Skip to content

Runs - Product Search 2023

BM25-pyserini-metadata-collection

Participants

  • Run ID: BM25-pyserini-metadata-collection
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: a3bbaa10ec5fd6b1b9ec3719f2267182
  • Run description: BM25 using Pyserini standard retrieval settings on the Product search corpus with all additional metadata

BM25-pyserini-simple-collection

Participants

  • Run ID: BM25-pyserini-simple-collection
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 01ef208c183283f24b299808d4983379
  • Run description: BM25 using Pyserini standard retrieval settings on the Product search corpus without any metadata

cfdaclip_ER_A

Participants

  • Run ID: cfdaclip_ER_A
  • Participant: CFDA_CLIP
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 81973864aebb560b86654cfae7aac9ae
  • Run description: This run includes three text retrieval models, including BM25, Splade and dense retrieval (contriever). And the result was reranked by the MiniLM.

cfdaclip_ER_B

Participants

  • Run ID: cfdaclip_ER_B
  • Participant: CFDA_CLIP
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 3a916a022f8dd486fc698a5343df88fc
  • Run description: This run includes three text retrieval models, including BM25, Splade and dense retrieval (contriever). The document corpus were expanded with 5 predicted query by our fine-tuned T5-product2query model. The result was reranked by the MiniLM.

cfdaclip_MR_A

Participants

  • Run ID: cfdaclip_MR_A
  • Participant: CFDA_CLIP
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: multimodal
  • MD5: f60d0e347cca160399b40c12b5d17e30
  • Run description: This run includes three text retrieval models, including image retrieval (CLIP), learned sparse retrieval (Splade) and dense text retrieval (contriever). And the result was reranked by the MiniLM.

cfdaclip_MR_B

Participants

  • Run ID: cfdaclip_MR_B
  • Participant: CFDA_CLIP
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: multimodal
  • MD5: 9bf6accf1ce9463500ac14bcdba0a398
  • Run description: This run includes three text retrieval models, BM25, learned sparse retrieval (Splade) and dense text retrieval (contriever). The document corpus was expanded by the generated image captions. And the final result was reranked by the MiniLM.

f_gpt_rerank

Participants

  • Run ID: f_gpt_rerank
  • Participant: h2oloo
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: multimodal
  • MD5: a4f0a2d4b5154e9489be9946a592f323
  • Run description: fusion of splade, bm25, clip rerank by gpt-3.5-turbo

f_splade_bm25

Participants

  • Run ID: f_splade_bm25
  • Participant: h2oloo
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 0efe5f41cd692382265d0964f9bdc1a5
  • Run description: splade,bm25

f_splade_clip_bm25

Participants

  • Run ID: f_splade_clip_bm25
  • Participant: h2oloo
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: multimodal
  • MD5: 7392a5771fab40b5137864cbe275d7a6
  • Run description: splade,clip,bm25 fusion

JBNU-1

Participants

  • Run ID: JBNU-1
  • Participant: jbnu
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: reranking
  • MD5: 310bf02973bb0e41721a9526c8f823a2
  • Run description: 1. Translation for cases where the query is in a language other than English, 2. Spellchecker for handling query typos, 3. Reranking using DeBERTa deep learning: - Addition of special tokens "brand, color, size, price, material, category, model name, author, title, bullets" - Calculation of Loss using representations of [CLS] and [Special Token], along with model training - Model training through weighted computation of Loss for special tokens appearing in the query, 4. Application of score calculation for predictions "E, S, C, I".

JBNU-2

Participants

  • Run ID: JBNU-2
  • Participant: jbnu
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: reranking
  • MD5: 233a7bcf96101d5514949d28c0f4e78d
  • Run description: 1. Translation for cases where the query is in a language other than English, 2. Spellchecker for handling query typos, 3. Reranking using DeBERTa deep learning: - Addition of special tokens "brand, color, size, price, material, category, model name, author, title, bullets" - Calculation of Loss using representations of [CLS] and [Special Token], along with model training - Model training through weighted computation of Loss for special tokens appearing in the query - Category names as a single token 4. Application of score calculation for predictions "E, S, C, I".

