Skip to content

Runs - Deep Learning 2020

1

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: 1
  • Participant: nvidia_ai_apps
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 92166ecb6c604d5abd20a022e912e150
  • Run description: Positive passages for training were taken from qrels. Hard negatives were mined with BM25. We trained DPR model on such training data and used it to mine even harder negatives. After that we trained bert_base_uncased re-ranker on a combination of positive passages, negatives from BM25 and negatives from DPR.

2

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: 2
  • Participant: nvidia_ai_apps
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 59e557d23012869469a6233786d7021d
  • Run description: Positive passages for training were taken from qrels. Hard negatives were mined with BM25. We trained DPR model on such training data and used it to mine even harder negatives. After that we trained bert_base_uncased re-ranker on a combination of positive passages, negatives from BM25 and negatives from DPR. DPR was used for top-1000 retrieval and the results were re-ranked after that.

bcai_bertb_docv

Results | Participants | Input | Summary | Appendix

  • Run ID: bcai_bertb_docv
  • Participant: bcai
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: docs
  • MD5: 6ff82269cdaf82006133e9041acb7db6
  • Run description: BERT BASE on top of a classic IR pipeline

bcai_bertl_pass

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: bcai_bertl_pass
  • Participant: bcai
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: passages
  • MD5: 7e3b8c1aba09c5b98071f104bfe1f61f
  • Run description: BERT LARGE on top of a classic IR pipeline

bcai_class_pass

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: bcai_class_pass
  • Participant: bcai
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: df71dc4b2026deb3fc5ee83b0ff173bf
  • Run description: a fusion of classic IR signals

bcai_classic

Results | Participants | Input | Summary | Appendix

  • Run ID: bcai_classic
  • Participant: bcai
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: c6e5daf986b6db89ebfb7fcd63e73a7a
  • Run description: fusion of classic IR signals

bert_6

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: bert_6
  • Participant: UAmsterdam
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 78b13a7d52890594b02abe36f6eb3862
  • Run description: first six layers of pre-trained bert as a base for an interaction based ranker

bigIR-BERT-R

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: bigIR-BERT-R
  • Participant: QU
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: passages
  • MD5: 69326d76a8424d09423521f01dbc1cf6
  • Run description: An already pre-trained BERT large model with the MS-Marco passages training data was used to rerank the passages.

bigIR-DCT-T5-F

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: bigIR-DCT-T5-F
  • Participant: QU
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: passages
  • MD5: 1d9a3c7eca74975501fa0b7c3710ad9c
  • Run description: First we expanded the passages using DeepCT, a Deep Contextualized Term Weighting framework that learns to map BERTs contextualized text representations to context-aware term weights for sentences and passages. Second, we indexed the expanded passages using anserini. Third, we adopted RM3 query expansion to retrieve the 1000 passages for each query using anserini. Finally, we reranked the retrieved passages using an already pre-trained T5 base model with the MS-Marco passages training data.

bigIR-DH-T5-F

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: bigIR-DH-T5-F
  • Participant: QU
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: docs
  • MD5: 4418367b6d3fb97fd25ea9840f57e8a2
  • Run description: We first retrieved an initial set of documents using anserini by adopting BM25, and RM3 for query expansion. Second, we reranked the initial set using an already pre-trained T5 base model with the MS-Marco passages training data. The reranking was done by feeding the model the query and the head of the document.

bigIR-DH-T5-R

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: bigIR-DH-T5-R
  • Participant: QU
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: docs
  • MD5: 9ba13c372fa02f44fe6201b2919d9a26
  • Run description: We reranked the documents using an already pre-trained T5 base model with the MS-Marco passages training data. The reranking was done by feeding the model the query and the head of the document.

bigIR-DT-T5-F

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: bigIR-DT-T5-F
  • Participant: QU
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: docs
  • MD5: f6e949141fd50c16c39e2e1ef734731e
  • Run description: We first retrieved an initial set of documents using anserini by adopting BM25, and RM3 for query expansion. Second, we reranked the initial set using an already pre-trained T5 base model with the MS-Marco passages training data. The reranking was done by feeding the model the query and the title of the document.

bigIR-DT-T5-R

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: bigIR-DT-T5-R
  • Participant: QU
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: docs
  • MD5: 6afda58c1332c2ebf0303e3b051c7ae8
  • Run description: We reranked the documents using an already pre-trained T5 base model with the MS-Marco passages training data. The reranking was done by feeding the model the query and the title of the document.

bigIR-DTH-T5-F

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: bigIR-DTH-T5-F
  • Participant: QU
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: docs
  • MD5: d511f9be1898f68c53758974dbed8468
  • Run description: We first retrieved an initial set of documents using anserini by adopting BM25, and RM3 for query expansion. Second, we reranked the documents using an already pre-trained T5 base model with the MS-Marco passages training data. The reranking was done by feeding the model the query and the title+head of the document.

bigIR-DTH-T5-R

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: bigIR-DTH-T5-R
  • Participant: QU
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: docs
  • MD5: 43811213e5df0b8bcf918f11c0008506
  • Run description: We reranked the documents using an already pre-trained T5 base model with the MS-Marco passages training data. The reranking was done by feeding the model the query and the title+head of the document.

bigIR-T5-BERT-F

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: bigIR-T5-BERT-F
  • Participant: QU
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: passages
  • MD5: a61597a4647fa6e7dc2595343e8a4fbf
  • Run description: First we expanded the passages using the queries predicted by a T5 model which was trained with MS-Marco passages dataset to predict queries that could be answered by a given passage. Second, we indexed the expanded passages using anserini. Third, we adopted RM3 query expansion to retrieve the 1000 passages for each query using anserini. Finally, we reranked the retrieved passages using an already pre-trained BERT large model with the MS-Marco passages training data.

