Runs - Knowledge Base Acceleration 2014¶
BIT_Purdue-baseline¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BIT_Purdue-baseline
- Participant: BIT_Purdue
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
9d9dbd97d89e2d1e46efb80f24395a64
- Run description: Entity title strings are used as surface form names, then any document containing one of the surface form names is ranked vital with confidence proportional to length of surface form name, and the longest sentence containing the longest surface form name is treated as a slot fill for all slot types for the given entity type.
BIT_Purdue-BinaryRank¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BIT_Purdue-BinaryRank
- Participant: BIT_Purdue
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
4f79a080b0d5173eaea8420dc256d93d
- Run description: Use all the instances together to train a ranking model, then rank all the candidate documents.
BIT_Purdue-GlobalClassU¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BIT_Purdue-GlobalClassU
- Participant: BIT_Purdue
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
14859aa209e513775d5878dcdc5d5a1c
- Run description: Use all the instances together to train Random Forest classification model, then classify all the candidate documents.
BIT_Purdue-GlobalClassV¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BIT_Purdue-GlobalClassV
- Participant: BIT_Purdue
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
4e27b649482ea531ba207d84bb7d565e
- Run description: Use all the instances together to train Random Forest classification model( vital VS. Non-vital), then classify all the candidate documents.
BIT_Purdue-GlobalClassV1¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BIT_Purdue-GlobalClassV1
- Participant: BIT_Purdue
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
9f6bf1a8e21c669a1c95e239cad0ebac
- Run description: A global classification model.
BIT_Purdue-GlobalRank¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BIT_Purdue-GlobalRank
- Participant: BIT_Purdue
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
96b916b8680a082a505aeebd94eed1dd
- Run description: Use all the instances together to train a ranking model, then rank all the candidate documents.
BIT_Purdue-labeled¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BIT_Purdue-labeled
- Participant: BIT_Purdue
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
fe243e3cf51b358a9ba0055c1dac800f
- Run description: query expansion run, use the related entities found in the vital labeled documents, and search the target entity and its related entities together against the built indices, the more entities are matched, the higher ranking of the candidate documents.
BIT_Purdue-profile¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BIT_Purdue-profile
- Participant: BIT_Purdue
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
e6d966441e42f2909c5a3d30cd5d2fba
- Run description: a simple query expansion method, expand the exact query with the named entities found in the profile pages, rank the candidate documents according to their matched named entities
BUPT_PRIS-pris_baseline¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BUPT_PRIS-pris_baseline
- Participant: BUPT_PRIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
8092ad613d55f2752706f83f1eab0478
- Run description: a run that use the results ES returns
BUPT_PRIS-pris_NN¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BUPT_PRIS-pris_NN
- Participant: BUPT_PRIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/1/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
afec17c3d4faa4fa4876422764b352ff
- Run description: a run that use the results ES returns,and classified with NN
BUPT_PRIS-pris_rf¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BUPT_PRIS-pris_rf
- Participant: BUPT_PRIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/1/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
7d3d2aa19d80d0f5eef073d8459b2ee4
- Run description: a run that use the results ES returns,and classfied with RF
BUPT_PRIS-pris_svm¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BUPT_PRIS-pris_svm
- Participant: BUPT_PRIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/28/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
93be3b2bd30c155c0b21691fa39df842
- Run description: a run that use the results ES returns,and classify with SVM
BUPT_PRIS-ssf1¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BUPT_PRIS-ssf1
- Participant: BUPT_PRIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/8/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
fc72832cbfc691a552dc29100a7fd36a
- Run description: This automatic extraction system contains three steps. First, With query expansion and corefence resolution, we can find relative sentences(to make the search faster, we built index using Elasticsearch). Second, we found rules by using KBP training data and bootstrapping method, and calculate the weight of each rules using logistic regression. Finally, we found slot answers by matching the rules. Specially, we manually picked up some seeds for those slottypes that KBP didn't contain to use bootstrapping method. And there are also some rules found manually such as PER_GENDER,PER_CONTACT,PER_EMAIL,ORG_CONTACT.
