Runs - Precision Medicine 2019¶
absrun1¶
Results
| Participants
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: absrun1
- Participant: WCMC
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
252d9f25f4085972d83410a850d3f9da
- Run description: The basic IR model without PM filter
absrun2¶
Results
| Participants
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: absrun2
- Participant: WCMC
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
5224535aa587316b6fc0921ca9a7f5a8
- Run description: The basic IR model with PM filter
bc¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: bc
- Participant: POZNAN
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
399b52944e7d7941209dd051dfe8f09b
- Run description: several LGD models combined by borda count terrier implementation
BM25¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: BM25
- Participant: ims_unipd
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
50abb960f69727da7caa0bb087b091da
- Run description: BM25
bm25_6801¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: bm25_6801
- Participant: CSIROmed
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: abstracts
- MD5:
37605bfa2b10bbb1050be4b3ae2a2325
- Run description: Solr's BM25 on default settings (k1=1.2,b=0.75)
bm25_ct_25¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: bm25_ct_25
- Participant: CSIROmed
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: trials
- MD5:
cf96d67b65e04e4718a007b5b7f219f7
- Run description: Solr's BM25 (k1=1.2,b=0.75)
bm25_ct_f_61¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: bm25_ct_f_61
- Participant: CSIROmed
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: trials
- MD5:
e515eae7de2232b5a7e7318a951cdd0c
- Run description: Solr's BM25 (k1=1.2,b=0.75), age and gender filtering
BM25ct¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: BM25ct
- Participant: ims_unipd
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
8f7ecf0a130d73fed9065213a48fc249
- Run description: BM25
BM25neop01¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: BM25neop01
- Participant: ims_unipd
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
3d42a4445944ece2f1cb033f44f52226
- Run description: BM25 + query rewriting
BM25neop01r¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: BM25neop01r
- Participant: ims_unipd
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
e14ab1286c802b69d465e6b1dcb4f8ed
- Run description: BM25 + query rewriting
BM25neopcomd¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: BM25neopcomd
- Participant: ims_unipd
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
831ca31f99d8cca77ae1806a06eb7cb0
- Run description: BM25 + query rewriting
BM25neopgngm¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: BM25neopgngm
- Participant: ims_unipd
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
be73e5c9b0b7be22973f8ed6c306f023
- Run description: BM25 + query rewriting
BM25solid01o¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: BM25solid01o
- Participant: ims_unipd
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
c6a46904da6d9168585f25f59adb2c66
- Run description: BM25 + query rewriting
BM25solid01r¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: BM25solid01r
- Participant: ims_unipd
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
8c5cb9f29aed6af288564b4077852c48
- Run description: BM25 + query rewriting
cbnuCT1¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: cbnuCT1
- Participant: cbnu
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: trials
- MD5:
17a91d763a2209f33e80928e10da0e54
- Run description: third party (indri)
cbnuCT2¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: cbnuCT2
- Participant: cbnu
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: trials
- MD5:
21214a21c16148bed3472073f9455b83
- Run description: third party (indri)
cbnuCT3¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: cbnuCT3
- Participant: cbnu
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: trials
- MD5:
dabb3c40650232f21e891b6bd03666a0
- Run description: third party (indri)
cbnuCT4¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: cbnuCT4
- Participant: cbnu
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: trials
- MD5:
f43b739e49b9e5ad3a26240997a42485
- Run description: third party (indri)
cbnuSA1¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: cbnuSA1
- Participant: cbnu
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
2d1aaecd53e986f55d63a95d5500e760
- Run description: third party (indri)
cbnuSA2¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: cbnuSA2
- Participant: cbnu
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
006d983afccb7d58e43bc98a36f3169a
- Run description: third party (indri)
cbnuSA3¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: cbnuSA3
- Participant: cbnu
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
4e1a036942ab02746b4eb49543822ad8
- Run description: third party (indri)
cbnuSA4¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: cbnuSA4
- Participant: cbnu
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
56b5cb4df360ac2d1dbdf4ad02cca840
- Run description: third party (indri)
ccnl_sa1¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: ccnl_sa1
- Participant: CCNL
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
050cde834e1f1cfb6dd1940198cb9811
- Run description: We used the basic model bm25 provided on the luence platform to retrieve Scientific Abstracts and then use the SciBert as a reranking model to rerank the retrieval result.