JBNU-A

Participants

  • Run ID: JBNU-A
  • Participant: jbnu
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 105436b70ebdd25b68e824f24c47a7d7
  • Run description: 1. Translation for cases where the query is not in English, 2. Spellchecker for processing query typos, 3. Creation of a candidate pool using ElasticSearch: - Checking the query's entities and applying reranking for cases where "brand, color, material, author" are present - Applying boosting in cases of ambiguous queries using ElasticSearch 4. Reranking using DeBERTa deep learning: - Addition of special tokens "brand, color, size, price, material, category, model name, author, title, bullets" - Calculation of Loss and model training using representations of [CLS] and [Special Token] - Model training by computing Loss weights for special tokens appearing in the query 5. Application of score calculation for predictions "E, S, C, I" based on the prediction.

JBNU-B

Participants

  • Run ID: JBNU-B
  • Participant: jbnu
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 6defaad4c8848c1e4e2d02543ab8cdff
  • Run description: 1. Translation for cases where the query is not in English, 2. Spellchecker for processing query typos, 3. Creation of a candidate pool using ElasticSearch: - Checking the query's entities and applying reranking for cases where "brand, color, material, author" are present - Applying boosting in cases of ambiguous queries using ElasticSearch 4. Reranking using DeBERTa deep learning: - Addition of special tokens "brand, color, size, price, material, category, model name, author, title, bullets" - Calculation of Loss and model training using representations of [CLS] and [Special Token] - Model training by computing Loss weights for special tokens appearing in the query - Category names as a single token 5. Application of score calculation for predictions "E, S, C, I" based on the prediction.

JBNU-C

Participants

  • Run ID: JBNU-C
  • Participant: jbnu
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 099e1920f9aa16617c77901a42f3e96a
  • Run description: 1. Translation for cases where the query is in a language other than English 2. Asin to title 3. pseudo relevance feedback and using ElasticSearch boost

metadata-enhanced-all-MiniLM-L12-v2-zero-shot

Participants

  • Run ID: metadata-enhanced-all-MiniLM-L12-v2-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 1150766acaa90fde5d2725a1b1a1d58d
  • Run description: zero shot sentence-transformers/all-MiniLM-L12-v2e dense retrieval using the enhanced (metadata) collection

metadata-enhanced-all-MiniLM-L6-v2-zero-shot

Participants

  • Run ID: metadata-enhanced-all-MiniLM-L6-v2-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 604124b705b6e1ef348e072e8d0b4cc7
  • Run description: zero shot all-MiniLM-L6-v2 dense retrieval using the enhanced (metadata)

metadata-enhanced-all-mpnet-base-v2-zero-shot

Participants

  • Run ID: metadata-enhanced-all-mpnet-base-v2-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 30548fe29ebd5cd16ad614636607d3f1
  • Run description: zero shot mpnet dense retrieval using the enhanced (metadata) collection

metadata-enhanced-bge-base-en-zero-shot

Participants

  • Run ID: metadata-enhanced-bge-base-en-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 810f28c087a7502756c3c1407e633c89
  • Run description: zero shot bge-base-en dense retrieval using the enhanced (metadata)

metadata-enhanced-bge-large-en-zero-shot

Participants

  • Run ID: metadata-enhanced-bge-large-en-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 361f7665ff4985debf1286bcc76fadfe
  • Run description: zero shot bge-large-en dense retrieval using the enhanced (metadata)

metadata-enhanced-contriever-base-msmarco

Participants

  • Run ID: metadata-enhanced-contriever-base-msmarco
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 001ef3e6864320166565996983174f61
  • Run description: zero shot contriever dense retrieval using the enhanced (metadata) collection

metadata-enhanced-e5-base-v2-zero-shot

Participants

  • Run ID: metadata-enhanced-e5-base-v2-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: edf44477a285637c67457ac2c43393eb
  • Run description: zero shot e5-base-v2 dense retrieval using the enhanced (metadata)