BUPT_PRIS-ssf2¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BUPT_PRIS-ssf2
- Participant: BUPT_PRIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/8/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
a73c0b261d3c87ce12843ba6c34ee574
- Run description: This automatic extraction system contains three steps. First, With query expansion and corefence resolution, we can find relative sentences(to make the search faster, we built index using Elasticsearch). Second, we found rules by using KBP training data and bootstrapping method, and calculate the weight of each rules using logistic regression. Finally, we found slot answers by matching the rules. Specially, we manually picked up some seeds for those slottypes that KBP didn't contain to use bootstrapping method. And there are also some rules found manually such as PER_GENDER,PER_CONTACT,PER_EMAIL,ORG_CONTACT.
ecnu-baseline_run¶
Participants
| Input
| Appendix
- Run ID: ecnu-baseline_run
- Participant: ecnu
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
e939f3d4d141f940204da4bd3fd304b9
- Run description: Entity name strings are used to filter documents, each entity name is used as an query to do search in the indexed kba corpus. According to query result rank value, the higher value means the higher relevance. A threshold is used to identify the item relevance -1,0,1,2.
ecnu-idr_lda_1¶
Participants
| Input
| Appendix
- Run ID: ecnu-idr_lda_1
- Participant: ecnu
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
0e79f1ec009395afbc254e67886fc625
- Run description: Entity name strings are used to filter documents. Entity name, name mension information in the training data are used to as query, then indri laguage models dirichlet is used, then according to query result, identify item relevance.
ecnu-idr_lda_2¶
Participants
| Input
| Appendix
- Run ID: ecnu-idr_lda_2
- Participant: ecnu
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
2e23c1178d604cdd9befcdfe7c117939
- Run description: Entity name strings are used to filter documents. Entity name, name mension information and related entity (we assume that the number of the entity occurs in entity training data larger than a threshold, then it is related entity) in the training data are used to as query, then indri laguage models dirichlet is used, then according to query result, identify item relevance.
ecnu-idr_lda_3¶
Participants
| Input
| Appendix
- Run ID: ecnu-idr_lda_3
- Participant: ecnu
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
67f9e2449bbe0770adc434ff70174b31
- Run description: Entity name strings are used to filter documents. Entity name, name mension information in the training data, external url are used to as query, then indri laguage models dirichlet is used, then according to query result, identify item relevance.
ecnu-idr_lda_4¶
Participants
| Input
| Appendix
- Run ID: ecnu-idr_lda_4
- Participant: ecnu
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
b713a295594232f9010068c66818fce6
- Run description: Entity name strings are used to filter documents. Entity name, name mension information and related entity (we assume that the number of the entity occurs in entity training data larger than a threshold, then it is related entity) in the training data, external url are used to as query, then indri laguage models dirichlet is used, then according to query result, identify item relevance.
ecnu-rst_com_1¶
Participants
| Input
| Appendix
- Run ID: ecnu-rst_com_1
- Participant: ecnu
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
72aedff6e6cab61cfb9fddf97a38eca1
- Run description: Entity name strings are used to filter documents, each entity name is used as an query to do search in the indexed kba corpus. Linear combine language model lda and weighting models results. According to combine result rank value, the higher value means the higher relevance. A threshold is used to identify the item relevance -1,0,1,2.
ecnu-rst_com_2¶
Participants
| Input
| Appendix
- Run ID: ecnu-rst_com_2
- Participant: ecnu
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
4888c68e13cff93e0aec6280bcafe4d8
- Run description: Entity name strings are used to filter documents, each entity name is used as an query to do search in the indexed kba corpus. Linear combine language model lda, weighting models results and similarity based method results. According to combine result value, the higher value means the higher relevance. A threshold is used to identify the item relevance -1,0,1,2.
ecnu-sim_run¶
Participants
| Input
| Appendix
- Run ID: ecnu-sim_run
- Participant: ecnu
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
b1f693c255d1f0dc5fb36cc0e0e203bf
- Run description: Entity name strings are used to filter documents. Use entity training profile, according to each vital or useful streamitem clean text. Filter stop words, get top frequency words, and calculate cosine and jaccard similarity. then linear combine their results
ecnu-ssf_run¶
Participants
| Input
| Appendix
- Run ID: ecnu-ssf_run
- Participant: ecnu
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
ff902f6306232be4f4621437c97308b4
- Run description: Entity Canonical Name strings are used to filter documents, mentioned information in training data and profile information from external_profile are used as keys, then any document containing one of the keys is ranked vital with confidence proportional to length of keys, and the longest sentence containing the longest key is treated as a slot fill for all slot types for the given entity type.
ecnu-ter_wtms_1¶
Participants
| Input
| Appendix
- Run ID: ecnu-ter_wtms_1
- Participant: ecnu
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
d21ae8f86762393cce68f1626f12d69c
- Run description: Entity name strings are used to filter documents. Entity name mension information in training data are used to as query, then terrier weighting models BM25, PL2, TFIDF are used, then according to query result, identify item relevance.
ecnu-ter_wtms_2¶
Participants
| Input
| Appendix
- Run ID: ecnu-ter_wtms_2
- Participant: ecnu
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
82e333995d851d14a29d2a8f472c89e3
- Run description: Entity name strings are used to filter documents. Entity name, name mension information and related entity (we assume that the number of the entity occurs in entity training data larger than a threshold, then it is related entity) in training data are used to as query, then terrier weighting models BM25, PL2, TFIDF are used, then according to query result, identify item relevance.
