})K_n^k(\theta_{\rm r},\phi_{\rm r}), \end{equation} where \begin{equation} K_n^k(\theta,\phi)=\sqrt{\frac{n+1}{\pi}}R_n^k\left(\sqrt{2}\sin\frac{\theta}{2}\right){\rm az}_k(\phi), \label{eq:zp} \end{equation} and where \begin{equation} {\rm az}_k(\phi)=\left\{ \begin{array}{ll} -\sin k\phi, & k<0\\ 1/\sqrt{2}, & k=0\\ \cos k\phi, & k>0. \end{array} \right. \end{equation}

The file containing the coefficients is a column-separated-variable (CSV) file with eight columns:

  • 1. Mueller matrix index (1-based), $i$, where the Mueller matrix is $M_{ij}$.
  • 2. Mueller matrix index (1-based), $j$, where the Mueller matrix is $M_{ij}$.
  • 3. Zernike radial order $m$
  • 4. Zernike radial order $n$
  • 5. Zernike azimuthal order $k$
  • 6. Zernike azimuthal order $l$
  • 7. Power of $\lambda$, $p$ (where $\lambda$ is assumed to be in the common length unit, usually micrometers)
  • 8. Coefficient, $a_{ij,mn}^{klp}$

Coefficient files appropriate for sintered PTFE are included in the supplementary data for the paper.

Top of Page


For More Information

SCATMECH Technical Information and Questions
Sensor Science Division Home Page
Sensor Science Division Inquiries
Website Comments

Current SCATMECH version: 7.10 (January 2017)
This page first online: Version 7.22 (April 2021)
This page last modified: Version 7.22 (April 2021)