ccnl_sa2¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: ccnl_sa2
- Participant: CCNL
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
188733631e65789dfec129e871e57a3c
- Run description: We used the basic model bm25 provided on the luence platform to retrieve Scientific Abstracts and then use the SciBert as a reranking model to rerank the retrieval result. We use 4000 documents for each topic, which is different from ccnl_sa1
ccnl_sa3¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: ccnl_sa3
- Participant: CCNL
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
2f0c128eda76886f658cc2c26eeb9c2e
- Run description: We used the basic model bm25 provided on the luence platform to retrieve Scientific Abstracts and then use the SciBert as a reranking model to rerank the retrieval result. When we use diseases, the synonyms of diseases, genes and the sysnonyms of genes to train the reranking model.
ccnl_sa4¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: ccnl_sa4
- Participant: CCNL
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
b9ea3278795fd01b99d92b5443ee076e
- Run description: We used the basic model bm25 provided on the luence platform to retrieve Scientific Abstracts and then used the SciBert as a reranking model to rerank the retrieval result. We used diseases and genes of topics, titles of documents and abstracts of documents to train the reranking model.
ccnl_sa5¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: ccnl_sa5
- Participant: CCNL
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
38ea81c14455fcefb1a7a0df799855f1
- Run description: We used the basic model bm25 provided on the luence platform to retrieve Scientific Abstracts. We use two query to retrieve the document without any external resources. And then we searched the best weight to combine two retrieval result throught qrels of TREC 2017 Precision Medicine Track and qrels of TREC 2018 Precision Medicine Track
ccnl_trials1¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: ccnl_trials1
- Participant: CCNL
- Track: Precision Medicine
- Year: 2019
- Submission: 8/3/2019
- Type: automatic
- Task: trials
- MD5:
392675876e4880944495789bcf668e37
- Run description: We used the basic model bm25 provided on the luence platform to retrieve clinical trials and then use the SciBert as a reranking model to rerank the retrieval result. The SciBert is a deep learning method and pretrained on biomedical literatures.
ccnl_trials2¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: ccnl_trials2
- Participant: CCNL
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
3d350009b77d442b222ea9372e1a6710
- Run description: We used the basic model bm25 provided on the luence platform to retrieve clinical trials and then use the SciBert as a reranking model to rerank the retrieval result. The final numbers of reranking documents is 4000 for each topic, which is different from ccnl_trial1
cl_base_rr¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: cl_base_rr
- Participant: ECNU-ICA
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
47e52afd16d135383de150eadc391e35
- Run description: BM25 with custom rerank method
cl_ft_agg¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: cl_ft_agg
- Participant: ECNU-ICA
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
12dba094c26c18189b44d4a34a954a2e
- Run description: BM25 with custom rerank method
cl_ft_rr¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: cl_ft_rr
- Participant: ECNU-ICA
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
58c6a6a883d32695cfd47f54eb479723
- Run description: BM25 with custom rerank method
clinic_base¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: clinic_base
- Participant: ECNU-ICA
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
5f1b129378dde418ec77e9d207af9369
- Run description: BM25 with custom rerank method
clinic_ft¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: clinic_ft
- Participant: ECNU-ICA
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
6c39d10eb8243071aa9d7f95ad538c45
- Run description: BM25 with custom rerank method
default100k¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: default100k
- Participant: UNIVAQ
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: abstracts
- MD5:
b66e44152d1e729c2250ff79281c97ba
- Run description: Deep learning models for gene-disease extraction, pm classification and demographic matching. Similarity score with parameter K=1.
default1m¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: default1m
- Participant: UNIVAQ
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
aefaa7bae80940fe1d810a075db159e4
- Run description: Deep learning models for gene-disease extraction and pm classification. Fuzzy demographic matching. Similarity score with parameter K=1.
dfr_9464¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: dfr_9464
- Participant: CSIROmed
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: abstracts
- MD5:
23330a8a8c3593d850afe26b5abdb1a7
- Run description: Solr's DFR (I(ne)BH2(c=1))
DFRInL2_f¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: DFRInL2_f
- Participant: CSIROmed
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: trials
- MD5:
cb216e8db5e1e50f3b4b8d30d543f2b8
- Run description: Solr's DFR (I(n)LH2(c=1)) with age and gender filtering
Dutir_Cli1¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: Dutir_Cli1
- Participant: DUTIR
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: trials
- MD5:
f4f0f51bcc06e242b92da8d1d9da666e
- Run description: In Clinical Trials task, we only use query template which provided by ElasticSearch to obtain retrieval results.