ecnu-ter_wtms_3¶
Participants
| Input
| Appendix
- Run ID: ecnu-ter_wtms_3
- Participant: ecnu
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
74f06212893f72a093dac7b6945d5bd5
- Run description: Entity name strings are used to filter documents. Entity name, name mension information in training data, external profile are used to as query, then terrier weighting models BM25, PL2, TFIDF are used, then according to query result, identify item relevance.
ecnu-ter_wtms_4¶
Participants
| Input
| Appendix
- Run ID: ecnu-ter_wtms_4
- Participant: ecnu
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
a06f3eaa7bdcf0cf5698821bf917c499
- Run description: Entity name strings are used to filter documents. Entity name, name mension information and related entity related entity (we assume that the number of the entity occurs in entity training data larger than a threshold, then it is related entity) in training data, external profile are used to as query, then terrier weighting models BM25, PL2, TFIDF are used, then according to query result, identify item relevance.
IRIT-alpha_100_0.25¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-alpha_100_0.25
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
fb4912c61006a0c6c073377e898d37c7
- Run description: Linear combination of vital-training-based score and burst-relevance score
IRIT-alpha_100_0.5¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-alpha_100_0.5
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
d38491f932521a2f3f05748bf169fc8c
- Run description: Linear combination of vital-training-based score and burst-relevance score
IRIT-alpha_100_0.75¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-alpha_100_0.75
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
bc83f70427b6f5777155235fd9100609
- Run description: Linear combination of vital-training-based score and burst-relevance score
IRIT-alpha_10_0.25¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-alpha_10_0.25
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
f1c32f28c0ad912f93f1986a96c43a5e
- Run description: Linear combination of vital-training-based score and burst-relevance score
IRIT-alpha_10_0.5¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-alpha_10_0.5
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
f5cd62b228ca29d75e98c81b0a541d71
- Run description: Linear combination of vital-training-based score and burst-relevance score
IRIT-alpha_10_0.75¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-alpha_10_0.75
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
b1a600e9c43660aeb9cb236236577e6f
- Run description: Linear combination of vital-training-based score and burst-relevance score
IRIT-alpha_50_0.25¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-alpha_50_0.25
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
7d2db350b2fa22b4b097e6f1c145dc1e
- Run description: Linear combination of vital-training-based score and burst-relevance score
IRIT-alpha_50_0.5¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-alpha_50_0.5
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
540e921d3c11f09177186a2b4747f944
- Run description: Linear combination of vital-training-based score and burst-relevance score
IRIT-alpha_50_0.75¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-alpha_50_0.75
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
1415ad513bff705cf1f1fb9c66d369c6
- Run description: Linear combination of vital-training-based score and burst-relevance score
IRIT-alpha_50_0.75T¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-alpha_50_0.75T
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
9e5f9824379a85ad018d18c9b34fe7fc
- Run description: detecting vitality combining the a vitality-training-score and bursty-relevance-new-dates score
IRIT-ULM_10¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-ULM_10
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
850995344a467413ca436696d2c70784
- Run description: relevance-training-based score
IRIT-ULM_50¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-ULM_50
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
cd8bc96978c6d74703046789a35124de
- Run description: relevance-training-based score
IRIT-ULMBuzz_50_0.5T¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-ULMBuzz_50_0.5T
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
feffb6c473679716f6f5bfcf17065b65
- Run description: Ldetecting vitality using a bursty-new-dates score
IRIT-ULMBuzz_50_0.7T¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-ULMBuzz_50_0.7T
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
a20f935fc481f717f29954809f829e1e
- Run description: detecting vitality using a bursty-new-dates score
IRIT-VLM_10¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-VLM_10
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
fe203b70c1cff95b5864f164d443fadd
- Run description: vital-language-model based score
IRIT-VLM_50¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-VLM_50
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
869e681c21b495f79099d7b97438dbd7
- Run description: vital-language-model-based score
IRIT-VULMBuz_50_0.5T¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-VULMBuz_50_0.5T
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
738c4a40c2f5163e77f0c950bc509973
- Run description: detecting vitality using a bursty-new-dates score
IRIT-VULMBuz_50_0.7T¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-VULMBuz_50_0.7T
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
971a47d8408608313733975771dbf267
- Run description: detecting vitality using a bursty-new-dates score
IRIT-VULMBuzz_10¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-VULMBuzz_10
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
a0519cb2373d32144424f5d48a40f522
- Run description: bursty vital-or-relevance language model
IRIT-VULMBuzz_50¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: IRIT-VULMBuzz_50
- Participant: IRIT
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
4550c2722bd8e0f1ee82d1fd7a968dd6
- Run description: bursty vital-or-relevant language model
KobeU-ccr_03¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: KobeU-ccr_03
- Participant: KobeU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
947521b941a1799043e9773cea5302f0
- Run description: For the documents which are extracted in system_id 'exact_match', run following two phases of filtering. First, classify rating_level of document as relevant (vital or useful) if having low similarity with the irrelevant documents. Next, classify rating_level of document as vital if having low similarity with the model generated from the entity page text of wikipedia and vital documents.
