Runs - Deep Learning 2023¶
agg-cocondenser¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: agg-cocondenser
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
35fa5aa6b12b7456f99e408be96fe333
- Run description: Aggretriever is a dense retriever with semantic and lexical matching. We initialize with coCondenser and train with official MS MARCO training queries (with BM25 hard negatives) with a batch size of 64 for 3 epochs on single GPU. Detail is described in https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00556/116046/Aggretriever-A-Simple-Approach-to-Aggregate
bm25_splades¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: bm25_splades
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
26123ed5ab46fe0d76f59f80fb5a3474
- Run description: Ensemble of BM25 + SPLADE++SD + SPLADE++ED
cip_run_1¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: cip_run_1
- Participant: CIP
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
c70237e7dcd929608deeed04828ec743
- Run description: Pipeline: 1. Unicoil+doct5query (pyserini) 2. MonoT5-3b (pygaggle) 3. GPT-3.5-Turbo top-50 prf reranking 4. GPT-3.5-Turbo top-40 reranking 5. GPT-3.5-Turbo top-30 reranking with different window size 6. GPT-4 top-20 reranking
cip_run_2¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: cip_run_2
- Participant: CIP
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
0c5ffb8832c3717998bd51be105fe8c8
- Run description: Pipeline: 1. Unicoil+doct5query (pyserini) 2. MonoT5-3b (pygaggle) 3. GPT-3.5-Turbo top-50 prf reranking 4. GPT-3.5-Turbo top-40 reranking 5. GPT-3.5-Turbo top-30 reranking with different window size 6. GPT-4 top-20 reranking 7. Score reassignment
cip_run_3¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: cip_run_3
- Participant: CIP
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
344f93a132d35f12b38b98a10c08ac89
- Run description: Pipeline: 1. Unicoil+doct5query (pyserini) 2. MonoT5-3b (pygaggle) 3. GPT-3.5-Turbo top-50 prf reranking 4. GPT-3.5-Turbo top-40 reranking 5. GPT-3.5-Turbo top-30 reranking with different window size (fuse)
cip_run_4¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: cip_run_4
- Participant: CIP
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
cc884c1191cb6b6ecff0a587fb022b19
- Run description: Pipeline: 1. Unicoil+doct5query (pyserini) 2. MonoT5-3b (pygaggle) 3. GPT-3.5-Turbo top-50 prf reranking 4. GPT-3.5-Turbo top-40 reranking
cip_run_5¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: cip_run_5
- Participant: CIP
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
2e5292385957103e82605e72ae9a9a5c
- Run description: Pipeline: 1. Unicoil+doct5query (pyserini) 2. MonoT5-3b (pygaggle) 3. GPT-3.5-Turbo top-50 prf reranking 4. GPT-3.5-Turbo top-40 reranking 5. GPT-3.5-Turbo top-30 reranking with different window size
cip_run_6¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: cip_run_6
- Participant: CIP
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
21f45a56330d46b4644512a15d3a777e
- Run description: Pipeline: 1. Unicoil+doct5query (pyserini) 2. MonoT5-3b (pygaggle) 3. GPT-3.5-Turbo top-50 prf reranking
cip_run_7¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: cip_run_7
- Participant: CIP
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
e9f8efe39405bb5a98a91baa1e69a739
- Run description: Pipeline: 1. Unicoil+doct5query (pyserini) 2. MonoT5-3b (pygaggle) 3. GPT-3.5-Turbo top-50 prf reranking 4. GPT-3.5-Turbo top-40 reranking 5. GPT-3.5-Turbo top-30 reranking with different window size
colbertv2¶
Results
| Participants
| Input