bigIR-T5-R

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: bigIR-T5-R
  • Participant: QU
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: passages
  • MD5: 9cf180fd1ae8d463c42a5a81ebb3cf48
  • Run description: An already pre-trained T5 base model with the MS-Marco passages training data was used to rerank the passages.

bigIR-T5xp-T5-F

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: bigIR-T5xp-T5-F
  • Participant: QU
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: passages
  • MD5: e514307b72c3e221a1289e7f69ad81f2
  • Run description: First we expanded the passages using the queries predicted by a T5 model which was trained with MS-Marco passages dataset to predict queries that could be answered by a given passage. Second, we indexed the expanded passages using anserini. Third, we adopted RM3 query expansion to retrieve the 1000 passages for each query using anserini. Finally, we reranked the retrieved passages using an already pre-trained T5 base model with the MS-Marco passages training data.

BIT-run1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: BIT-run1
  • Participant: BIT.UA
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 6a5c67e701daebaca68e52330dafb8d6
  • Run description: Our model follows a lightweight interaction-based approach, it is a direct evolution of the following work [1] and a more detailed view can be found here [2]. We also train word2vec embeddings in the corpus. [1] T. Almeida and S. Matos, Calling Attention to Passages for Biomedical Question Answering, in Advances in Information Retrieval, 2020, pp. 6977. [2] T. Almeida and S. Matos, Frugal neural reranking: evaluation on the Covid-19 literature open url: https://openreview.net/pdf?id=TtcUlbEHkum

BIT-run2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: BIT-run2
  • Participant: BIT.UA
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 155832af758ef78fade99054c75a5cab
  • Run description: Our model follows a lightweight interaction-based approach, it is a direct evolution of the following work [1] and a more detailed view can be found here [2]. This run is a combination of 4 runs, associated with different checkpoints in the val and test sets, using rank reciprocal fusion. We also train word2vec embeddings in the corpus. [1] T. Almeida and S. Matos, Calling Attention to Passages for Biomedical Question Answering, in Advances in Information Retrieval, 2020, pp. 6977. [2] T. Almeida and S. Matos, Frugal neural reranking: evaluation on the Covid-19 literature open url: https://openreview.net/pdf?id=TtcUlbEHkum

BIT-run3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: BIT-run3
  • Participant: BIT.UA
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 2aca5bcc880ecbc4f3d9d0d6e8dc3968
  • Run description: Our retrieval system uses a top 250 BM25 followed by a lightweight interaction-based model, that it is a direct evolution of the following work [1] and a more detailed view can be found here [2]. We used the BM25 implementation of the elastic search, that was later finetuned This run is a combination of 4 runs, associated with different checkpoints in the val and test sets, using rank reciprocal fusion. We also train word2vec embeddings in the corpus. [1] T. Almeida and S. Matos, Calling Attention to Passages for Biomedical Question Answering, in Advances in Information Retrieval, 2020, pp. 6977. [2] T. Almeida and S. Matos, Frugal neural reranking: evaluation on the Covid-19 literature open url: https://openreview.net/pdf?id=TtcUlbEHkum

bl_bcai_mdl1_vs

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: bl_bcai_mdl1_vs
  • Participant: bl_bcai
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: passages
  • MD5: 390ba988f2754d139739b39170ef05fa
  • Run description: BM25+IBM MODEL1

bl_bcai_mdl1_vt

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: bl_bcai_mdl1_vt
  • Participant: bl_bcai
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: passages
  • MD5: b2c38ea0cc1369be5d15e2458c3583c1
  • Run description: BM25+IBM MODEL1

bl_bcai_model1

Results | Participants | Input | Summary | Appendix

  • Run ID: bl_bcai_model1
  • Participant: bl_bcai
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 4e50799d647fb5158bde6eff5026aa22
  • Run description: BM25+IBM MODEL 1

bl_bcai_multfld

Results | Participants | Input | Summary | Appendix

  • Run ID: bl_bcai_multfld
  • Participant: bl_bcai
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: d34bb6166846ba9ef5c7621b72a4fa2e
  • Run description: BM25 multifield

bl_bcai_prox

Results | Participants | Input | Summary | Appendix

  • Run ID: bl_bcai_prox
  • Participant: bl_bcai
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 23279c2d55ab39f90cac4cb9550e7947
  • Run description: BM25+BM25 proximity

bm25_bert_token

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: bm25_bert_token
  • Participant: UAmsterdam
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: c9299e9e872bd79d5215ad38c0b1cf88
  • Run description: bm25 with bert tokenization

CoRT-bm25

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: CoRT-bm25
  • Participant: HSRM-LAVIS
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/4/2020
  • Type: auto
  • Task: passages
  • MD5: 52eead2bd0155e2c784682131d16e04e
  • Run description: CoRT (Complementary Ranking from Transformers) is a representation-focused first-stage ranking approach using a siamese query/passage encoder based on a pretrained ALBERT model ("albert-base-v2" hosted by huggingface.co). CoRT aims to act an an complementary retriever to term-based first-stage rankers with the goal to compile high-recall re-ranking candidates while requiring less numbers of candidates than BM25. This run comprises candidates from CoRT merged with BM25, which could quickly be served as final search results or passed to an arbitrary re-ranker to increase precision.

