Proceedings - Retrieval-Augmented Generation 2024¶
TREMA-UNH at TREC: RAG Systems and RUBRIC-style Evaluation¶
Naghmeh FarziLaura Dietz
- Participant: TREMA-UNH
- Paper: https://trec.nist.gov/pubs/trec33/papers/TREMA-UNH.rag.pdf
- Runs: Ranked_Iterative_Fact_Extraction_and_Refinement | Enhanced_Iterative_Fact_Refinement_and_Prioritization | Ranked_Iterative_Fact_Extraction_and_Refinement_RIFER_-_bm25
Abstract
The TREMA-UNH team participated in the TREC Retrieval-Augmented Genera-
tion track (RAG). In Part 1 we describe the RAG systems submitted to the Augmented Generation Task (AG) and the Retrieval-Augmented Generation Task (RAG), the lat- ter using a BM25 retrieval model. In Part 2 we describe an alternative LLM-based evaluation method for this track using the RUBRIC Autograder Workbench approach, which won the SIGIR’24 best paper award.
Bibtex
@inproceedings{TREMA-UNH-trec2024-papers-proc-1,
author = {Naghmeh Farzi
Laura Dietz},
title = {TREMA-UNH at TREC: RAG Systems and RUBRIC-style Evaluation},
booktitle = {The Thirty-Third Text REtrieval Conference Proceedings (TREC 2024), Gaithersburg, MD, USA, November 15-18, 2024},
series = {NIST Special Publication},
volume = {xxx-xxx},
publisher = {National Institute of Standards and Technology (NIST)},
year = {2024},
trec_org = {TREMA-UNH},
trec_runs = {Ranked_Iterative_Fact_Extraction_and_Refinement, Enhanced_Iterative_Fact_Refinement_and_Prioritization, Ranked_Iterative_Fact_Extraction_and_Refinement_RIFER_-_bm25},
trec_tracks = {rag}
url = {https://trec.nist.gov/pubs/trec33/papers/TREMA-UNH.rag.pdf}
}
CIR at TREC 2024 RAG: Task 2 - Augmented Generation with Diversified Segments and Knowledge Adaption¶
Jüri Keller (TH Köln - University of Applied) Björn Engelmann (TH Köln - University of Applied) Fabian Haak (TH Köln - University of Applied) Philipp Schaer (TH Köln - University of Applied) Hermann Kroll (TU Braunschweig) Christin Katharina Kreutz (TH Mittelhessen - University of Applied Sciences, Herder Institute)
- Participant: CIR
- Paper: https://trec.nist.gov/pubs/trec33/papers/CIR.rag.pdf
- Runs: cir_gpt-4o-mini_Jaccard_50_0.5_100_301_p0 | cir_gpt-4o-mini_Jaccard_50_1.0_100_301_p0 | cir_gpt-4o-mini_Cosine_50_0.5_100_301_p1 | cir_gpt-4o-mini_Cosine_50_0.25_100_301_p1 | cir_gpt-4o-mini_Cosine_50_0.75_100_301_p1 | cir_gpt-4o-mini_Cosine_50_1.0_100_301_p1 | cir_gpt-4o-mini_Cosine_20_0.5_100_301_p1 | cir_gpt-4o-mini_Cosine_50_0.5_100_301_p2 | cir_gpt-4o-mini_Cosine_50_0.5_100_301_p3 | cir_gpt-4o-mini_no_reranking_50_0.5_100_301_p1
Abstract
This paper describes the CIR team’s participation in the TREC 2024 RAG track for task 2, augmented generation. With our approach, we intended to explore the effects of diversification of the segments that are considered in the generation as well as variations in the depths of users’ knowledge on a query topic. We describe a two-step approach that first reranks input segments such that they are as similar as possible to a query while also being as dissimilar as possible from higher ranked relevant segments. In the second step, these reranked segments are relayed to an LLM, which uses them to generate an answer to the query while referencing the segments that have contributed to specific parts of the answer. The LLM considers the varying background knowledge of potential users through our prompts.