| Summary
| Appendix
- Run ID: colbertv2
- Participant: InfoSense
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: docs
- MD5:
e068c29e4d8e8cbb276da4a9606e3bc2
- Run description: Using Colbert-v2 and using pre-trained checkpoint and do continue training on MS MARCO v2 training data
D_bm25_splades¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: D_bm25_splades
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: docs
- MD5:
31d0e3e09e1326ecac424b2c29574cdf
- Run description: Ensemble of BM25 + SPLADE++SD + SPLADE++ED
D_naverloo-frgpt4¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: D_naverloo-frgpt4
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: docs
- MD5:
3290f826729d8e377e4a0bf89b99fa99
- Run description: First stage is an ensemble of BM25 + SPLADE++SD + SPLADE++ED + SLIM + AGGRetriever Second stage is an ensemble of 5 rerankers: naver/trecdl22-crossencoder-albert naver/trecdl22-crossencoder-debertav2 naver/trecdl22-crossencoder-debertav3 naver/trecdl22-crossencoder-electra naver/trecdl22-crossencoder-rankT53b-repro Third step is an ensemble of 3 duo rankers over the top50 duoT5 PRP-FlanT5-3b PRP-FlanT5-UL2 Fourth step is RankGPT4 over the top30, which is then ensemble with the 3rd stage
D_naverloo_bm25_RR¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: D_naverloo_bm25_RR
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: docs
- MD5:
dcd5a5ef98526d1d0627b02380587262
- Run description: First stage is BM25, second stage is an ensemble of 5 rerankers: naver/trecdl22-crossencoder-albert naver/trecdl22-crossencoder-debertav2 naver/trecdl22-crossencoder-debertav3 naver/trecdl22-crossencoder-electra naver/trecdl22-crossencoder-rankT53b-repro
D_naverloo_bm_splade_RR¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: D_naverloo_bm_splade_RR
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: docs
- MD5:
8fd7ab922d5206f3bc095a6de51c15aa
- Run description: First stage is BM25+SPLADE++ED+SPLADE++SD, second stage is an ensemble of 5 rerankers: naver/trecdl22-crossencoder-albert naver/trecdl22-crossencoder-debertav2 naver/trecdl22-crossencoder-debertav3 naver/trecdl22-crossencoder-electra naver/trecdl22-crossencoder-rankT53b-repro
naverloo-frgpt4¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: naverloo-frgpt4
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
4f04190938971d286d1edf8f09c215d2
- Run description: First stage is a very large ensemble of BM25+DOCT5+SPLADEPP+SPLADESD+AGG+SLIM, second stage is an ensemble of 5 rerankers: naver/trecdl22-crossencoder-albert naver/trecdl22-crossencoder-debertav2 naver/trecdl22-crossencoder-debertav3 naver/trecdl22-crossencoder-electra naver/trecdl22-crossencoder-rankT53b-repro We then do a third step with an ensemble of 3 duo rankers over the top50, duoT5, PRP-FlanT5-3b and PRP-FlanT5-UL2. We finally finish by applying RankGPT4 over the top30 and ensembling with the previous step.
naverloo-rgpt4¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: naverloo-rgpt4
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
ae6ba03d1aaf61f3aeecb3b4d37a510f
- Run description: First stage is a very large ensemble of BM25+DOCT5+SPLADEPP+SPLADESD+AGG+SLIM, second stage is an ensemble of 5 rerankers: naver/trecdl22-crossencoder-albert naver/trecdl22-crossencoder-debertav2 naver/trecdl22-crossencoder-debertav3 naver/trecdl22-crossencoder-electra naver/trecdl22-crossencoder-rankT53b-repro We then do a third step with an ensemble of 3 duo rankers over the top50, duoT5, PRP-FlanT5-3b and PRP-FlanT5-UL2. We finally finish by applying RankGPT4 over the top30.