CoRT-electra

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: CoRT-electra
  • Participant: HSRM-LAVIS
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/4/2020
  • Type: auto
  • Task: passages
  • MD5: 6abc74fe14c750cfbfe705e4646b9082
  • Run description: CoRT (Complementary Ranking from Transformers) is a representation-focused first-stage ranking approach using a siamese query/passage encoder based on a pretrained ALBERT model ("albert-base-v2" hosted by huggingface.co). CoRT aims to act an an complementary retriever to term-based first-stage rankers with the goal to compile high-recall re-ranking candidates while requiring less numbers of candidates than BM25. This run demonstrates the re-ranked ranking quality based on candidates from CoRT merged with BM25 and a pretrained+finetuned ELECTRA discriminator.

CoRT-standalone

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: CoRT-standalone
  • Participant: HSRM-LAVIS
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/4/2020
  • Type: auto
  • Task: passages
  • MD5: f9356c50a45447fb50e3e77fce017362
  • Run description: CoRT (Complementary Ranking from Transformers) is a representation-focused first-stage ranking approach using a siamese query/passage encoder based on a pretrained ALBERT model ("albert-base-v2" hosted by huggingface.co). CoRT aims to act an an complementary retriever to term-based first-stage rankers with the goal to compile high-recall re-ranking candidates while requiring less numbers of candidates than BM25. This run comprises standalone candidates from CoRT, which eventually should be merged with rankings from BM25. To be precise, CoRT is not supposed to be used as a standalone ranker.

d_bm25

Results | Participants | Input | Summary | Appendix

  • Run ID: d_bm25
  • Participant: anserini
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: c859ab57f303f52707946423b52ea7ad
  • Run description: Anserini baseline BM25

d_bm25rm3

Results | Participants | Input | Summary | Appendix

  • Run ID: d_bm25rm3
  • Participant: anserini
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: 9c36bce448b8b9426e4342160e57cd4c
  • Run description: Anserini baseline BM25+RM3

d_d2q_bm25

Results | Participants | Input | Summary | Appendix

  • Run ID: d_d2q_bm25
  • Participant: anserini
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: 34d3b67dec0985839e4c3c91dfbbdf78
  • Run description: Anserini baseline BM25 on index expanded with doc2query

d_d2q_bm25rm3

Results | Participants | Input | Summary | Appendix

  • Run ID: d_d2q_bm25rm3
  • Participant: anserini
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: c3e7ed3600316392e820f32ca428ccb9
  • Run description: Anserini baseline BM25+RM3 on index expanded with doc2query

d_d2q_duo

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: d_d2q_duo
  • Participant: h2oloo
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: e09293a15a298eb9842ec256f6e60bbf
  • Run description: A pairwise reranker (duoT5) using top-50 documents from a pointwise reranker (monoT5). monoT5 uses Anserini baseline of BM25 on index expanded with doc2query

d_d2q_rm3_duo

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: d_d2q_rm3_duo
  • Participant: h2oloo
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: a6def8f2d2465fb343a3b9cd860d7338
  • Run description: A pairwise reranker (duoT5) using top-50 documents from a pointwise reranker (monoT5). monoT5 uses Anserini baseline of BM25+RM3 on index expanded with doc2query.

d_rm3_duo

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: d_rm3_duo
  • Participant: h2oloo
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: e9547fdd0936eb8ea9702115c83b6601
  • Run description: A pairwise reranker (duoT5) using top-50 documents from a pointwise reranker (monoT5). monoT5 uses Anserini baseline of BM25+RM3

DLH_d_5_t_25

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: DLH_d_5_t_25
  • Participant: RMIT
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 9e606010da7515fc73e51e0e7f4211ff
  • Run description: Terrier DLH model, Krovetz stemming, BA query expansion with 5 documents and 25 terms.

DoRA_Large

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: DoRA_Large
  • Participant: reSearch2vec
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 68813be0a045a65ec2902c5b5b7dd0c6
  • Run description: Electra model with Dora pretraining, then 12 epochs of training data

DoRA_Large_1k

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: DoRA_Large_1k
  • Participant: reSearch2vec
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: ce2566b3544fa158e3cd1bc616349565
  • Run description: Electra model, Dora pretraining, 22 epochs of training

DoRA_Med

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: DoRA_Med
  • Participant: reSearch2vec
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 4f463926767b4e13835f462dbb4e5405
  • Run description: Electra transformer model, Dora pretraining, 12 epochs

DoRA_Small

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: DoRA_Small
  • Participant: reSearch2vec
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 8d94004c422d74fc44d7a943ea9a85b3
  • Run description: Using Electra model, Dora pretraining, 6 epochs of training data.

fr_doc_roberta

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: fr_doc_roberta
  • Participant: BITEM
  • Track: Deep Learning
  • Year: 2020
  • Submission: 7/22/2020
  • Type: auto
  • Task: docs
  • MD5: 9c79f0a7d66ea450305bf2b791867f25
  • Run description: We trained a roberta-large model on passages, then, for document reranking, we split documents into passages and give each document the maximum passage score of all its passages. We used anserini for the retrieval part.

fr_pass_roberta

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: fr_pass_roberta
  • Participant: BITEM
  • Track: Deep Learning
  • Year: 2020
  • Submission: 7/22/2020
  • Type: auto
  • Task: passages
  • MD5: e39885691eca98faafe254a8678c9e36
  • Run description: We trained a roberta-large model on passages, then, for document reranking, we split documents into passages and give each document the maximum passage score of all its passages. We used anserini for the retrieval part.