metadata-enhanced-e5-small-v2-zero-shot

Participants

  • Run ID: metadata-enhanced-e5-small-v2-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 0d9768745afbc006b436617c5de8421e
  • Run description: zero shot e5-small-v2 dense retrieval using the enhanced (metadata)

metadata-enhanced-gte-base-zero-shot

Participants

  • Run ID: metadata-enhanced-gte-base-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: fb12bca3b2b2b8b3e725a145114b815d
  • Run description: zero shot gte-base dense retrieval using the enhanced (metadata) collection

metadata-enhanced-gte-large-zero-shot

Participants

  • Run ID: metadata-enhanced-gte-large-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: c1288dc70c7d9efb61553cf183842cb6
  • Run description: zero shot gte-large dense retrieval using the enhanced (metadata) collection

metadata-enhanced-gte-small-zero-shot

Participants

  • Run ID: metadata-enhanced-gte-small-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 7acbcbc74df8597aec76bbe0421c661b
  • Run description: zero shot gte-small dense retrieval using the enhanced (metadata) collection

metadata-enhanced-trec-product-search-bge-base-en

Participants

  • Run ID: metadata-enhanced-trec-product-search-bge-base-en
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 20717c1d9f72b800d58e734ef751473e
  • Run description: fine-tune bge-base-en dense retrieval using the enhanced (metadata) collection

metadata-enhanced-trec-product-search-bge-large-en

Participants

  • Run ID: metadata-enhanced-trec-product-search-bge-large-en
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 98d049db3db227e05d5dba1c26c80bcd
  • Run description: fine-tune bge-large-en dense retrieval using the enhanced (metadata) collection

metadata-enhanced-trec-product-search-bge-small-en

Participants

  • Run ID: metadata-enhanced-trec-product-search-bge-small-en
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 9c039c0eae7c630a8c23dae334cfe5c9
  • Run description: fine-tune bge-small-en dense retrieval using the enhanced (metadata) collection

metadata-enhanced-trec-product-search-dpr-bert

Participants

  • Run ID: metadata-enhanced-trec-product-search-dpr-bert
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 6dafad811bff342970f0fabb69d65f92
  • Run description: fine-tune bert-base-uncased dense retrieval using the enhanced (metadata) collection

metadata-enhanced-trec-product-search-e5-base-v2

Participants

  • Run ID: metadata-enhanced-trec-product-search-e5-base-v2
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 47e4fca04ac64cf7ac0839246339486b
  • Run description: zero shot spacemanidol/trec-product-search-e5-base-v2 dense retrieval using the enhanced (metadata) collection

metadata-enhanced-trec-product-search-e5-large-v2

Participants

  • Run ID: metadata-enhanced-trec-product-search-e5-large-v2
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 894021f4e101c257e229d699fc2d4900
  • Run description: finetuned e5-large dense retrieval using the enhanced (metadata) collection

metadata-enhanced-trec-product-search-e5-small-v2

Participants

  • Run ID: metadata-enhanced-trec-product-search-e5-small-v2
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 1da94625ca3ac081881fabfb812a095b
  • Run description: finetuned e5-small dense retrieval using the enhanced (metadata) collection

metadata-enhanced-trec-product-search-gte-base

Participants

  • Run ID: metadata-enhanced-trec-product-search-gte-base
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 38cadd0da9c188911b9cc3c0bbf1b3e7
  • Run description: fine-tune thenlper/gte-base dense retrieval using the enhanced (metadata) collection

metadata-enhanced-trec-product-search-gte-large

Participants

  • Run ID: metadata-enhanced-trec-product-search-gte-large
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: cb0c510ba157b10dc9f20b9b0dc3f356
  • Run description: fine-tune thenlper/gte-large dense retrieval using the enhanced (metadata) collection