Bibtex
@inproceedings{CIR-trec2024-papers-proc-1,
author = {Jüri Keller (TH Köln - University of Applied)
Björn Engelmann (TH Köln - University of Applied)
Fabian Haak (TH Köln - University of Applied)
Philipp Schaer (TH Köln - University of Applied)
Hermann Kroll (TU Braunschweig)
Christin Katharina Kreutz (TH Mittelhessen - University of Applied Sciences, Herder Institute)},
title = {CIR at TREC 2024 RAG: Task 2 - Augmented Generation with Diversified Segments and Knowledge Adaption},
booktitle = {The Thirty-Third Text REtrieval Conference Proceedings (TREC 2024), Gaithersburg, MD, USA, November 15-18, 2024},
series = {NIST Special Publication},
volume = {xxx-xxx},
publisher = {National Institute of Standards and Technology (NIST)},
year = {2024},
trec_org = {CIR},
trec_runs = {cir_gpt-4o-mini_Jaccard_50_0.5_100_301_p0, cir_gpt-4o-mini_Jaccard_50_1.0_100_301_p0, cir_gpt-4o-mini_Cosine_50_0.5_100_301_p1, cir_gpt-4o-mini_Cosine_50_0.25_100_301_p1, cir_gpt-4o-mini_Cosine_50_0.75_100_301_p1, cir_gpt-4o-mini_Cosine_50_1.0_100_301_p1, cir_gpt-4o-mini_Cosine_20_0.5_100_301_p1, cir_gpt-4o-mini_Cosine_50_0.5_100_301_p2, cir_gpt-4o-mini_Cosine_50_0.5_100_301_p3, cir_gpt-4o-mini_no_reranking_50_0.5_100_301_p1},
trec_tracks = {rag}
url = {https://trec.nist.gov/pubs/trec33/papers/CIR.rag.pdf}
}
Monster Ranking¶
Charles L. A. Clarke (University of Waterloo)Siqing Huo (University of Waterloo)Negar Arabzadeh (University of Waterloo)
- Participant: WaterlooClarke
- Paper: https://trec.nist.gov/pubs/trec33/papers/WaterlooClarke.lateral.rag.pdf
- Runs: monster | uwc1 | uwc2 | uwc0 | uwcCQAR | uwcCQA | uwcCQR | uwcCQ | uwcBA | uwcBQ | UWCrag | UWCrag_stepbystep | UWCgarag
Abstract
Participating as the UWClarke group, we focused on the RAG track; we also submitted runs for the Lateral Reading Track. For the retrieval task (R) of the RAG Track, we attempted what we have come to call “monster ranking”. Largely ignoring cost and computational resources, monster ranking attempts to determine the best possible ranked list for a query by whatever means possible, including explicit LLM-based relevance judgments, both pointwise and pairwise. While a monster ranker could never be deployed in a production environment, its output may be valuable for evaluating cheaper and faster rankers. For the full retrieval augmented generation (RAG) task we explored two general approaches, depending on if generation happens first or second: 1) Generate an Answer and support with Retrieved Evidence (GARE). 2) Retrieve And Generate with Evidence (RAGE).
Bibtex
@inproceedings{WaterlooClarke-trec2024-papers-proc-1,
author = {Charles L. A. Clarke (University of Waterloo)
Siqing Huo (University of Waterloo)
Negar Arabzadeh (University of Waterloo)},
title = {Monster Ranking},
booktitle = {The Thirty-Third Text REtrieval Conference Proceedings (TREC 2024), Gaithersburg, MD, USA, November 15-18, 2024},
series = {NIST Special Publication},
volume = {xxx-xxx},
publisher = {National Institute of Standards and Technology (NIST)},
year = {2024},
trec_org = {WaterlooClarke},
trec_runs = {uwclarke_auto, uwclarke_auto_summarized, UWCrag, UWCrag_stepbystep, UWCgarag, monster, uwc1, uwc2, uwc0, uwcCQAR, uwcCQA, uwcCQR, uwcCQ, uwcBA, uwcBQ, UWClarke_rerank},
trec_tracks = {lateral.rag}
url = {https://trec.nist.gov/pubs/trec33/papers/WaterlooClarke.lateral.rag.pdf}
}
softbank-meisei-trec2024-papers-proc-2¶
Aiswariya Manoj Kumar(Softbank Corp.)Hiroki Takushima(Softbank Corp.)Yuma Suzuki(Softbank Corp.)Hayato Tanoue(Softbank Corp.)Hiroki Nishihara(Softbank Corp.)Yuki Shibata(Softbank Corp.)Haruki Sato(Agoop Corp.)Takumi Takada(SB Intuitions Corp.)Takayuki Hori(Softbank Corp.)Kazuya Ueki(Meisei Univ.)