ICIP_run1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ICIP_run1
  • Participant: ICIP
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: 01cf815e03b3d5b3822e6537a9e4478b
  • Run description: In the run ICIP_run1, we use the neural language model BERT to re-rank the candidate documents. Specifically, we utilize the BERT-Large which first trained on MS MARCO passage small train triples, and then fine-tune it on MS MARCO document training data. We produced the MS MARCO document training samples as follows: all documents are split into overlapping passages, and the label of a passage is following the document where the passage is from, then the passages will be fed into BERT-Large trained on MS MARCO passage to filter some noisy training samples. The BERT re-ranker predicts the relevance of each passage with a query independently, and the document score is given by the score of the best passage (MaxP). All candidate documents are re-ranked by the document scores received.

ICIP_run2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ICIP_run2
  • Participant: ICIP
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: 6ecc62a3afa865e4a221d504b3bc9e87
  • Run description: In the run ICIP_run2, we perform the knowledge distillation technique on the BERT-Large which produced the run ICIP_run1. Specifically, the teacher model is the BERT-Large which first trained on MS MARCO passage data, then trained on MS MARCO document data; and the student model is set as 12 layers, with a half parameters of BERT-Large, distilled on MS MARCO document training samples. The student re-ranker predicts the relevance of each passage with a query independently, and the document score is given by the score of the best passage (MaxP). All candidate documents are re-ranked by the document scores received.

ICIP_run3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ICIP_run3
  • Participant: ICIP
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: 075129d22ee45cf6556d4c8e9a96f14e
  • Run description: In the run ICIP_run3, we use the neural language model BERT-Large only trained on MS MARCO passage small train triples. Specifically, the BERT re-ranker will not be further trained on MS MARCO document data as produced in ICIP_run1, because there is some noise in the produced MS MARCO document training samples. Differently, after predicting the relevance of each passage with a query independently, the document score is given by the average of the scores of the top-2 passages (2-Max-Avgp). All candidate documents are re-ranked by the document scores received.

indri-fdm

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: indri-fdm
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: d43f48392924d35e97e8fcd6d91053ce
  • Run description: Indri FDM model of Metzler and Croft. Default params.

indri-lmds

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: indri-lmds
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 57a01eab9835931563fa7d35ca7c4825
  • Run description: Indri Language model, dirchlet, mu=650 Krovetz stemming.

indri-sdm

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: indri-sdm
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: ff6f7980b8e3bb54617ca4e038025a8b
  • Run description: Indri SDM model of Metzler and Croft. Default params.

indri-sdmf

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: indri-sdmf
  • Participant: RMIT
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 75ab5010a44d8ebf103b7300611eee20
  • Run description: Indri SDM Fields with title, url, and body, Krovetz stemming.

longformer_1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: longformer_1
  • Participant: USI
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: docs
  • MD5: e0903c91f8764e38672e745ef74cce01
  • Run description: We employ Longformer for document re-ranking task. Specifically, we use LongformerForSequenceClassification from Huggingface.

med_1k

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: med_1k
  • Participant: reSearch2vec
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 8479a294502d9cc9ad1778ad752fe655
  • Run description: Electra model, Dora pretraining, 12 epochs of training

mpii_run1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: mpii_run1
  • Participant: mpii
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 8f7be3f9e3cd09ab4c865c3b5301f013
  • Run description: We rerank the top 100 documents from the official baseline. Our fine-tuning approach is two-stage. First, we fine-tuned the ELECTRA-Base model on the MSMARCO passage dataset. The model is later utilized by the document ranking model PARADE and fine-tuned on the TREC Deep learning Track 2019 test set for 500 steps (batch size 32).

mpii_run2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: mpii_run2
  • Participant: mpii
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 46d758ea7ce9724fc443aef9ab3e00bb
  • Run description: We rerank the top 100 documents from the official baseline. Our fine-tuning approach is two-stage. First, we fine-tuned the ELECTRA-Base model on the MSMARCO passage dataset. The model is later utilized by the document ranking model PARADE_{max} and fine-tuned on the TREC Deep learning Track 2019 test set for 500 steps (batch size 32).

mpii_run3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: mpii_run3
  • Participant: mpii
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: f199c4040448dc1857937af9a524ad40
  • Run description: We rerank the top 100 documents from the official baseline. Our fine-tuning approach is two-stage. First, we fine-tuned the ELECTRA-Base model on the MSMARCO passage dataset. The model is later utilized by the document ranking model PARADE_{attn} and fine-tuned on the TREC Deep learning Track 2019 test set for 500 steps (batch size 32).

ndrm1-full

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ndrm1-full
  • Participant: MSAI
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/4/2020
  • Type: auto
  • Task: docs
  • MD5: e65ae0315fd9022d05eb2afb15854a7b
  • Run description: A Conformer-Kernel model with Query-Term-Independence (paper: https://arxiv.org/pdf/2007.10434.pdf). Specifically, NDRM1 model from https://github.com/bmitra-msft/TREC-Deep-Learning-Quick-Start evaluated in the full ranking setting. Input word embeddings were pretrained using word2vec on the provided collection.

ndrm1-re

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ndrm1-re
  • Participant: MSAI
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/4/2020
  • Type: auto
  • Task: docs
  • MD5: 2274ec9686ede43a8c8fb2e71d24d952
  • Run description: A Conformer-Kernel model with Query-Term-Independence (paper: https://arxiv.org/pdf/2007.10434.pdf). Specifically, NDRM1 model from https://github.com/bmitra-msft/TREC-Deep-Learning-Quick-Start evaluated in the reranking setting. Input word embeddings were pretrained using word2vec on the provided collection.