Dutir_Cli2¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: Dutir_Cli2
- Participant: DUTIR
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: trials
- MD5:
c94ee9fef2e24b74297ac989d2e39248
- Run description: In Clinical Trials task, we only use query template which provided by ElasticSearch to obtain retrieval results.
DutirRun1¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: DutirRun1
- Participant: DUTIR
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: abstracts
- MD5:
7badc9d0f0cea3fbca2e0ca60906574a
- Run description: First, we use a BM25 model to obtain initial retrieval results. Then, we use a deep learning method to reorder the initial retrieval results.
DutirRun2¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: DutirRun2
- Participant: DUTIR
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: abstracts
- MD5:
5149d7b9b55074fc64bac5991e844314
- Run description: First, we use a BM25 model to obtain initial retrieval results. Then, we use a deep learning method to reorder the initial retrieval results.
DutirRun3¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: DutirRun3
- Participant: DUTIR
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: abstracts
- MD5:
bda0701eea972a1a0077f29e9159b8f1
- Run description: First, we use a BM25 model to obtain initial retrieval results. Then, we use a deep learning method to reorder the initial retrieval results.
DutirRun4¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: DutirRun4
- Participant: DUTIR
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: abstracts
- MD5:
0d7c67c8a0e53e62d9edd8fec2a73ec6
- Run description: First, we use a BM25 model to obtain initial retrieval results. Then, we use a deep learning method to reorder the initial retrieval results.
DutirRun5¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: DutirRun5
- Participant: DUTIR
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: abstracts
- MD5:
dbd604843d067fd1ac301650a107df6e
- Run description: First, we use a BM25 model to obtain initial retrieval results. Then, we use a deep learning method to reorder the initial retrieval results.
eged¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: eged
- Participant: Brown
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
bb9f55a76dc0f6f484fa0902c4bd8215
- Run description: BM25F, Whoosh
egnd¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: egnd
- Participant: Brown
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
290f0a6a75362d4dc5189c80bb354521
- Run description: BM25F, Whoosh
et_8435¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: et_8435
- Participant: CSIROmed
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: abstracts
- MD5:
02986011cf5fbbecb4b54833ab5195d0
- Run description: Solr's BM25 for the first retrieval step, LTR based on Extra Trees model (sklearn implementation) used for re-ranking
imi_mug1¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: imi_mug1
- Participant: imi_mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: abstracts
- MD5:
0b2e06f6544986fe547c4b32cb49dc2d
- Run description: Elasticsearch-based query templates
imi_mug2¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: imi_mug2
- Participant: imi_mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: abstracts
- MD5:
fdbf8f41015d8e108a4ab9f79ef90b7e
- Run description: Elasticsearch-based query templates
imi_mug2_t¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: imi_mug2_t
- Participant: imi_mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: abstracts
- MD5:
889a220eb469bfc3d2f2f1639b06e544
- Run description: Elasticsearch-based query templates
imi_mug3¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: imi_mug3
- Participant: imi_mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: abstracts
- MD5:
4e10079b691b1332d332740dbe7de521
- Run description: Elasticsearch-based query templates
imi_mug3_t¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: imi_mug3_t
- Participant: imi_mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: abstracts
- MD5:
7e6ac97f880dde992d9f55eb0a49ee5b
- Run description: Elasticsearch-based query templates
jlctgenes¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: jlctgenes
- Participant: julie-mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: trials
- MD5:
4d51c072617c23f7ad9f5ecbcce0d386
- Run description: Same as jlctphrase, but with extra matching on automatically extracted genes.