- Participant: softbank-meisei
- Paper: https://trec.nist.gov/pubs/trec33/papers/softbank-meisei.rag.pdf
- Runs: rtask-bm25-colbert_faiss | rtask-bm25-rank_zephyr | agtask-bm25-colbert_faiss-gpt4o-llama70b | rag_bm25-colbert_faiss-gpt4o-llama70b | ragtask-bm25-rank_zephyr-gpt4o-llama70b
Abstract
The SoftBank-Meisei team participated in the Retrieval (R), Augmented Generation (AG), and Retrieval Augmented Generation (RAG) tasks at TREC RAG 2024. In the retrieval task, we employed the hierarchical retrieval process of combining the sparse and dense retrieval methods. We submitted two runs for the task; one with the baseline implementation with additional preprocessing on the topic list and the other with the hierarchical retrieval results.
In the Augmented Generation task, we used the GPT-4o API, as well as the LLama3-70b model along with our custom prompt for the generation. As for the Retrieval Augmented Generation task, we submitted two runs same as the R-task. The prompt used for the AG-task was used for the generation stage of the RAG-task too.
Bibtex
@inproceedings{softbank-meisei-trec2024-papers-proc-2,
author = {Aiswariya Manoj Kumar(Softbank Corp.)
Hiroki Takushima(Softbank Corp.)
Yuma Suzuki(Softbank Corp.)
Hayato Tanoue(Softbank Corp.)
Hiroki Nishihara(Softbank Corp.)
Yuki Shibata(Softbank Corp.)
Haruki Sato(Agoop Corp.)
Takumi Takada(SB Intuitions Corp.)
Takayuki Hori(Softbank Corp.)
Kazuya Ueki(Meisei Univ.)},
title = {softbank-meisei-trec2024-papers-proc-2},
booktitle = {The Thirty-Third Text REtrieval Conference Proceedings (TREC 2024), Gaithersburg, MD, USA, November 15-18, 2024},
series = {NIST Special Publication},
volume = {xxx-xxx},
publisher = {National Institute of Standards and Technology (NIST)},
year = {2024},
trec_org = {softbank-meisei},
trec_runs = {SoftbankMeisei - Progress Run 1, SoftbankMeisei - Progress Run 2, SoftbankMeisei - Progress Run 3, SoftbankMeisei - Progress Run 4, SoftbankMeisei - Main Run 1, SoftbankMeisei - Main Run 2, SoftbankMeisei - Main Run 3, SoftbankMeisei - Main Run 4, rtask-bm25-colbert_faiss, rtask-bm25-rank_zephyr, rag_bm25-colbert_faiss-gpt4o-llama70b, ragtask-bm25-rank_zephyr-gpt4o-llama70b, agtask-bm25-colbert_faiss-gpt4o-llama70b, SoftbankMeisei_vtt_main_run1, SoftbankMeisei_vtt_main_run2, SoftbankMeisei_vtt_main_run3, SoftbankMeisei_vtt_main_run4, SoftbankMeisei_vtt_sub_run2, SoftbankMeisei_vtt_sub_run3, SoftbankMeisei_vtt_sub_run1},
trec_tracks = {rag}
url = {https://trec.nist.gov/pubs/trec33/papers/softbank-meisei.rag.pdf}
}
Laboratory for Analytic Sciences in TREC 2024 Retrieval Augmented Generation Track¶
Yue Wang (UNC at Chapel Hill)John M. Conroy (IDA Center for Computing Sciences)Neil Molino (IDA Center for Computing Sciences)Julia Yang (U.S. Department of Defense)Mike Green (U.S. Department of Defense)
- Participant: ncsu-las
- Paper: https://trec.nist.gov/pubs/trec33/papers/ncsu-las.rag.pdf
- Runs: LAS_ENN_T5_RERANKED_MXBAI | LAS-splade-mxbai-rrf | LAS-splade-mxbai | LAS_enn_t5 | LAS_ann_t5_qdrant | LAS-splade-mxbai-rrf-mmr8 | LAS-splade-mxbai-mmr8-RAG | LAS-T5-mxbai-mmr8-RAG | LAS-splade-mxbai-rrf-mmr8-doc | LAS_splad_mxbai-rrf-occams_50_RAG
Abstract
We report on our approach to the NIST TREC 2024 retrieval-augmented generation (RAG) track. The goal of this track was to build and evaluate systems that can answer complex questions by 1) retrieving excerpts of webpages from a large text collection (hundreds of millions of excerpts taken from tens of millions of webpages); 2) summarizing relevant information within retrieved excerpts into an answer containing up to 400 words; 3) attributing each sentence in the generated summary to one or more retrieved excerpts. We participated in the retrieval (R) task and retrieval augmented generation (RAG) task.