metadata-enhanced-trec-product-search-gte-small

Participants

  • Run ID: metadata-enhanced-trec-product-search-gte-small
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 6dc41f29cdf7a1218a364ef9cbde64c4
  • Run description: zero shot spacemanidol/trec-product-search-gte-small dense retrieval using the enhanced (metadata) collection

metadata-trec-product-search-all-miniLM-L12-v2

Participants

  • Run ID: metadata-trec-product-search-all-miniLM-L12-v2
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 06d8c0feaf929311d1b39d27d82141f1
  • Run description: fine-tune -all-miniLM-L12-v2 dense retrieval using the enhanced (metadata) collection

metadata-trec-product-search-all-miniLM-L6-v2

Participants

  • Run ID: metadata-trec-product-search-all-miniLM-L6-v2
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: e76337a26f7df0f803c843848b8e99e2
  • Run description: fine-tune -all-miniLM-L6-v2l dense retrieval using the enhanced (metadata) collection

metadata-trec-product-search-all-mpnet-base-v2

Participants

  • Run ID: metadata-trec-product-search-all-mpnet-base-v2
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/11/2023
  • Type: automatic
  • Task: retrieval
  • MD5: b7e7355e805bf0f63d8df9aafb6447c0
  • Run description: fine-tune all-mpnet-base-v2dense retrieval using the enhanced (metadata) collection

r_gpt3d5_turbo

Participants

  • Run ID: r_gpt3d5_turbo
  • Participant: h2oloo
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: reranking
  • MD5: 1e28249109255fee55ab71f1402a66c6
  • Run description: gpt-3.5-turbo, top-50 reranking

search-dpr-bert-base

Participants

  • Run ID: search-dpr-bert-base
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 4eedc8e0077499e16b6bbae0a3c803d7
  • Run description: finetuned bert-base-uncased dense retrieval using the simple (non-metadata) enhanced corpus)

simple-all-MiniLM-L12-v2-zero-shot

Participants

  • Run ID: simple-all-MiniLM-L12-v2-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 6fcd6bbd0474f3fce4d57a6c6149daac
  • Run description: zero shot all-MiniLM-L6 V2 dense retrieval using the simple (non metadata) enhanced corpus)

simple-all-MiniLM-L6-v2-zero-shot

Participants

  • Run ID: simple-all-MiniLM-L6-v2-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 549d7f8a0344097799b30f030ef7afd6
  • Run description: zero shot all-MiniLM-L6 V2 dense retrieval.

simple-all-mpnet-base-v2-zero-shot

Participants

  • Run ID: simple-all-mpnet-base-v2-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 52e44bfb2f3002b508245b3d087f1b09
  • Run description: zero shot all-mpnet base V2 dense retrieval using the simple (non-metadata) enhanced corpus)

simple-bert-base-uncased-zero-shot

Participants

  • Run ID: simple-bert-base-uncased-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: c3a42ba9cae281ec4b3795b8b4564417
  • Run description: zero shot bert-base-uncased dense retrieval using the simple (non-metadata) enhanced corpus)

simple-bge-base-zero-shot

Participants

  • Run ID: simple-bge-base-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: e67ebbe7841894a1ad67e3c87808d858
  • Run description: zero shot bge-base-en dense retrieval using the simple (non-metadata) enhanced corpus)

simple-bge-large-zero-shot

Participants

  • Run ID: simple-bge-large-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: beb9a9eb08e3a1907cb3d7ae50c9ed35
  • Run description: zero shot bge-large-en dense retrieval using the simple (non-metadata) enhanced corpus)

simple-bge-small-zero-shot

Participants

  • Run ID: simple-bge-small-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 03ebfbd067b0ef770df5991f3eea737b
  • Run description: zero shot bge-small-en dense retrieval using the simple (non-metadata) enhanced corpus)

simple-contriever-base-zero-shot

Participants

  • Run ID: simple-contriever-base-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 0b03f14a4a9e2313fe99feb2efba10fb
  • Run description: zero shot contriever-base-msmarco dense retrieval using the simple (non-metadata) enhanced corpus)