jlctletor¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: jlctletor
- Participant: julie-mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: trials
- MD5:
aa3b9dc1d6545569a3077ba73133c552
- Run description: ElasticSearch 5.4.0, factory defaults (BM25, k1=1.2, b=0.75), RankLib LambdaMART trained on TRECPM 2017 and 2018 clinical trials gold data
jlctltrin¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: jlctltrin
- Participant: julie-mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: trials
- MD5:
da45bd285ddd1a1c508a69366e56fdef
- Run description: ElasticSearch 5.4.0, factory defaults (BM25, k1=1.2, b=0.75), RankLib LambdaMART trained on internal development data for the 2019 topics
jlctphrase¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: jlctphrase
- Participant: julie-mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: trials
- MD5:
9885a55ca0a52be34c86e08eb7c01ca5
- Run description: ElasticSearch 5.4.0, factory defaults (BM25, k1=1.2, b=0.75)
jlctprec¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: jlctprec
- Participant: julie-mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: trials
- MD5:
a4393f7260e14774100d8258f8ba9a01
- Run description: Same as jlctphrase, but with no
match_all
clause
jlpmcommon2¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: jlpmcommon2
- Participant: julie-mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
d9ddfbfeec93103be46af27cfd6c79cf
- Run description: REPLACEMENT FOR jlpmcommon RUN ElasticSearch 5.4.0, factory defaults (BM25, k1=1.2, b=0.75)
jlpmletor¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: jlpmletor
- Participant: julie-mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
a6556fd34d606241f8131fdc2c7fa383
- Run description: ElasticSearch 5.4.0, factory defaults (BM25, k1=1.2, b=0.75), RankLib LambdaMART trained on TRECPM 2017 and 2018 scientific abstract gold data
jlpmltrin¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: jlpmltrin
- Participant: julie-mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
57f1b33ae116477c5be59fe72981f30a
- Run description: ElasticSearch 5.4.0, factory defaults (BM25, k1=1.2, b=0.75), RankLib LambdaMART trained on internal development data for the 2019 topics
jlpmtrboost¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: jlpmtrboost
- Participant: julie-mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
491f8afe3748d576347831b16fafabbe
- Run description: Same as jlpmtrcommon, but with filtered focused treatments. ElasticSearch 5.4.0, factory defaults (BM25, k1=1.2, b=0.75), RankLib LambdaMART trained on internal development data for the 2019 topics
jlpmtrcommon¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: jlpmtrcommon
- Participant: julie-mug
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
52b0290d566b85057da4ce6a5bcd6156
- Run description: ElasticSearch 5.4.0, factory defaults (BM25, k1=1.2, b=0.75)
MedIR1¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: MedIR1
- Participant: CincyMedIR
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
1b8d427cfac59ee2d63186f369a961a8
- Run description: BM25 similarity (BM25) and LMDirichlet Model (LMDirichlet). All with default settings in Elasticsearch
MedIR2¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: MedIR2
- Participant: CincyMedIR
- Track: Precision Medicine
- Year: 2019
- Submission: 8/3/2019
- Type: automatic
- Task: abstracts
- MD5:
008b2b3d92f8893481663e043f9475f4
- Run description: BM25 similarity (BM25)-currently the default setting in Elasticsearch
MedIR3¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: MedIR3
- Participant: CincyMedIR
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: abstracts
- MD5:
bd39be6bf9391127db2880bf1c853622
- Run description: BM25 similarity (BM25)-currently the default setting in Elasticsearch
MedIR4¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: MedIR4
- Participant: CincyMedIR
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: abstracts
- MD5:
447f6654b3109a02743958d5e823db51
- Run description: BM25 similarity (BM25) - currently the default setting in Elasticsearch
MedIR5¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: MedIR5
- Participant: CincyMedIR
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: abstracts
- MD5:
f1d815eb8aa8c032e3c0bee6b4f66dd5
- Run description: BM25 similarity (BM25): the default setting in Elasticsearch
ngnd¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: ngnd
- Participant: Brown
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
a63246f412d51f7262060d4316047415
- Run description: BM25F, Whoosh
rf1_f_100¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: rf1_f_100
- Participant: CSIROmed
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: trials
- MD5:
b49434519175d669c77877a1a811f89a
- Run description: Solr's BM25 with ExtraTrees (100 trees) LTR re-ranking and age/gender filtering
rf2_f_50¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: rf2_f_50
- Participant: CSIROmed