ndrm3-full

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ndrm3-full
  • Participant: MSAI
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/4/2020
  • Type: auto
  • Task: docs
  • MD5: 8ef9d5e5e7728fbe93910c8b834db44d
  • Run description: A Conformer-Kernel model with Query-Term-Independence (paper: https://arxiv.org/pdf/2007.10434.pdf). Specifically, NDRM3 model from https://github.com/bmitra-msft/TREC-Deep-Learning-Quick-Start evaluated in the full ranking setting. Input word embeddings were pretrained using word2vec on the provided collection.

ndrm3-orc-full

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ndrm3-orc-full
  • Participant: MSAI
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/4/2020
  • Type: auto
  • Task: docs
  • MD5: 89729367fff36622840ff97316a68a81
  • Run description: A Conformer-Kernel model with Query-Term-Independence (paper: https://arxiv.org/pdf/2007.10434.pdf). Specifically, NDRM3 model from https://github.com/bmitra-msft/TREC-Deep-Learning-Quick-Start using ORCAS data as an additional document field evaluated in the full ranking setting. Input word embeddings were pretrained using word2vec on the provided collection.

ndrm3-orc-re

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ndrm3-orc-re
  • Participant: MSAI
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/4/2020
  • Type: auto
  • Task: docs
  • MD5: 660bd434d3568c1211e64b533455d5e8
  • Run description: A Conformer-Kernel model with Query-Term-Independence (paper: https://arxiv.org/pdf/2007.10434.pdf). Specifically, NDRM3 model from https://github.com/bmitra-msft/TREC-Deep-Learning-Quick-Start using ORCAS data as an additional document field evaluated in the reranking setting. Input word embeddings were pretrained using word2vec on the provided collection.

ndrm3-re

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ndrm3-re
  • Participant: MSAI
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/4/2020
  • Type: auto
  • Task: docs
  • MD5: 1341b7d803a1a45e462aac38b26dd6bf
  • Run description: A Conformer-Kernel model with Query-Term-Independence (paper: https://arxiv.org/pdf/2007.10434.pdf). Specifically, NDRM3 model from https://github.com/bmitra-msft/TREC-Deep-Learning-Quick-Start evaluated in the reranking setting. Input word embeddings were pretrained using word2vec on the provided collection.

NLE_pr1

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: NLE_pr1
  • Participant: NLE
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 662c288838761d19295d670453321d66
  • Run description: * BERT pre-trained model * Siamese BERT for first-stage ranking * ensemble 8 BERT re-rankers

NLE_pr2

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: NLE_pr2
  • Participant: NLE
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 6e51c246d908835cd0ef1f7d626fa55a
  • Run description: * BERT pre-trained model * two siamese for first-stage ranking: one fine-tuned BERT + 1 roberta based trained from scratch with MLM on MSMARCO * ensemble 8 BERT re-rankers (fine-tuned) + 4 electra re-rankers (fine-tuned) + 3 roberta re-rankers learned from scratch with MLM on MSMARCO

NLE_pr3

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: NLE_pr3
  • Participant: NLE
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 9dcc80d2172789799c27f7bb6b67f92a
  • Run description: * BERT pre-trained model * two siamese for first-stage ranking: one fine-tuned BERT + 1 roberta based trained from scratch with MLM on MSMARCO * ensemble * 8 BERT re-rankers (fine-tuned) + 4 electra re-rankers (fine-tuned) + 3 roberta re-rankers learned from scratch with MLM on MSMARCO * 5 BERT re-rankers (fine-tuned) + 1 roberta re-rankers learned from scratch with MLM on MSMARCO, re-ranking BM25 results

nlm-bert-rr

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: nlm-bert-rr
  • Participant: NLM
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 5c9f9be1194c58a66e0b6d9d1dc8ded9
  • Run description: For this run, we fine-tuned a BERT model on the classification of passage relevance using the passage ranking training data, then used the model to generate relevance scores from the top 1000 passages provided by the organizers.

nlm-bm25-prf-1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: nlm-bm25-prf-1
  • Participant: NLM
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: docs
  • MD5: ff5ff612b41d464670b8e803e5512764
  • Run description: BM25 retrieval baseline with pseudo-relevance feedback.

nlm-bm25-prf-2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: nlm-bm25-prf-2
  • Participant: NLM
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: docs
  • MD5: 7ac9f628d2e82f2ae2029e8cd04b1eeb
  • Run description: BM25 retrieval baseline with pseudo-relevance feedback and a different tokenization model.

nlm-ens-bst-2

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: nlm-ens-bst-2
  • Participant: NLM
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 948ca65ed28758d3afcaf8e369e9042d
  • Run description: For this run, we fine-tuned a BERT model on the classification of passage relevance using the passage ranking task training data, then used the model to generate relevance scores for the top 1000 passages retrieved by different search methods with low pairwise retrieval correlation. A boost-based ensemble method was then applied to re-rank the n-1000s and select the top 1000 passages for this run.

nlm-ens-bst-3

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: nlm-ens-bst-3
  • Participant: NLM
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: e666b400e2a1297b67fc91bf5932d82e
  • Run description: For this run, we fine-tuned a BERT model on the classification of passage relevance using the passage ranking task training data, then used the model to generate relevance scores for the top 1000 passages retrieved by different search methods with low pairwise retrieval correlation. A boost-based ensemble method was then applied to re-rank the n-1000s and select the top 1000 passages for this run.

nlm-prfun-bert

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: nlm-prfun-bert
  • Participant: NLM
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 4407a4e23cfc39f79df8f85585595734
  • Run description: For this run, we fine-tuned a BERT model on the classification of passage relevance using the passage ranking training data, then used the model to generate relevance scores from the top 1000 passages retrieved by our nlm-bm25-prf-u run.

