Runs - Tip-of-the-Tongue 2023¶
baseline_bm25¶
Results
| Participants
| Input
| Summary
| Appendix
- Run ID: baseline_bm25
- Participant: UAmsterdam
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/18/2023
- MD5:
6e3a4d4dff7cdd9f7e7e268aa3f7ef7a
baseline_distilbert¶
Results
| Participants
| Input
| Summary
| Appendix
- Run ID: baseline_distilbert
- Participant: UAmsterdam
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/18/2023
- MD5:
63d36419b3fd2f13b3b1887101bd7636
baseline_gpt4_db¶
Results
| Participants
| Input
| Summary
| Appendix
- Run ID: baseline_gpt4_db
- Participant: UAmsterdam
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/18/2023
- MD5:
1f33733c4c4ef8c6b757e0dd675730c3
dpr-100-rerank¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: dpr-100-rerank
- Participant: CMU-LTI
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/30/2023
- MD5:
074ca0084e61515586027954eb38e098
- Run description: I used the movie tip-of-the-tongue queries and answers from the Reddit ToT dataset in https://github.com/webis-de/QPP-23.
dpr-1000-rerank-robin¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: dpr-1000-rerank-robin
- Participant: CMU-LTI
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/30/2023
- MD5:
8607f9892803f1bc034353b7977b2e3c
- Run description: I used the movie tip-of-the-tongue queries and answers from the Reddit ToT dataset in https://github.com/webis-de/QPP-23.
dpr-abstract-100-rerank¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: dpr-abstract-100-rerank
- Participant: CMU-LTI
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/30/2023
- MD5:
ea7ef469a2032bd3cfed08b73296a71f
- Run description: I split the query sentence into "Abstract sentences", i.e., sentences which I would expect to match with the Abstract of a Wikipedia document. For example, a query sentence regarding the movie release date is an Abstract sentence, since it's usually in the first paragraph of a movie wikipedia document. I used the movie tip-of-the-tongue queries and answers from the Reddit ToT dataset in https://github.com/webis-de/QPP-23
dpr-abstract-1000-robin¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: dpr-abstract-1000-robin
- Participant: CMU-LTI
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/30/2023
- MD5:
ba1ff79c98fa997182aa5345a753e8ce
- Run description: I split the query sentence into "Abstract sentences", i.e., sentences which I would expect to match with the Abstract of a Wikipedia document. For example, a query sentence regarding the movie release date is an Abstract sentence, since it's usually in the first paragraph of a movie wikipedia document. I search only the abstract sentences, only on the abstracts of the documents. I used the movie tip-of-the-tongue queries and answers from the Reddit ToT dataset in https://github.com/webis-de/QPP-23
dpr_multidoc_roberta¶
Results
| Participants
| Input
| Summary
| Appendix
- Run ID: dpr_multidoc_roberta
- Participant: CIIR
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 9/1/2023
- MD5:
001207dc9209539bbd9a29a8203f872c
endicott_unc_baseline¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: endicott_unc_baseline
- Participant: endicott-unc
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/28/2023
- MD5:
445e42a37b92bcf38a6162ca0e5539f5
endicott_unc_boost_conf¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: endicott_unc_boost_conf
- Participant: endicott-unc
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/29/2023
- MD5:
4260fbfa11a97901bb378067c77871e4
- Run description: We used predicted sentence annotations to boost certain sentences in the query. We used the train and dev set to predict sentence annotations using a KNN classifier. The degree of boosting was proportional to the classifier's predicted confidence value.
endicott_unc_boost_oracle¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: endicott_unc_boost_oracle
- Participant: endicott-unc
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/29/2023
- MD5:
407cacb5d65f6ecc17a0303553ac63ac
- Run description: We used the gold standard sentence annotations to boost certain sentences in the query.
endicott_unc_boost_pred¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: endicott_unc_boost_pred
- Participant: endicott-unc
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/29/2023
- MD5:
097ad177d21dd0e521e7d5bf1c1392c6
- Run description: We used predicted sentence annotations to boost certain sentences in the query. We used the train and dev set to predict sentence annotations using a KNN classifier.
pre_aug_vat¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: pre_aug_vat
- Participant: snuldilab
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/30/2023
- MD5:
ea5675a62ceeeb76ed7de1ff474c0cb6
- Run description: During training, we used them to augment data by cropping unnecessary information. We followed the paper [1] to select what is 'unnecessary'- annotations that lower the model performance are cropped. During test, we removed unnecessary sentences in the query. [1] Jaime Arguello, Adam Ferguson, Emery Fine, Bhaskar Mitra, Hamed Zamani, and Fernando Diaz. Tip of the tongue known-item retrieval: A case study in movie identification. In Proc. ACM CHIIR21, pp. 5-14. 2021. english wikipedia and bookcorpus (via BERT-base)
pre_aug_vat_max4¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: pre_aug_vat_max4
- Participant: snuldilab
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 9/1/2023
- MD5:
8c65c7a17badadea0ee24925282773fc
- Run description: During training, we used them to augment data by cropping unnecessary information. We followed the paper [1] to select what is 'unnecessary'- annotations that lower the model performance are cropped. During test, we removed unnecessary sentences in the query. [1] Jaime Arguello, Adam Ferguson, Emery Fine, Bhaskar Mitra, Hamed Zamani, and Fernando Diaz. Tip of the tongue known-item retrieval: A case study in movie identification. In Proc. ACM CHIIR21, pp. 5-14. 2021. I used the BERT-base model as my backbone model, so English Wikipedia and Bookcorpus are used as pretraining data.