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: trials
- MD5:
32e365bf4828674c2a24efc80ff7340e
- Run description: Solr's BM25 with ExtraTrees (300 trees) LTR re-ranking and age/gender filtering
rrf_1¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: rrf_1
- Participant: Brown
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
75353e48db105558d4fb6308c476171b
- Run description: BM25F, Whoosh
rrf_2¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: rrf_2
- Participant: Brown
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
b6b0946abfdbfdf9c1773412f8783252
- Run description: BM25F, Whoosh
run3¶
Results
| Participants
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: run3
- Participant: WCMC
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
fc13b94d51646ce886dd1b8c6894eaf0
- Run description: Ensemble of deep model learning models without PM filter
run4¶
Results
| Participants
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: run4
- Participant: WCMC
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
1948ce0de32571ea5254a15f0db98fd3
- Run description: The ensemble of deep model learning models with PM filter
run5¶
Results
| Participants
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: run5
- Participant: WCMC
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
b9d4f237abbbfd0ae8ee383696feca21
- Run description: The ensemble of deep model learning models with the ensemble PM filter
sa_base¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: sa_base
- Participant: ECNU-ICA
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
8cb3a96f9c2158c25f68ce1bf04d76fd
- Run description: BM25 with custom rerank method
sa_base_rr¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: sa_base_rr
- Participant: ECNU-ICA
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
261a458b21fabdab1f46a36a35598c58
- Run description: BM25 with custom rerank method
SA_bc¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SA_bc
- Participant: POZNAN
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
5473314523fc94132786021dd053ba89
- Run description: various models concatenated with borda count
SA_DPH_letor¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SA_DPH_letor
- Participant: POZNAN
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
cef071351c9ffc204fcd9d19f8ae1a7d
- Run description: DPH model with l2r terrier implementation
sa_ft¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: sa_ft
- Participant: ECNU-ICA
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
babf906b1840066359a098ca31a8353b
- Run description: BM25 with custom rerank method
sa_ft_rr¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: sa_ft_rr
- Participant: ECNU-ICA
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
fed5ca3365b76044f05b6ed1c296ec69
- Run description: BM25 with custom rerank method
SA_LGD_letor¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SA_LGD_letor
- Participant: POZNAN
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
4285cf232279cb8836e9832b115435bb
- Run description: LGD model with l2r terrier implementation
SAsimpleLGD¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SAsimpleLGD
- Participant: POZNAN
- Track: Precision Medicine
- Year: 2019
- Submission: 8/5/2019
- Type: automatic
- Task: abstracts
- MD5:
a439c020a34b106ca729495b3fbd999c
- Run description: LGD model with no extensions terrier implementation
SIBTMct1¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SIBTMct1
- Participant: BITEM_PM
- Track: Precision Medicine
- Year: 2019
- Submission: 7/30/2019
- Type: automatic
- Task: trials
- MD5:
493afd50b8acb53ae61701c57a7d71bb
- Run description: Demographic datas: match or not discussed Disease: exact code Gene: exact code Other: exact or not discussed Boost: if Other is exact, a major boosting is applied to increase the score of the CT.
SIBTMct2¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SIBTMct2
- Participant: BITEM_PM
- Track: Precision Medicine
- Year: 2019
- Submission: 7/30/2019
- Type: automatic
- Task: trials
- MD5:
6b63ff510a25097e03504df25cf9bf36
- Run description: Demographic datas: match or not discussed Disease: exact code and extension to parents codes (direct parents, all parents, all children) thanks to NCI Thesaurus relation. Gene: exact code or regex version of the gene name Other: exact or not discussed Boost: - boosts are applied on some fields of the CT; - different boost in disease section, depending the relation with the exact disease (nearest / farest); - For the Other field, major boosting if other is exact.
SIBTMct3¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SIBTMct3
- Participant: BITEM_PM
- Track: Precision Medicine
- Year: 2019
- Submission: 7/30/2019
- Type: automatic
- Task: trials
- MD5:
804c667695b9946abf0143da51013334
- Run description: A run where Gene is not required and combined with ct2 (RunC). To avoid false positives, disease (exact or extended) and Other are required where Gene is not.