naverloo_bm25_RR¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: naverloo_bm25_RR
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
55553801dd8862dffec6d75a6b6a0fe0
- Run description: First stage is BM25, second stage is an ensemble of 5 rerankers: naver/trecdl22-crossencoder-albert naver/trecdl22-crossencoder-debertav2 naver/trecdl22-crossencoder-debertav3 naver/trecdl22-crossencoder-electra naver/trecdl22-crossencoder-rankT53b-repro
naverloo_bm25_splades_RR¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: naverloo_bm25_splades_RR
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
64c59aa9bba0142857376ef7ff03d3e6
- Run description: First stage is an ensemble of BM25 + SPLADE++SD + SPLADE++ED Second stage is an ensemble of 5 rerankers: naver/trecdl22-crossencoder-albert naver/trecdl22-crossencoder-debertav2 naver/trecdl22-crossencoder-debertav3 naver/trecdl22-crossencoder-electra naver/trecdl22-crossencoder-rankT53b-repro
naverloo_fs¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: naverloo_fs
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
1331c0c525a626c61a7df6a41c4db51d
- Run description: Ensemble of BM25 + SPLADE++SD + SPLADE++ED + SLIM + AGGRetriever
naverloo_fs_RR¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: naverloo_fs_RR
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
bda95ea90ed615d1fcc5c47a29b105f6
- Run description: First stage is an ensemble of BM25 + SPLADE++SD + SPLADE++ED + SLIM + AGGRetriever. Second stage is an ensemble of 5 rerankers: naver/trecdl22-crossencoder-albert naver/trecdl22-crossencoder-debertav2 naver/trecdl22-crossencoder-debertav3 naver/trecdl22-crossencoder-electra naver/trecdl22-crossencoder-rankT53b-repro
naverloo_fs_RR_duo¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: naverloo_fs_RR_duo
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
299dcb3e07daf943a746119917a2bc29
- Run description: First stage is an ensemble of BM25 + SPLADE++SD + SPLADE++ED + SLIM + AGGRetriever. Second stage is an ensemble of 5 rerankers: naver/trecdl22-crossencoder-albert naver/trecdl22-crossencoder-debertav2 naver/trecdl22-crossencoder-debertav3 naver/trecdl22-crossencoder-electra naver/trecdl22-crossencoder-rankT53b-repro Third step is an ensemble of 3 duo rankers over the top50: duoT5 PRP-FlanT5-3b PRP-FlanT5-UL2
slim-pp-0shot-uw¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: slim-pp-0shot-uw
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
631835ca0a45a3c19d28bf12929917b7
- Run description: https://arxiv.org/pdf/2302.06587.pdf
splade_pp_ensemble_distil¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: splade_pp_ensemble_distil
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
0cbab324dbfebca7faf233901c9a92d9
- Run description: Splade++ Ensemble distil available on huggingface
splade_pp_self_distil¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: splade_pp_self_distil
- Participant: h2oloo
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
50f8933fbff1008c97db3ef69493fa4b
- Run description: Splade++ Self distil available on huggingface
uogtr_b_grf_e¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: uogtr_b_grf_e
- Participant: uogTr
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
01ec324fe73dc072c726429e7859936c
- Run description: BM25 over entire msmarco-passage-v2 inverted index, Generative relevance feedback using google/flant5-xxl (8 bit quantized), reranking using crystina-z/monoELECTRA_LCE_nneg31
uogtr_b_grf_e_gb¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: uogtr_b_grf_e_gb
- Participant: uogTr
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
9b16c2da7d2198c3c8a3c7afdc7b665d
- Run description: Generative query expansion using google/flant5-xxl (8-bit quantized), BM25 over entire msmarco-passage-v2 inverted index, adaptive reranking using crystina-z/monoELECTRA_LCE_nneg31 with BM25 Graph
uogtr_be¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: uogtr_be
- Participant: uogTr
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
4dfa2a0d7956dd5cc70146b330827355
- Run description: BM25 retrieval, re-ranked using crystina-z/monoELECTRA_LCE_nneg31
uogtr_be_gb¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: uogtr_be_gb
- Participant: uogTr
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
d200f64351d1efac7c775e4307c0279a
- Run description: BM25 over entire msmarco-passage-v2 inverted index,adaptive reranking using crystina-z/monoELECTRA_LCE_nneg31 with BM25 Graph
uogtr_dph¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: uogtr_dph
- Participant: uogTr
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
6916de76e58cac8efa85b3a61f9dce83
- Run description: Performs DPH on the entire msmarco-passage-v2 inverted index.