KobeU-ccr_08¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: KobeU-ccr_08
- Participant: KobeU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
c6180d160f1a65384d12734876aa5f0c
- Run description: Opposite from system_id 'ccr_03', classify rating_level of document as vital if having 'high' similarity with the model generated from the entity page text of wikipedia and vital documents.
KobeU-exact_match¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: KobeU-exact_match
- Participant: KobeU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/5/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
e47a88c4bedac0adb6745a82834c63e6
- Run description: 'Wikipedia redirects' and 'canonical_name' are used as surface form names, then any document containing one of the surface form names is ranked vital. 'Wikipedia redirects' are got from enwiki-20120104-pages-articles.xml.xz.
LSIS-AF_NU_MCE¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: LSIS-AF_NU_MCE
- Participant: LSIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
f0ecde1698c642ca444916fffb38b696
- Run description: Use the scores of every classifiers GNvsUV, UvsV, VvsOthers, UvsOthers and Single to express a confidence score according to all of those outputs
LSIS-AF_NU_SE¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: LSIS-AF_NU_SE
- Participant: LSIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
81cf35ffbbd7ad33fb46c867c2220ed6
- Run description: Use score of a global classifier that choose between all four classes.
LSIS-AF_NU_TSE¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: LSIS-AF_NU_TSE
- Participant: LSIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
70464194095bd25611d6446ac2153ef2
- Run description: Use the score of two classifiers GnvsUV and UvsV. if UV from first classifier then choose class from UvsV output. Else set as garbage.
LSIS-AF_NU_VOE¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: LSIS-AF_NU_VOE
- Participant: LSIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
d813456ad27d52547db23073db6c1a36
- Run description: Use the score given by VitalvsOthers to determine whether a document is vital. Use SingleEvaluator otherwise.
LSIS-AF_UD_MCE¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: LSIS-AF_UD_MCE
- Participant: LSIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
699a9b4e7614e6b029b1b4c4e78edea6
- Run description: Use the scores of every classifiers GNvsUV, UvsV, VvsOthers, UvsOthers and Single to express a confidence score according to all of those outputs
LSIS-AF_UD_SE¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: LSIS-AF_UD_SE
- Participant: LSIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
61a52a37405663d8c9d993c0f340f789
- Run description: Use score of a global classifier that choose between all four classes.
LSIS-AF_UD_TSE¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: LSIS-AF_UD_TSE
- Participant: LSIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
e92f7f09049770c54fbee9c5317715e5
- Run description: Use the score of two classifiers GnvsUV and UvsV. if UV from first classifier then choose class from UvsV output. Else set as garbage.
LSIS-AF_UD_VOE¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: LSIS-AF_UD_VOE
- Participant: LSIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
2f0b1873ece99a9c6395508809ee9889
- Run description: Use the score given by VitalvsOthers to determine whether a document is vital. Use SingleEvaluator otherwise.
LSIS-AF_US_MCE¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: LSIS-AF_US_MCE
- Participant: LSIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
2d73c999d16bc30c710cccfa9fd6dc15
- Run description: Use the scores of every classifiers GNvsUV, UvsV, VvsOthers, UvsOthers and Single to express a confidence score according to all of those outputs
LSIS-AF_US_SE¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: LSIS-AF_US_SE
- Participant: LSIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
e3df0d0311e242753a87a4c6475795cd
- Run description: Use score of a global classifier that choose between all four classes.
LSIS-AF_US_TSE¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: LSIS-AF_US_TSE
- Participant: LSIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
e9e3ff008f3ec46ca6268d3035bf64ac
- Run description: Use the score of two classifiers GnvsUV and UvsV. if UV from first classifier then choose class from UvsV output. Else set as garbage.
LSIS-AF_US_VOE¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: LSIS-AF_US_VOE
- Participant: LSIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
7dd3ae3b2bf8dfe4528934b01b36dfc7
- Run description: Use the score given by VitalvsOthers to determine whether a document is vital. Use SingleEvaluator otherwise.
MSR_KMG-TR_P_All_GA¶
Participants
| Input
| Appendix
- Run ID: MSR_KMG-TR_P_All_GA
- Participant: MSR_KMG
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
7ff4190ed5a3ea9e3165dc25398093b5
- Run description: The docs are filtered by time range and event patterns, use all test docs, global adjusted, 0.95.