p_bm25

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: p_bm25
  • Participant: anserini
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: passages
  • MD5: f2735d4d03b9cf4cbdba800f634ee057
  • Run description: Anserini baseline BM25

p_bm25rm3

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: p_bm25rm3
  • Participant: anserini
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: passages
  • MD5: 19532dbc2bce3326b5b0c511eb28fe04
  • Run description: Anserini baseline BM25+RM3

p_bm25rm3_duo

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: p_bm25rm3_duo
  • Participant: h2oloo
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: passages
  • MD5: ae8fca3b0803de064953fc06bfdf635a
  • Run description: A pairwise reranker (duoT5) using top-50 documents from a pointwise reranker (monoT5). monoT5 uses Anserini baseline of BM25+RM3

p_d2q_bm25

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: p_d2q_bm25
  • Participant: anserini
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: passages
  • MD5: 1f8c62aec7ae0f01a0b12e2dc14f2897
  • Run description: Anserini baseline BM25 on index expanded with doc2query

p_d2q_bm25_duo

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: p_d2q_bm25_duo
  • Participant: h2oloo
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: passages
  • MD5: 1e9d5447df11c03758664744a085158c
  • Run description: A pairwise reranker (duoT5) using top-50 documents from a pointwise reranker (monoT5). monoT5 uses Anserini baseline of BM25 on index expanded with doc2query

p_d2q_bm25rm3

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: p_d2q_bm25rm3
  • Participant: anserini
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: passages
  • MD5: b097037a9eca0383a0d40862d8840585
  • Run description: Anserini baseline BM25+RM3 on index expanded with doc2query

p_d2q_rm3_duo

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: p_d2q_rm3_duo
  • Participant: h2oloo
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: passages
  • MD5: 381775f81ac08249909df6e25d12205b
  • Run description: A pairwise reranker (duoT5) using top-50 documents from a pointwise reranker (monoT5). monoT5 uses Anserini baseline of BM25+RM3 on index expanded with doc2query.

pash_f1

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: pash_f1
  • Participant: PASH
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 0e28291867a55cab7f7cfd5473f5c336
  • Run description: We pretrained the modified bert-large model on msmarco-docs.tsv from Document Ranking Task. Next we use multiple recall mechanisms such as query expansion, document expansion, machine translation, passage similarity technologies to expand the recall possibility. Then fine-tune the model on query-passage pairs with 1:1 positive & negative labels. Finally ensembled 10 more different models.

pash_f2

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: pash_f2
  • Participant: PASH
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: a37c20648bd12eb8a59113025a7f8707
  • Run description: We pretrained the modified bert-large model on msmarco-docs.tsv from Document Ranking Task. Next we use multiple recall mechanisms such as query expansion, document expansion, machine translation, passage similarity technologies to expand the recall possibility. Then fine-tune the model on query-passage pairs with 1:1 positive & negative labels.

pash_f3

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: pash_f3
  • Participant: PASH
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: ce2bfcc1e5b9c8b2328d70de3be5199c
  • Run description: We pretrained the modified bert-large model on msmarco-docs.tsv from Document Ranking Task. Next we use multiple recall mechanisms such as query expansion, document expansion, machine translation, passage similarity technologies to expand the recall possibility. Then fine-tune the model on query-passage pairs with 1:1 positive & negative labels. Finally ensembled 10 more different models.

pash_r1

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: pash_r1
  • Participant: PASH
  • Track: Deep Learning
  • Year: 2020
  • Submission: 7/30/2020
  • Type: auto
  • Task: passages
  • MD5: 0d227b5d78eac191737ac12eb4a0bb4f
  • Run description: We pretrained the modified bert-large model on msmarco-docs.tsv from Document Ranking Task. Then fine-tune the model on query-passage pairs with 1:1 positive & negative labels.

pash_r2

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: pash_r2
  • Participant: PASH
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/4/2020
  • Type: auto
  • Task: passages
  • MD5: af3fd7baa0ae8b81016e13044a000bdb
  • Run description: We pretrained the modified bert-large model on msmarco-docs.tsv from Document Ranking Task. Then fine-tune the model on query-passage pairs with 1:1 positive & negative labels. Then ensembled 10 different models.

pash_r3

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: pash_r3
  • Participant: PASH
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 62dd4105af8a814df30f9b8c1f8965c6
  • Run description: We pretrained the modified bert-large model on msmarco-docs.tsv from Document Ranking Task. Then fine-tune the model on query-passage pairs with 1:1 positive & negative labels. Then ensembled 10 different models. Finally ensemble other two machine learning algorithms.

pinganNLP1

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: pinganNLP1
  • Participant: pinganNLP
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: passages
  • MD5: 7abaa0f22c224f1c1fb10cd65dc2deba
  • Run description: using training data to pretrain bert model, and finetuning xlnet with training data, ensemble several models finally

pinganNLP2

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: pinganNLP2
  • Participant: pinganNLP
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: passages
  • MD5: 7c67c6273cf5c6048597c0a092a9d809
  • Run description: using training data to pretrain bert model, and finetuning xlnet with training data, ensemble several models finally

pinganNLP3

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: pinganNLP3
  • Participant: pinganNLP
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: dfdac4e3923c8de3d6d994a5e54ed0ad
  • Run description: We pretrained bert model with train data, and we finetune XLNet with train data, at last we ensemble several models.

relemb_mlm_0_2

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: relemb_mlm_0_2
  • Participant: UAmsterdam
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/4/2020
  • Type: auto
  • Task: passages
  • MD5: c4b1a8157cebf523f6bd0d7d2defa25c
  • Run description: Altered the masked language modeling task for pre-training bert while training on orcas, used the pre-trained bert as a base. Subsequently, trained an interaction-based bert ranker on top.

rindri-bm25

Results | Participants | Input | Summary | Appendix

  • Run ID: rindri-bm25
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: docs
  • MD5: b86875a869f8d834b60b188f7f0f8629
  • Run description: Indri Bm25, Krovetz stemming, k1=1.6,b=0.7

RMIT-Bart

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: RMIT-Bart
  • Participant: RMIT
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: dc35a0f5df426e9b6e56cacd719e6cf5
  • Run description: Pairwise ranker on top of a BART transformer.