Bibtex
@inproceedings{ncsu-las-trec2024-papers-proc-1,
author = {Yue Wang (UNC at Chapel Hill)
John M. Conroy (IDA Center for Computing Sciences)
Neil Molino (IDA Center for Computing Sciences)
Julia Yang (U.S. Department of Defense)
Mike Green (U.S. Department of Defense)},
title = {Laboratory for Analytic Sciences in TREC 2024 Retrieval Augmented Generation Track},
booktitle = {The Thirty-Third Text REtrieval Conference Proceedings (TREC 2024), Gaithersburg, MD, USA, November 15-18, 2024},
series = {NIST Special Publication},
volume = {xxx-xxx},
publisher = {National Institute of Standards and Technology (NIST)},
year = {2024},
trec_org = {ncsu-las},
trec_runs = {LAS_ENN_T5_RERANKED_MXBAI, LAS-splade-mxbai-rrf, LAS-splade-mxbai, LAS-splade-mxbai-rrf-mmr8, LAS-splade-mxbai-mmr8-RAG, LAS-T5-mxbai-mmr8-RAG, LAS_enn_t5, LAS_ann_t5_qdrant, LAS-splade-mxbai-rrf-mmr8-doc, LAS_splad_mxbai-rrf-occams_50_RAG},
trec_tracks = {rag}
url = {https://trec.nist.gov/pubs/trec33/papers/ncsu-las.rag.pdf}
}
The University of Stavanger (IAI) at the TREC 2024 Retrieval-Augmented Generation Track¶
Weronika Lajewska (University of Stavanger)Krisztian Balog (University of Stavanger)
- Participant: uis-iai
- Paper: https://trec.nist.gov/pubs/trec33/papers/uis-iai.rag.pdf
- Runs: ginger_top_5 | baseline_top_5 | ginger-fluency_top_5 | ginger-fluency_top_10 | ginger-fluency_top_20
Abstract
This paper describes the participation of the IAI group at the University of Stavanger in the TREC 2024 Retrieval-Augmented Generation track. We employ a modular pipeline for Grounded Information Nugget-based GEneration of Conversational Information-Seeking Responses (GINGER) to ensure factual correctness and source attribution. The multistage process includes detecting, clustering, and ranking information nuggets, summarizing top clusters, and generating follow-up questions based on uncovered subspaces of relevant information. In our runs, we experiment with different length of the responses and different number of input passages. Preliminary results indicate that ours was one of the top performing systems in the augmented generation task.