MSR_KMG-TR_P_All_GA_1¶
Participants
| Input
| Appendix
- Run ID: MSR_KMG-TR_P_All_GA_1
- Participant: MSR_KMG
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
c7b5dd01961bb285b52447c49df55665
- Run description: The docs are filtered by time range and event patterns, use all test docs, global adjusted, 0.95.
MSR_KMG-TR_Pattern_All¶
Participants
| Input
| Appendix
- Run ID: MSR_KMG-TR_Pattern_All
- Participant: MSR_KMG
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
e3812df9ad612509ddd131c98cc9082e
- Run description: The docs are filtered by time range and event patterns, use all test docs.
MSR_KMG-TR_PC_GA¶
Participants
| Input
| Appendix
- Run ID: MSR_KMG-TR_PC_GA
- Participant: MSR_KMG
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
1dc0991d1bab06bd4f35979360153089
- Run description: The docs are filtered by time range and event patterns (cleaned), new time feature, use all test docs, global adjusted, 0.95, cutoff=140.
MSR_KMG-TR_PC_GA_1¶
Participants
| Input
| Appendix
- Run ID: MSR_KMG-TR_PC_GA_1
- Participant: MSR_KMG
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
30824ff9660969423d1e79118ea8116a
- Run description: The docs are filtered by time range and event patterns (cleaned), new time feature, use all test docs, global adjusted, 0.95, cutoff=500.
MSR_KMG-TR_PC_GA_2¶
Participants
| Input
| Appendix
- Run ID: MSR_KMG-TR_PC_GA_2
- Participant: MSR_KMG
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
5b691707b81130d959f8d51d531aeef7
- Run description: The docs are filtered by time range and event patterns (cleaned+", left"), new time feature, use all test docs, global adjusted, 0.95, cutoff=140.
MSR_KMG-TR_PC_GA_3¶
Participants
| Input
| Appendix
- Run ID: MSR_KMG-TR_PC_GA_3
- Participant: MSR_KMG
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
5a9c3eed7d0d27fab11ba7e2dd16ec85
- Run description: The docs are filtered by time range and event patterns (cleaned+", left"), new time feature, use all test docs, global adjusted, 0.95, cutoff=500.
SCU-ssf_1¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_1
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
3b333c1eb7b160dd81f5677b83ad8337
- Run description: No filters, same score for all results
SCU-ssf_10¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_10
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
bf75b1570d11328f499c51bee331e88f
- Run description: Output all results for changing slots, majority results for non-changing slots, score on diff from min
SCU-ssf_11¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_11
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
a687b8eb2e75c4b596d3f60821295ba7
- Run description: No filters on all results, score on diff from min
SCU-ssf_12¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_12
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
a30b517fa07accd66458afe1d41ff316
- Run description: Output results of changing slots that has 70% of population, and top 1 for non-changing slots, score on diff from min
SCU-ssf_13¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_13
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
62922c81fb08e1e82479f0a47812e8d9
- Run description: Output results of changing slots that has 70% of population, and top 1 for non-changing slots, score on diff from min, relevant rating
SCU-ssf_14¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_14
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
b36bd0ce66befc967b1c793c2c1b8864
- Run description: Output results of changing slots that has 70% of population, and top 1 for non-changing slots, score on diff from min, relevant rating, with checking for multivalue slots
SCU-ssf_2¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_2
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
27caf0ea2f3789b97e39c54c08fb9aac
- Run description: No filters, same score for all results, added addtional slot
SCU-ssf_3¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_3
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
e99bdf19cdc3439558cd342c996f6cda
- Run description: Output all results for changing slots, majority results for non-changing slots
SCU-ssf_4¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_4
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
84ba7f53222e1bce8c29f78db37d74e0
- Run description: Output results of changing slots that has 80% of population, and top 1 for non-changing slots
SCU-ssf_5¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_5
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
30361ea6d01f836575f724d1aa44b9a2
- Run description: Output all results for changing slots, majority results for non-changing slots, score on percentage
SCU-ssf_6¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_6
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
0d499d9fc365368ae88466f1579118f7
- Run description: No filters on all results, score on percentage
SCU-ssf_7¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_7
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
6840d5ea87f78d2e1eada8426c0702dc
- Run description: Output results of changing slots that has 70% of population, and top 1 for non-changing slots, score on percentage
SCU-ssf_8¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_8
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
62e6d211de5d37f980803811ea01a575
- Run description: Output results of changing slots that has 70% of population, and top 1 for non-changing slots, score on percentage, relevant rating
SCU-ssf_9¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SCU-ssf_9
- Participant: SCU
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ssf-2014
- MD5:
f4756d9aec25f0d5159b5908b8b5b6da
- Run description: Output results of changing slots that has 70% of population, and top 1 for non-changing slots, score on percentage, relevant rating, with checking for multivalue slots
uiucGSLIS-baseline_rm3¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-baseline_rm3