SIBTMct4¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SIBTMct4
- Participant: BITEM_PM
- Track: Precision Medicine
- Year: 2019
- Submission: 7/30/2019
- Type: automatic
- Task: trials
- MD5:
cf0f8d5fa25faf1e00da5a9361f7ee39
- Run description: Demographic datas: match or not discussed Disease: exact code and extension to parents codes (direct parents, all parents, all children) thanks to NCI Thesaurus relation. Gene: exact code or regex version of the gene name. Other: exact, not discussed or extended version like synonyms of variants thanks to a list generated by our team or regex version. Boost: - boosts are applied on some fields of the CT; - different boost in disease section, depending the relation with the exact disease (nearest / farest); - For the Other field, major boosting if other is exact or extended.
SIBTMct5¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SIBTMct5
- Participant: BITEM_PM
- Track: Precision Medicine
- Year: 2019
- Submission: 7/30/2019
- Type: automatic
- Task: trials
- MD5:
2bae18914adc15f67367bdf1f8939544
- Run description: A run where Gene is not required and combined with ct4 (RunA). To avoid false positives, disease (exact or extended) and Other are required where Gene is not.
SIBTMlit1¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SIBTMlit1
- Participant: BITEM_PM
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: abstracts
- MD5:
05a5f1336e8e2a37696c94ad806daa2a
- Run description: First, four queries are executed (Disease + Gene + Variant; Disease + Gene; Gene + Variant; Disease + Variant) and results are combined with different weights. Results are then re-ranked based on 1) genes/diseases/drugs occurrences, 2) demographic occurrences (age and gender) and 3) the presence of some pre-determined positive and negative keywords.
SIBTMlit2¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SIBTMlit2
- Participant: BITEM_PM
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: abstracts
- MD5:
29c1fbb6b6b8457c25be67a42028f7f4
- Run description: This run re-ranks results of run SIBTMlit1. For each drug mentioned in the results, the list of abstracts mentioning this drug is collected. Results are normalized (each top-result for each drug gets a score of 1) to obtain as many drugs as possible in the top list. Results are then merged together. A linear combination is then performed with run SIBTMlit1.
SIBTMlit3¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SIBTMlit3
- Participant: BITEM_PM
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: abstracts
- MD5:
532f6b329305d6f970425abae6276472
- Run description: This run re-ranks results of run SIBTMlit1. For each abstract, the top-3 most-frequent oncology-related drugs mentioned in the abstract are selected. Results are then re-ranked. Only abstract who do provides a not-already seen drugs are kept in the top positions, while scores of abstracts with already mentioned drugs are downgraded.
SIBTMlit4¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SIBTMlit4
- Participant: BITEM_PM
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: abstracts
- MD5:
e6cf53d861a18d33c1661ca0f778cee0
- Run description: A variant of run SIBTMlit1 is used, in which exact results (Disease, Gene and Variant must be present in the abstract if mentioned in the topic) are ranked before not exact resuts (one entity is missing). The SIBTIMlit4 run re-ranks results of this variant of run SIBTMlit1, using the same strategy as run SIBTMlit2.
SIBTMlit5¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: SIBTMlit5
- Participant: BITEM_PM
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: abstracts
- MD5:
9f85135fe7cef620b3f2c18de9e811a5
- Run description: A run is executed on full-text (PMC) instead of Medline. Results are then combined with the run SIBTMlit2. Scores of abstracts of run SIBTMlit2 also returned by the PMC run are boosted.
sils_run1¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: sils_run1
- Participant: UNC_SILS
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
beab280f3168fea2ee5e2e14c746d80b
- Run description: Apache Lucene, with default settings of BM25 model
sils_run2¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: sils_run2
- Participant: UNC_SILS
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
2a8e4ffa71190ea846b7de447196c620
- Run description: Apache Lucene, with default settings of BM25 model
sils_run3¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: sils_run3
- Participant: UNC_SILS
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
dc58af8d6fe67621c4f6eebff0eea273
- Run description: Apache Lucene, with default settings of BM25 model
sils_run4¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: sils_run4
- Participant: UNC_SILS
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
e30d2d20878783be36ab0f193bb344fa
- Run description: Apache Lucene, with default settings of BM25 model
simple¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: simple
- Participant: POZNAN
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
4a7dfc0dd59c63a65684102fe11e4b29
- Run description: LGD model terrier implementation
simple_letor¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: simple_letor
- Participant: POZNAN
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
e5b8a958d2937fd68f864ccd03a7b881
- Run description: LGD model with L2R terrier implementation
tk1allbinary¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: tk1allbinary
- Participant: UNIVAQ
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: trials
- MD5:
cf24f8b58ab1fe9c33b914c069208998
- Run description: Deep learning models for gene-disease extraction and pm classification. Binary demographic matching. Similarity score with parameter K=1.