RMIT_DFRee

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: RMIT_DFRee
  • Participant: RMIT
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: a6ebfd5396bd3c5e288c27b6f4091329
  • Run description: Terrier DFRee Ranker with bigrams, Bo1 query expansion, Krovetz stemming, 5 documents, 50 terms.

RMIT_DPH

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: RMIT_DPH
  • Participant: RMIT
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 07e3f27d342f156728b60467a222f28a
  • Run description: Terrier DPH Ranker with bigrams, Bo1 query expansion, Krovetz stemming, 5 documents, 50 terms.

rmit_indri-fdm

Results | Participants | Input | Summary | Appendix

  • Run ID: rmit_indri-fdm
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: ae95eba56d002aa948f0249cc7465965
  • Run description: Indri FDM, default params, Krovetz stemming.

rmit_indri-sdm

Results | Participants | Input | Summary | Appendix

  • Run ID: rmit_indri-sdm
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: d0a76bc436c64830ed58e2f81d7896fb
  • Run description: Indri SDM, default params, Krovetz stemming.

roberta-large

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: roberta-large
  • Participant: BITEM
  • Track: Deep Learning
  • Year: 2020
  • Submission: 7/22/2020
  • Type: auto
  • Task: docs
  • MD5: 6a9bbda4d4881d6ef58f3efdd384c02b
  • Run description: We trained a roberta-large model on passages, then, for document reranking, we split documents into passages and give each document the maximum passage score of all its passages.

rr-pass-roberta

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: rr-pass-roberta
  • Participant: BITEM
  • Track: Deep Learning
  • Year: 2020
  • Submission: 7/22/2020
  • Type: auto
  • Task: passages
  • MD5: 64912a55777991303f3900eb8b25aa24
  • Run description: We trained a roberta-large model on passages, then, for document reranking, we split documents into passages and give each document the maximum passage score of all its passages.

rterrier-dph

Results | Participants | Input | Summary | Appendix

  • Run ID: rterrier-dph
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: e37972a0dea143163f84754815c8f327
  • Run description: Terrier DPH, default params, Krovetz stemming.

rterrier-dph_sd

Results | Participants | Input | Summary | Appendix

  • Run ID: rterrier-dph_sd
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: b0a0e680038d042b5ecb85afeb5696cd
  • Run description: Terrier DPH, bigrams, default params, Krovetz stemming.

rterrier-expC2

Results | Participants | Input | Summary | Appendix

  • Run ID: rterrier-expC2
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 8873c6f7c5dfc27663101913d1b84348
  • Run description: Terrier in_expC2, default params, Krovetz stemming.

rterrier-tfidf

Results | Participants | Input | Summary | Appendix

  • Run ID: rterrier-tfidf
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 15683acaea4b46c9423e80f1c78f63b0
  • Run description: Terrier in_expC2, default params, Krovetz stemming.

rterrier-tfidf2

Results | Participants | Input | Summary | Appendix

  • Run ID: rterrier-tfidf2
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 764f6ea17df9bb6aaa9771ecdf10383a
  • Run description: Terrier Lemur tfidf, default params, Krovetz stemming.

small_1k

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: small_1k
  • Participant: reSearch2vec
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: ef658199c9559567d93ceb486f256693
  • Run description: Electra model, Dora pretraining, 4 epochs of training

terrier-BM25

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: terrier-BM25
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 796275a90a00744eff7debc6284ed2ab
  • Run description: Terrier BM25 model. k1=0.9,b=0.4 Krovetz stemming.

terrier-DPH

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: terrier-DPH
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: 0005693dab8cda80f064fac3435d7e2e
  • Run description: Terrier DPH model,Krovetz stemming.

terrier-InL2

Results | Participants | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: terrier-InL2
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: c54cc4e0a287c8123fa87bdee3e95d91
  • Run description: Terrier InL2 model. Default params. Krovetz stemming.

terrier-jskls

Results | Participants | Input | Summary | Appendix

  • Run ID: terrier-jskls
  • Participant: bl_rmit
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: ddae939a72e3393fed7a6fb021f267f2
  • Run description: Terrier JS_KLs, default params, Krovetz stemming, bigrams, KL QE, 1 document and 10 terms.

TF_IDF_d_2_t_50

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: TF_IDF_d_2_t_50
  • Participant: RMIT
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: passages
  • MD5: efeeaacd80062726c3d789136798871d
  • Run description: Terrier TFIDF model, Krovetz stemming, BA query expansion with 2 documents and 50 terms.