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/27/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
8cab9fd9939343d7b1d2a918af9d2cd1
- Run description: Entity titles are used in 2-word unordered window for the initial query, RM3 query model from true vital training set, documents scored using KL-divergence retrieval model, threshold estimated using maximum empirical F1
uiucGSLIS-baseline_sf¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-baseline_sf
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/27/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
660f32f771d6bd5d3838ea8072b0f1dc
- Run description: Entity titles are used in 2-word unordered window for the initial query, documents scored using KL-divergence retrieval model, threshold estimated using maximum empirical F1
uiucGSLIS-length_rm3¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-length_rm3
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/29/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
68aa76da7ccbbc4e05acba690250c66b
- Run description: Entity titles are used in 2-word unordered window for the initial query, RM3 query model from high vital training qrels, documents scored using KL-divergence retrieval model, threshold estimated using maximum empirical F1, length prior
uiucGSLIS-length_sf¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-length_sf
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/29/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
20fb592261f684d8bfd80c1a9c42a6da
- Run description: Entity titles are used in 2-word unordered window for the initial query, documents scored using KL-divergence retrieval model, threshold estimated using maximum empirical F1, length prior
uiucGSLIS-pdsrc_rm3¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-pdsrc_rm3
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/29/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
393a3687424fd2c52e87ef7aa29c23a3
- Run description: Entity titles are used in 2-word unordered window for the initial query, RM3 query model from true vital training set, documents scored using KL-divergence retrieval model combined with previous docs and source scores, threshold estimated using maximum empirical F1
uiucGSLIS-pdsrc_sf¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-pdsrc_sf
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/29/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
b081b6a6140a39b66681d8d81f6fb2b3
- Run description: Entity titles are used in 2-word unordered window for the initial query, documents scored using KL-divergence retrieval model combined with previous docs and source scores, threshold estimated using maximum empirical F1
uiucGSLIS-pdverb_rm3¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-pdverb_rm3
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/29/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
f84c2500b07c85e4f2e3506c11c5e969
- Run description: Entity titles are used in 2-word unordered window for the initial query, RM3 query model from true vital training set, documents scored using KL-divergence retrieval model, score combined with previous number of documents and verb scores, threshold estimated using maximum empirical F1
uiucGSLIS-pdverb_sf¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-pdverb_sf
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/29/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
ccf8da9307d572a1eb2a19fd638cf565
- Run description: Entity titles are used in 2-word unordered window for the initial query, documents scored using KL-divergence retrieval model combined with previous docs and verb scores, threshold estimated using maximum empirical F1
uiucGSLIS-prevdocs_rm3¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-prevdocs_rm3
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/29/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
068bf2d046a83cfd6d7a22a809243ca0
- Run description: Entity titles are used in 2-word unordered window for the initial query, RM3 query model from true vital training set, documents scored using KL-divergence retrieval model combined with previous docs score, threshold estimated using maximum empirical F1
uiucGSLIS-prevdocs_sf¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-prevdocs_sf
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/29/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
c34d312a56b62cace8bf21a8fd39b649
- Run description: Entity titles are used in 2-word unordered window for the initial query, documents scored using KL-divergence retrieval model combined with previous docs score, threshold estimated using maximum empirical F1
uiucGSLIS-sourcelen_rm3¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-sourcelen_rm3
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/29/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
54e7811979a517ed032ace8ef86bcaf7
- Run description: Entity titles are used in 2-word unordered window for the initial query, RM3 query model from true vital training set, documents scored using KL-divergence retrieval model, score combined with source and length scores, threshold estimated using maximum empirical F1
uiucGSLIS-sourcelen_sf¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-sourcelen_sf
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/29/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
42c09ccc744551fa367d57a2cab891e1
- Run description: Entity titles are used in 2-word unordered window for the initial query, documents scored using KL-divergence retrieval model combined with source and length scores, threshold estimated using maximum empirical F1
uiucGSLIS-verbsource_rm3¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-verbsource_rm3
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/29/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
70f6f749d883f70103449de98f97f241
- Run description: Entity titles are used in 2-word unordered window for the initial query, RM3 query model from true vital training set, documents scored using KL-divergence retrieval model combined with verb and source scores, threshold estimated using maximum empirical F1