Bibtex
@inproceedings{uis-iai-trec2024-papers-proc-1,
author = {Weronika Lajewska (University of Stavanger)
Krisztian Balog (University of Stavanger)},
title = {The University of Stavanger (IAI) at the TREC 2024 Retrieval-Augmented Generation Track},
booktitle = {The Thirty-Third Text REtrieval Conference Proceedings (TREC 2024), Gaithersburg, MD, USA, November 15-18, 2024},
series = {NIST Special Publication},
volume = {xxx-xxx},
publisher = {National Institute of Standards and Technology (NIST)},
year = {2024},
trec_org = {uis-iai},
trec_runs = {ginger_top_5, baseline_top_5, ginger-fluency_top_5, ginger-fluency_top_10, ginger-fluency_top_20},
trec_tracks = {rag}
url = {https://trec.nist.gov/pubs/trec33/papers/uis-iai.rag.pdf}
}
Webis at TREC 2024: Biomedical Generative Retrieval, Retrieval-Augmented Generation, and Tip-of-the-Tongue Tracks¶
Maik Fröbe (Friedrich-Schiller-Universität)Lukas Gienapp (Leipzig University ScaDS.AI)Harrisen Scells (Universität Kassel)Eric Oliver Schmidt (Martin-Luther-Universität Halle)Matti Wiegmann (Bauhaus-Universität Weimar)Martin PotthastUniversität Kassel (Universität Kassel hessian.AI ScaDS.AI)Matthias Hagen (Friedrich-Schiller-Universität Jena)
- Participant: webis
- Paper: https://trec.nist.gov/pubs/trec33/papers/webis.biogen.rag.tot.pdf
- Runs: webis-01 | webis-02 | webis-03 | webis-04 | webis-05 | webis-ag-run0-taskrag | webis-ag-run1-taskrag | webis-ag-run3-reuserag | webis-ag-run2-reuserag | webis-manual | webis-rag-run0-taskrag | webis-rag-run1-taskrag | webis-rag-run3-taskrag | webis-rag-run4-reuserag | webis-rag-run5-reuserag
Abstract
In this paper, we describe the Webis Group's participation in the 2024~edition of TREC. We participated in the Biomedical Generative Retrieval track, the Retrieval-Augmented Generation track, and the Tip-of-the-Tongue track. For the biomedical track, we applied different paradigms of retrieval-augmented generation with open- and closed-source LLMs. For the Retrieval-Augmented Generation track, we aimed to contrast manual response submissions with fully-automated responses. For the Tip-of-the-Tongue track, we employed query relaxation as in our last year's submission (i.e., leaving out terms that likely reduce the retrieval effectiveness) that we combine with a new cross-encoder that we trained on an enriched version of the TOMT-KIS dataset.
Bibtex
@inproceedings{webis-trec2024-papers-proc-1,
author = {Maik Fröbe (Friedrich-Schiller-Universität)
Lukas Gienapp (Leipzig University & ScaDS.AI)
Harrisen Scells (Universität Kassel)
Eric Oliver Schmidt (Martin-Luther-Universität Halle)
Matti Wiegmann (Bauhaus-Universität Weimar)
Martin Potthast
Universität Kassel (Universität Kassel & hessian.AI & ScaDS.AI)
Matthias Hagen (Friedrich-Schiller-Universität Jena)},
title = {Webis at TREC 2024: Biomedical Generative Retrieval, Retrieval-Augmented Generation, and Tip-of-the-Tongue Tracks},
booktitle = {The Thirty-Third Text REtrieval Conference Proceedings (TREC 2024), Gaithersburg, MD, USA, November 15-18, 2024},
series = {NIST Special Publication},
volume = {xxx-xxx},
publisher = {National Institute of Standards and Technology (NIST)},
year = {2024},
trec_org = {webis},
trec_runs = {webis-01, webis-02, webis-03, webis-04, webis-05, webis-ag-run0-taskrag, webis-ag-run1-taskrag, webis-manual, webis-rag-run0-taskrag, webis-rag-run1-taskrag, webis-rag-run3-taskrag, webis-ag-run3-reuserag, webis-rag-run4-reuserag, webis-rag-run5-reuserag, webis-ag-run2-reuserag, webis-1, webis-2, webis-3, webis-gpt-1, webis-gpt-4, webis-gpt-6, webis-5, webis-base, webis-tot-01, webis-tot-02, webis-tot-04, webis-tot-03},
trec_tracks = {biogen.rag.tot}
url = {https://trec.nist.gov/pubs/trec33/papers/webis.biogen.rag.tot.pdf}
}