pre_aug_vat_max4_origin¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: pre_aug_vat_max4_origin
- Participant: snuldilab
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 9/1/2023
- MD5:
2ddbafaf92431af7aa34767bc06975f1
- Run description: During training, we used them to augment data by cropping unnecessary information. We followed the paper [1] to select what is 'unnecessary'- annotations that lower the model performance are cropped. [1] Jaime Arguello, Adam Ferguson, Emery Fine, Bhaskar Mitra, Hamed Zamani, and Fernando Diaz. Tip of the tongue known-item retrieval: A case study in movie identification. In Proc. ACM CHIIR21, pp. 5-14. 2021. I used the BERT-base model as my backbone model, so English Wikipedia and Bookcorpus are used as pretraining data.
RSLTOTY¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: RSLTOTY
- Participant: RSLTOT
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/31/2023
- MD5:
7207c66f914d009749fe4f913802f702
- Run description: bert-base-uncased, IMDb website
runid1¶
Results
| Participants
| Input
| Summary
| Appendix
- Run ID: runid1
- Participant: WaterlooClarke
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 9/1/2023
- MD5:
c18feb336ab8b3c2ff33c27d997ce576
ufmgDBmBdTQD¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: ufmgDBmBdTQD
- Participant: ufmg
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 9/1/2023
- MD5:
8afe65defc21368b34d030f60b93c30c
- Run description: I removed sentences marked as social from the queries
ufmgDBmBQ¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: ufmgDBmBQ
- Participant: ufmg
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 9/1/2023
- MD5:
d5268c2ac9c67746e9ee6aa38ce4d003
- Run description: I removed sentences marked as social from the queries
ufmgDBmBQD¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: ufmgDBmBQD
- Participant: ufmg
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 9/1/2023
- MD5:
3a7108f3b5561b570f15dc64866594e0
- Run description: I removed sentences markes as social from the queries
ufmgG4dTQD¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: ufmgG4dTQD
- Participant: ufmg
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 9/1/2023
- MD5:
f1ec59ca5cae9bca607fe1072eed97b3
- Run description: I removed sentences marked as social from the queries
ufmgG4mBQD¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: ufmgG4mBQD
- Participant: ufmg
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 9/1/2023
- MD5:
a1ac8563ffe879b8d57558f8204c1f4d
- Run description: I removed sentences marked as social from the queries
WatS-DR¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: WatS-DR
- Participant: UWaterlooMDS
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 9/1/2023
- MD5:
9e5de5c0c549c6050a5249c946a0fcd6
WatS-TDR¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: WatS-TDR
- Participant: UWaterlooMDS
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 9/1/2023
- MD5:
143d5b8f054445adedfeca14b11204d3
WatS-TDR-RR¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: WatS-TDR-RR
- Participant: UWaterlooMDS
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 9/1/2023
- MD5:
48c0a3ca53709bd8ef07547a983bb291
webis-bm25r-1¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: webis-bm25r-1
- Participant: Webis
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/30/2023
- MD5:
0a33b07a4897fcb69e8ca2cf01576b90
- Run description: We used the TOMT-KIS dataset (tip-of-my-tongue known-item search: https://webis.de/downloads/publications/papers/froebe_2023c.pdf) to train deepct for long query reduction. We removed questions from the MS-TOT dataset, but we did not checked if other questions that are not in the MS-TOT dataset but in our dataset would link to the same known-item.
webis-fus-01¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: webis-fus-01
- Participant: Webis
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/30/2023
- MD5:
023f1bd6b69db03d6a66ab0c190db053
webis-t5-01¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: webis-t5-01
- Participant: Webis
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/30/2023
- MD5:
72f5e92fed7462a7b554d3e061319edd
webis-t5-f¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: webis-t5-f
- Participant: Webis
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/30/2023
- MD5:
33036bbf144b9d0a6c9a7ced52cf201a
webis-t53b-01¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: webis-t53b-01
- Participant: Webis
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/31/2023
- MD5:
a93495f7f0ef05ee93cae3e5bce5a04d
WIS_DB_FT¶
Results
| Participants
| Input
| Summary
| Appendix
- Run ID: WIS_DB_FT
- Participant: WIS_TUD
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/31/2023
- MD5:
33fa8de742fb0f3d45005388afb888c8
- Run description: https://github.com/samarthbhargav/tomt-data
WIS_LSR_SPLADE_ASM_QMLP¶
Results
| Participants
| Input
| Summary
| Appendix
- Run ID: WIS_LSR_SPLADE_ASM_QMLP
- Participant: WIS_TUD
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/31/2023
- MD5:
218b03486fea34896bd5c144587a5c76
- Run description: https://github.com/samarthbhargav/tomt-data
WIS_LSR_UNICOIL¶
Results
| Participants
| Input
| Summary
| Appendix
- Run ID: WIS_LSR_UNICOIL
- Participant: WIS_TUD
- Track: Tip-of-the-Tongue
- Year: 2023
- Submission: 8/31/2023
- MD5:
f25e9fb2174ff11d1a352171261c65c8
- Run description: https://github.com/samarthbhargav/tomt-data