uiucGSLIS-verbsource_sf¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uiucGSLIS-verbsource_sf
- Participant: uiucGSLIS
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/29/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
dcf3850c5bacf1630a186b9b7297d118
- Run description: Entity titles are used in 2-word unordered window for the initial query, documents scored using KL-divergence retrieval model combined with verb model and source scores, threshold estimated using maximum empirical F1
UW-basic_multitask¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-basic_multitask
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/28/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
21e91f3ca4b858aa3777255c9d8afd6e
- Run description: Same as basic_single run but U-V classifier uses multitask learning. U-V trained with 25 + 25x71 features. Used doc-level and doc-entity features
UW-basic_single¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-basic_single
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/28/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
487bce4d12e36a5ca313b427298fd855
- Run description: Two GBT classifiers with 25 features each. First one predicts relevant and non-relevant. The same R-NR classifier is used in all runs. Second one, distinguishes between useful and vital. Used doc-level and doc-entity features
UW-clu_dyn_a08_g04¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-clu_dyn_a08_g04
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/4/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
9be6ec81e5f3847e700d047366523940
- Run description: Same as mean_stat run but setting alpha to 0.8 and gamma to 0.4. It uses clustering features for verbs and nouns. U-V classifier is an Extremely Randomized Tree ensemble. Used 150 weaker classifiers
UW-clu_dyn_nv_e¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-clu_dyn_nv_e
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
426c1de86c91d9d95bcc990ea3e2bddb
- Run description: Similar to clu_dyn_a08_g04 run. Setting alpha to 0.8, gamma decrease to 200 and gamma increase to 0.9. It uses clustering features for verbs and nouns with exponential decay and timeliness per entity. U-V classifier is an Extremely Randomized Tree ensemble. Used 150 weaker classifiers of depth 100
UW-clu_stat_a08¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-clu_stat_a08
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/2/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
342a9c86b42426fb1da739467f47c037
- Run description: Same as mean_stat run but setting alpha (threshold for cluster assignment) to 0.8. It uses clustering features for verbs and nouns. U-V classifier is an Extremely Randomized Tree ensemble. Gamma set to 1
UW-embedding_comb¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-embedding_comb
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/28/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
1b3904297b4fc3c150fbd643af52c042
- Run description: Same as basic_multitask run, but U-V classifier is trained with word embeddings computed with Google word2vec tool, using the pre-trained Google news dataset file, with the nouns and verbs that surround full or partial matches of the entities names
UW-embedding_pos¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-embedding_pos
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/28/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
06ac88b40aeca7cce8d9ad075f1b7ffe
- Run description: Same as embedding_combined run, but using two separate embeddings for nouns and verbs computed with Google word2vec tool
UW-f_basic_multi¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-f_basic_multi
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
1884f827352b6ee0f775803412be13b0
- Run description: Two extremely randomized classifiers in cascade. First predicts relevant/non-relevant docs. Second predicts useful/vital. Used 25 basic doc-level and doc-entity features but with multitask learning
UW-f_basic_single¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-f_basic_single
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
031503c6b0f5921cca3a8c6da2a1b492
- Run description: Two extremely randomized classifiers in cascade. First predicts relevant/non-relevant docs. Second predicts useful/vital. Used 25 basic doc-level and doc-entity features
UW-f_clust_dyn¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-f_clust_dyn
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
fc6c3feeaba3916090559670895c699d
- Run description: Two extremely randomized classifiers in cascade. First predicts relevant/non-relevant docs. Second predicts useful/vital. Used 25 basic doc-level and doc-entity features. Also used word embeddings computed with Google word2vec tool, using the pre-trained Google news dataset file, with the nouns, verbs and proper nouns that surround full matches of the entities names (one embedding per word type, i.e. one for nouns, one for verbs and one for proper nouns). Used clustering features. Alpha is set to 0.8. The decreasing gamma is set to 1, and the increasing gamma is set to 0.1. Alpha is the threshold between 0 and 1 used to decide cluster assignment. Gamma controls the increment/decrement factor of the timeliness feature
UW-f_clust_stat¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-f_clust_stat
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
cc7d10e19e29d0b0680e62bf4c10aa8f
- Run description: Two extremely randomized classifiers in cascade. First predicts relevant/non-relevant docs. Second predicts useful/vital. Used 25 basic doc-level and doc-entity features. Also used word embeddings computed with Google word2vec tool, using the pre-trained Google news dataset file, with the nouns, verbs and proper nouns that surround full matches of the entities names (one embedding per word type, i.e. one for nouns, one for verbs and one for proper nouns). Used clustering features. Alpha is set to 0.8. The decreasing gamma is set to 0, and the increasing gamma is set to 1. Alpha is the threshold between 0 and 1 used to decide cluster assignment. Gamma controls the increment/decrement factor of the timeliness feature