tk1allfuzzy¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: tk1allfuzzy
- Participant: UNIVAQ
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: trials
- MD5:
406f7c587f509d8a8cf357812d299f84
- Run description: Deep learning models for gene-disease extraction and pm classification. Fuzzy demographic matching. Similarity score with parameter K=1.
tk3allfuzzy¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: tk3allfuzzy
- Participant: UNIVAQ
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: trials
- MD5:
b3e59eef6b9e42ce7db363f934b0852a
- Run description: Deep learning models for gene-disease extraction and pm classification. Fuzzy demographic matching. Similarity score with parameter K=3.
tk3nodemogr¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: tk3nodemogr
- Participant: UNIVAQ
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: trials
- MD5:
e0a9f5604641c7fb2b1cca836fd569db
- Run description: Deep learning models for gene-disease extraction and pm classification. Similarity score with parameter K=3.
tk3onlygnds¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: tk3onlygnds
- Participant: UNIVAQ
- Track: Precision Medicine
- Year: 2019
- Submission: 8/1/2019
- Type: automatic
- Task: trials
- MD5:
f3bad806804ba765432d95ad5b23f546
- Run description: Deep learning models for gene-disease extraction. Similarity score with parameter K=3.
top3fusion¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: top3fusion
- Participant: ims_unipd
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
56e4f1b531f7a9198331348d72edb755
- Run description: BM25 + query rewriting + rank fusion
top4fusion¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: top4fusion
- Participant: ims_unipd
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: abstracts
- MD5:
0e59c1cb23d71cd0aec98522b61cab48
- Run description: BM25 + query rewriting + rank fusion
trial_run3¶
Results
| Participants
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: trial_run3
- Participant: WCMC
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
d047be5b6f15fbecb5401393b6e997e3
- Run description: The ensemble of deep learning models without PM filter
trial_run4¶
Results
| Participants
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: trial_run4
- Participant: WCMC
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
1647e775362220725692234a49e2dbfa
- Run description: The ensemble of deep learning models with PM filter
trial_run5¶
Results
| Participants
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: trial_run5
- Participant: WCMC
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
2b8bce9e7a43706843136186ccae540f
- Run description: The ensemble of deep learning models without the ensemble PM filter
trialsrun1¶
Results
| Participants
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: trialsrun1
- Participant: WCMC
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
3632a85606adb284222c8d62e2ad04fe
- Run description: The basic model without pm filter
trialsrun2¶
Results
| Participants
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: trialsrun2
- Participant: WCMC
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
9149c0a06ba7de106496263bb16ac0fb
- Run description: The basic model with pm filter
w2v_letor¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: w2v_letor
- Participant: POZNAN
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
0824574bc238b52c4b1cbcabdd314049
- Run description: LGD model with L2R terrier implementation
w2v_noletor¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: w2v_noletor
- Participant: POZNAN
- Track: Precision Medicine
- Year: 2019
- Submission: 8/4/2019
- Type: automatic
- Task: trials
- MD5:
70d3d0e770d8aa131095f13d5d3ceaec
- Run description: simple LGD model terrier implementation
xgb_5113¶
Results
| Participants
| Proceedings
| Input
| Summary (trec_eval)
| Summary (sample-eval)
| Appendix
- Run ID: xgb_5113
- Participant: CSIROmed
- Track: Precision Medicine
- Year: 2019
- Submission: 8/2/2019
- Type: automatic
- Task: abstracts
- MD5:
380822a5dbe39346310f2f18aa594ff1
- Run description: Solr's BM25 for the first retrieval step, LTR based on XGB model (xgboost implementation) used for re-ranking