uogtr_dph_bo1¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: uogtr_dph_bo1
- Participant: uogTr
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
3d392481e3127b27969eb7265c4b8cf9
- Run description: Performs DPH with Bo1 query expansion on the entire msmarco-passage-v2 inverted index.
uogtr_qr_be¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: uogtr_qr_be
- Participant: uogTr
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
f9267814b5b855fc628abdb26a76c708
- Run description: Generative query expansion using google/flant5-xxl (8-bit quantized), BM25 over entire msmarco-passage-v2 inverted index, reranking using crystina-z/monoELECTRA_LCE_nneg31
uogtr_qr_be_gb¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: uogtr_qr_be_gb
- Participant: uogTr
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
8d457d9392e936e00dc7187a9232a277
- Run description: Generative query expansion using google/flant5-xxl (8-bit quantized), BM25 over entire msmarco-passage-v2 inverted index, adaptive reranking using crystina-z/monoELECTRA_LCE_nneg31 with BM25 Graph
uogtr_s¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: uogtr_s
- Participant: uogTr
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
23aec2a3cac327addba6f93b63f4ba6e
- Run description: SPLADE retrieval using naver/splade-cocondenser-ensembledistil
uogtr_se¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: uogtr_se
- Participant: uogTr
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
6a3200e762c38ab4b5909c809bcb65a0
- Run description: SPLADE retrieval using naver/splade-cocondenser-ensembledistil, re-ranked using crystina-z/monoELECTRA_LCE_nneg31
uogtr_se_gb¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: uogtr_se_gb
- Participant: uogTr
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
9710da3e2e4a1e5da0664b8c4cd7c915
- Run description: SPLADE retrieval using naver/splade-cocondenser-ensembledistil, adaptive reranking using crystina-z/monoELECTRA_LCE_nneg31 with BM25 Graph
uot-yj_LLMs-blender¶
Results
| Participants
| Input
| Summary
| Appendix
- Run ID: uot-yj_LLMs-blender
- Participant: uot-yj
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
061d46bce792570d42c6bfc7fca67224
- Run description: This run uses multiple LLM models to judge candidate document pairs in a pair-wise approach and finally aggregates the judgments of all models to generate the final ranking result. This is a Zero-shot learning approach.
uot-yj_rankgpt35¶
Results
| Participants
| Input
| Summary
| Appendix
- Run ID: uot-yj_rankgpt35
- Participant: uot-yj
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
61734f54e04fb7acb387923b2a7f968b
- Run description: This run utilized the GPT3.5 model to generate the re-ranking results via a List-wise approach. This is a Zero-shot learning approach.
uot-yj_rankgpt4¶
Results
| Participants
| Input
| Summary
| Appendix
- Run ID: uot-yj_rankgpt4
- Participant: uot-yj
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
0b8e9713e24e4be4ab2d28d91ad37278
- Run description: This run utilized the GPT4 model to generate the re-ranking results via a List-wise approach. This is a Zero-shot learning approach.
WatS-Augmented-BM25¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: WatS-Augmented-BM25
- Participant: UWaterlooMDS
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
6180f09edd151fb24f0140fd6fb94dde
- Run description: Prompting a LLM to rewrite queries.
WatS-LLM-Rerank¶
Results
| Participants
| Proceedings
| Input
| Summary
| Appendix
- Run ID: WatS-LLM-Rerank
- Participant: UWaterlooMDS
- Track: Deep Learning
- Year: 2023
- Submission: 8/1/2023
- Type: auto
- Task: passages
- MD5:
c1861e95677e9bc9b6739ed1bf964069
- Run description: Prompting the llama model to assess passages.