UW-f_emb_comb¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-f_emb_comb
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/10/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
539581d24409efab2f0d02fc766bf73b
- Run description: Two extremely randomized classifiers in cascade. First predicts relevant/non-relevant docs. Second predicts useful/vital. Used 25 basic doc-level and doc-entity features. Also used word embeddings computed with Google word2vec tool, using the pre-trained Google news dataset file, with the nouns, verbs and proper nouns that surround full matches of the entities names (all combined into a single embedding)
UW-f_emb_pos¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-f_emb_pos
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
6e073ddf1d0418b9cd28696f9154838f
- Run description: Two extremely randomized classifiers in cascade. First predicts relevant/non-relevant docs. Second predicts useful/vital. Used 25 basic doc-level and doc-entity features. Also used word embeddings computed with Google word2vec tool, using the pre-trained Google news dataset file, with the nouns, verbs and proper nouns that surround full matches of the entities names (one embedding per word type, i.e. one for nouns, one for verbs and one for proper nouns)
UW-f_mean_dyn¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-f_mean_dyn
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
ee1baa089bedc7cba9c36a525a5c772e
- Run description: Two extremely randomized classifiers in cascade. First predicts relevant/non-relevant docs. Second predicts useful/vital. Used 25 basic doc-level and doc-entity features. Also used word embeddings computed with Google word2vec tool, using the pre-trained Google news dataset file, with the nouns, verbs and proper nouns that surround full matches of the entities names (one embedding per word type, i.e. one for nouns, one for verbs and one for proper nouns). Used clustering features. Alpha is set to 1. The decreasing gamma is set to 1, and the increasing gamma is set to 0.1. Alpha is the threshold between 0 and 1 used to decide cluster assignment. Gamma controls the increment/decrement factor of the timeliness feature
UW-f_mean_stat¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-f_mean_stat
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/11/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
7b0a0bafdf153754fd36001ffabee377
- Run description: Two extremely randomized classifiers in cascade. First predicts relevant/non-relevant docs. Second predicts useful/vital. Used 25 basic doc-level and doc-entity features. Also used word embeddings computed with Google word2vec tool, using the pre-trained Google news dataset file, with the nouns, verbs and proper nouns that surround full matches of the entities names (one embedding per word type, i.e. one for nouns, one for verbs and one for proper nouns). Used clustering features. Alpha is set to 1. The decreasing gamma is set to 0, and the increasing gamma is set to 1. Alpha is the threshold between 0 and 1 used to decide cluster assignment. Gamma controls the increment/decrement factor of the timeliness feature
UW-mean_dyn_g06¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-mean_dyn_g06
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/4/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
dcea325e029372676051e3d7c77a366f
- Run description: Same as mean_stat run but setting gamma (timeliness feature increment/decrement factor) to 0.6. It uses clustering features for verbs and nouns. U-V classifier is an Extremely Randomized Tree ensemble. Alpha set to 1. Used 150 weaker classifiers for the ensemble
UW-mean_stat¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UW-mean_stat
- Participant: UW
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/2/2014
- Type: automatic
- Task: kba-ccr-2014
- MD5:
67a035a0a161443d05b415bcde6c6454
- Run description: Same as embedding_pos run but it also uses clustering features for verbs and nouns. U-V classifier is now an Extremely Randomized Tree ensemble. Both alpha (threshold for cluster assignment) and gamma (timeliness feature increment/decrement factor) are set to 1
WHU_IRGroup-baseline¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: WHU_IRGroup-baseline
- Participant: WHU_IRGroup
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 8/20/2014
- Type: manual
- Task: kba-ccr-2014
- MD5:
ff63c93aaf40b55095bb807787bd69d8
- Run description: this is only a demo system.
WHU_IRGroup-BM_TF¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: WHU_IRGroup-BM_TF
- Participant: WHU_IRGroup
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: manual
- Task: kba-ccr-2014
- MD5:
9d2702eee669a045cf2d5598cab62176
- Run description: This is the baseline system with BM temporal feature. BM temporal feature indicate the temporal feature used by BIT & MSRA in KBA 2013.
WHU_IRGroup-BM_TF_3¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: WHU_IRGroup-BM_TF_3
- Participant: WHU_IRGroup
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: manual
- Task: kba-ccr-2014
- MD5:
f1d3de9ab48a86c08c43de27eaee07be
- Run description: This is the baseline system with BM temporal feature. BM temporal feature indicate the temporal feature used by BIT & MSRA in KBA 2013.
WHU_IRGroup-CUSTOM_TF_FIXED¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: WHU_IRGroup-CUSTOM_TF_FIXED
- Participant: WHU_IRGroup
- Track: Knowledge Base Acceleration
- Year: 2014
- Submission: 9/9/2014
- Type: manual
- Task: kba-ccr-2014
- MD5:
ca7c40c79dbcb800f0d5b91025ef6d2c
- Run description: this is a system using our custom temporal features using fixed window size.