TUW-TK-2Layer

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: TUW-TK-2Layer
  • Participant: TU_Vienna
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: passages
  • MD5: fa1471ef40520b25e5571c9f08bfbb33
  • Run description: 2 Layer TK model from: https://arxiv.org/abs/2002.01854, for TREC'20 we also pre-trained the Transformer layers on an Masked Language Model task (not in the initial paper)

TUW-TK-Sparse

Results | Participants | Proceedings | Input | Summary (trec_eval) | Summary (passages-eval) | Appendix

  • Run ID: TUW-TK-Sparse
  • Participant: TU_Vienna
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: passages
  • MD5: 93a3a75a2de0ccbfc0998b376c170ae2
  • Run description: Sparse & contextualized stopword adaption from the TK base model, published in CIKM'20, paper will be available until TREC

TUW-TKL-2k

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: TUW-TKL-2k
  • Participant: TU_Vienna
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: 76430b8bde744c2750f0c0b97b09130c
  • Run description: 2 thousand token input TKL model from: https://arxiv.org/abs/2005.04908

TUW-TKL-4k

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: TUW-TKL-4k
  • Participant: TU_Vienna
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: 3a228855501292e0ea2e7858b2312b3c
  • Run description: 4 thousand token input TKL model from: https://arxiv.org/abs/2005.04908

uob_runid1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: uob_runid1
  • Participant: UoB
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: 4c6e1c28f661a7b221ad439533fb73d2
  • Run description: Used a BERT model pre-trained on MSMARCO and fine tuned using passage level training data. Aimed to cheaply pre-select 4 meaningful passages to determine relevance of document rather than run every passage through the model. Extracted keywords/named entities from query and used text windows around occurrences in doc body as input to model. Took max passage score as document score.

uob_runid2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: uob_runid2
  • Participant: UoB
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: da2a1b449e8dafa634df80deaf6c4e2c
  • Run description: Used a BERT model pre-trained on MSMARCO and fine tuned using passage level training data. Aimed to pre-select meaningful passages to determine relevance of document rather than run every passage through the model. Split document into passages and used GloVe embeddings to encode passages and query. Assigned each passage a score by similarity to query and used top 4 as input to passage model

uob_runid3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: uob_runid3
  • Participant: UoB
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/5/2020
  • Type: auto
  • Task: docs
  • MD5: bd2914f8e8ebbe9136ae8d53fe2e430a
  • Run description: Used a BERT model pre-trained on MSMARCO and fine tuned using passage level training data. Aimed to pre-select meaningful passages to determine relevance of document rather than run every passage through the model. Split document into passages and used TextRank with GloVe embeddings to find most important passages in a document. Used top 4 as input to passage level model, taking the max score as the document score.

uogTr31oR

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: uogTr31oR
  • Participant: UoGTr
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/7/2020
  • Type: auto
  • Task: docs
  • MD5: 85e4d3a751dacc1dbf54ec8436d8115c
  • Run description: Uses 31 features to re-rank a candidate set obtained by DPH Divergence from Randomness. Learning to rank using LightGBM; Features include traditional and neural models such as BERT & ColBERT. ORCAS is included as a field. Run created using Pyterrier.

uogTrBaseDPH

Results | Participants | Input | Summary | Appendix

  • Run ID: uogTrBaseDPH
  • Participant: bl_uogTr
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 5f313422ff17453b4e478c1a008be71d
  • Run description: Terrier's DPH model from the Divergence from Randomness framework. Run was created using PyTerrier.

uogTrBaseDPHQ

Results | Participants | Input | Summary | Appendix

  • Run ID: uogTrBaseDPHQ
  • Participant: bl_uogTr
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: ffd11c5599dac75011ec4676b4df7dd6
  • Run description: Terrier's DPH model and Bo1 automatic query expansion from the Divergence from Randomness framework. Run was created using PyTerrier.

uogTrBaseL16

Results | Participants | Input | Summary | Appendix

  • Run ID: uogTrBaseL16
  • Participant: bl_uogTr
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 1e7b7bd5a7a9946f3f957f613f044871
  • Run description: LightGBM re-ranking of 16 non-neural features; candidate set identified using DPH; Run created using PyTerrier

uogTrBaseL17o

Results | Participants | Input | Summary | Appendix

  • Run ID: uogTrBaseL17o
  • Participant: bl_uogTr
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 1227bd0756141b1aab4f5ba65dd3af54
  • Run description: LightGBM re-ranking of 16 non-neural features + ORCAS as a field; candidate set identified using DPH; Run created using PyTerrier

uogTrBaseQL16

Results | Participants | Input | Summary | Appendix

  • Run ID: uogTrBaseQL16
  • Participant: bl_uogTr
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 65f251728fe34b22adff6c4020cdc54f
  • Run description: LightGBM re-ranking of 16 non-neural features; candidate set identified using DPH & Bo1; Run created using PyTerrier

uogTrBaseQL17o

Results | Participants | Input | Summary | Appendix

  • Run ID: uogTrBaseQL17o
  • Participant: bl_uogTr
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: b135b34cf2d357623b012909fa32f90b
  • Run description: LightGBM re-ranking of 16 non-neural features + ORCAS as a field; candidate set identified using DPH & Bo1 query expansion; Run created using PyTerrier

uogTrQCBMP

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: uogTrQCBMP
  • Participant: UoGTr
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 055a710f31eff4ba2de9276bb1e69788
  • Run description: ColBERT MaxPassage re-ranking of a candidate set created using the Divergence from Randomness DPH + Bo1 Query expansion models. Run created using Pyterrier.

uogTrT20

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: uogTrT20
  • Participant: UoGTr
  • Track: Deep Learning
  • Year: 2020
  • Submission: 8/6/2020
  • Type: auto
  • Task: docs
  • MD5: 3be19f1e00fec2f5f2de00a747beb129
  • Run description: An initial retrieval using the DPH Divergence from Randomness model is followed by applying TTTTT is a novel manner to perform query expansion to form the candidate set. 20 features to re-rank the candidate set. Learning to rank using LightGBM; Features include traditional and neural models such as ColBERT. Run created using Pyterrier.