simple-e5-base-zero-shot

Participants

  • Run ID: simple-e5-base-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: b6a389d1ab14c1cf8fa569d85deebedd
  • Run description: zero shot e5-base-v2 dense retrieval using the simple (non-metadata) enhanced corpus)

simple-e5-large-zero-shot

Participants

  • Run ID: simple-e5-large-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: a2ceb28004019b8918c46b6e9521d7ca
  • Run description: zero shot e5-large-v2 dense retrieval using the simple (non-metadata) enhanced corpus)

simple-e5-small-zero-shot

Participants

  • Run ID: simple-e5-small-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: d3c4919a31f0840a2b506cf23938d244
  • Run description: zero shot e5-small-v2 dense retrieval using the simple (non-metadata) enhanced corpus)

simple-gte-base-zero-shot

Participants

  • Run ID: simple-gte-base-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 3813f812708f1de1ceb226e1c384d629
  • Run description: zero shot gte-base dense retrieval using the simple (non-metadata) enhanced corpus)

simple-gte-large-zero-shot

Participants

  • Run ID: simple-gte-large-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 7d7f5407d90b00ecbc1994e6ec12beb7
  • Run description: zero shot gte-large dense retrieval using the simple (non-metadata) enhanced corpus)

simple-gte-small-zero-shot

Participants

  • Run ID: simple-gte-small-zero-shot
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: bac93995556f43d657d2822c8f8564d9
  • Run description: zero shot gte-small dense retrieval using the simple (non-metadata) enhanced corpus)

simple-trec-product-search-all-miniLM-L12-v2

Participants

  • Run ID: simple-trec-product-search-all-miniLM-L12-v2
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: da0738b37356a914bbe42f9c0130ccf9
  • Run description: finetuned shot all-miniLM-L12-v2 dense retrieval using the simple (non-metadata) enhanced corpus)

simple-trec-product-search-all-miniLM-L6-v2

Participants

  • Run ID: simple-trec-product-search-all-miniLM-L6-v2
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: d30bd2ff559e05268c3c5025da9088ce
  • Run description: finetuned shot all-miniLM-L6-v2 dense retrieval using the simple (non-metadata) enhanced corpus)

simple-trec-product-search-all-mpnet-base-v2

Participants

  • Run ID: simple-trec-product-search-all-mpnet-base-v2
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: c6dd4a2995b3cd92ff851b4782006566
  • Run description: finetuned shot all-mpnet-v2 dense retrieval using the simple (non-metadata) enhanced corpus)

simple-trec-product-search-bge-base-en

Participants

  • Run ID: simple-trec-product-search-bge-base-en
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 711d0f3dc225b8ace03d9bfff491b616
  • Run description: finetuned bge-base-en dense retrieval using the simple (non-metadata) enhanced corpus)

simple-trec-product-search-bge-small-en

Participants

  • Run ID: simple-trec-product-search-bge-small-en
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: c6508fa3631c6473686f994d56fe89bc
  • Run description: finetuned bge-small-en dense retrieval using the simple (non-metadata) enhanced corpus)

simple-trec-product-search-gte-base

Participants

  • Run ID: simple-trec-product-search-gte-base
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 988f6979f09f25080f5a4b7b0de2e165
  • Run description: finetuned gte-base dense retrieval using the simple (non-metadata) enhanced corpus)

simple-trec-product-search-gte-large

Participants

  • Run ID: simple-trec-product-search-gte-large
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: c55c207042924a41f0d81f01b1c326f1
  • Run description: finetuned gte-large dense retrieval using the simple (non-metadata) enhanced corpus)

simple-trec-product-search-gte-small

Participants

  • Run ID: simple-trec-product-search-gte-small
  • Participant: NIST
  • Track: Product Search
  • Year: 2023
  • Submission: 8/10/2023
  • Type: automatic
  • Task: retrieval
  • MD5: 8696bcd97050531a34c5be04dd44f1fa
  • Run description: finetuned gte-small dense retrieval using the simple (non-metadata) enhanced corpus)