Runs - Temporal Summarization 2013¶
Baseline¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: Baseline
- Participant: hltcoe
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/4/2013
- Task: sus
- MD5:
71c54d3bc7fc5a3f20f6e955e0de593a
- Run description: Baseline: Filtering document by time interval, containing all query keywords, cosine similarity with event query and title larger than 0.2. Select sentence by considering: relevance to the query event, novelty compare to previously selected sentences, coverage of collected name entities from previously selected sentences, and check whether containing numbers.
BasePred¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: BasePred
- Participant: hltcoe
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/4/2013
- Task: sus
- MD5:
133d468921456909f2d542b4e3d340a2
- Run description: Baseline+Predicate coverage check. Upone baseline, add predicate check for sentence selector, where predicates are collected from previously selected sentences. Predicates are annotated by using Stanford NLP toolkit POS tagger, which uses a MaxEnt model trained with external resources.
cluster1¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: cluster1
- Participant: PRIS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
c361549a24f0b77b1c6548be1c88ac37
- Run description: Result based on KBA data
cluster2¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: cluster2
- Participant: PRIS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
2967e9e60e9f9840bcb1d2a2661d4eb5
- Run description: Result based on KBA data
cluster3¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: cluster3
- Participant: PRIS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
7453e9d10b908e62ad14e31378c97d44
- Run description: Result based on KBA data
cluster4¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: cluster4
- Participant: PRIS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
2aa11bb53fb83144980c659f2f05254b
- Run description: Result based on KBA data
cluster5¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: cluster5
- Participant: PRIS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/4/2013
- Task: sus
- MD5:
98019adf2f01808cb6f9ed360c3fd636
- Run description: only KBA corpus
CosineEgrep¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: CosineEgrep
- Participant: UWaterlooMDS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
8c3358f31af73c1a43ca0cb6261e9134
- Run description: Language Modelling with Dirichlet Priors to generate initial documents off of given queries. Run egrep over returned sentences of event type and synonyms. Take sentences returned from that and feed them into a cosine similarity metric based off of upper/lower case character counts and digit counts. Thus, similar sentences are similar to previously seen sentences. Performed on an hour by hour basis.
EXTERNAL¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: EXTERNAL
- Participant: hltcoe
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/4/2013
- Task: sus
- MD5:
65ee48ead23f506a81d21c8d7830b097
- Run description: Baseline+Predicate checking+Wikipedia query expansion. Given a query event, find relevant wikipedia pages, and collect predicates as the initial predicates to describe events
NormEgrep¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: NormEgrep
- Participant: UWaterlooMDS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
4edf3619bea8fd2b3d05dbcb7545b274
- Run description: Language Modelling with Dirichlet Priors to generate initial documents off of given queries. Run egrep over returned sentences of event type and synonyms. Take sentences returned from that and feed them into a Euclidean norm based similarity metric using upper/lower case character counts and digit counts. Thus, similar sentences are similar to previously seen sentences. Performed on an hour by hour basis.
PRISTS1¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: PRISTS1
- Participant: PRIS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/4/2013
- Task: vt
- MD5:
e7187ffb0e2238f9d1864acc838bd2f3
- Run description: event 1,6and10 data source is KBA,no external training data.
PRISTS2¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: PRISTS2
- Participant: PRIS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/4/2013
- Task: vt
- MD5:
f6ede41e53765d5dbfe511cd3eecb856
- Run description: event 1,2,3,4,5,6,8,9,10 data source is KBA,no external training data.
PRISTS3¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: PRISTS3
- Participant: PRIS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/4/2013
- Task: vt
- MD5:
f59dc7b6cbcd307a1c212f4f73e04cf3
- Run description: total events except for 7
Q0¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: Q0
- Participant: BJUT
- Track: Temporal Summarization
- Year: 2013
- Submission: 8/17/2013
- Task: sus
- MD5:
5a25b5760e52fba1e738f6ee5826b70a
- Run description: In this run,we use KBA corpus
Q1¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: Q1
- Participant: BJUT
- Track: Temporal Summarization
- Year: 2013
- Submission: 8/17/2013
- Task: vt
- MD5:
b9dcbcfc5d3112771268fb4f9fed1d95
- Run description: In this run,we use KBA corpus
Q2¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: Q2
- Participant: BJUT
- Track: Temporal Summarization
- Year: 2013
- Submission: 8/21/2013
- Task: sus
- MD5:
e49b177a11ead786c668d9367a0afe68
- Run description: We use KBA corpus in this run
rg1¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: rg1
- Participant: UWaterlooMDS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
7e6073adb49bd9cd82939463a50c7dce
- Run description: NA
rg2¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: rg2
- Participant: UWaterlooMDS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
519c5bf302a8fec4254a2efd397f467c
- Run description: NA
rg3¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: rg3
- Participant: UWaterlooMDS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
6d6721908b23797abb9ae0f7db7ae833
- Run description: NA
rg4¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: rg4
- Participant: UWaterlooMDS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
97374d245dc519b334106205dd74cba8
- Run description: NA
run1¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: run1
- Participant: ICTNET
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/4/2013
- Task: sus
- MD5:
cd7993a5fd764d0e4f2f050842564b4e
- Run description: we used the "KBA 2013 english-and-unknown-language streamcorpus", which is from October 2011 to February 2013.
run2¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: run2
- Participant: ICTNET
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/4/2013
- Task: sus
- MD5:
0df5c63047523f1ec566a934f61c46a9
- Run description: we used the "KBA 2013 english-and-unknown-language streamcorpus", which is from October 2011 to February 2013.
SUS1¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: SUS1
- Participant: wim_GY_2013
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/1/2013
- Task: sus
- MD5:
44ebc9fbc28fd5038c23acf0d0b8711e
- Run description: We come from the Zhengzhou Information Science and Technology Institute. This is the first run we provide for the Sequential Update Summarization in TS2013. The Run selects summary sentences according to the content of the documents.
TuneBasePred2¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: TuneBasePred2
- Participant: hltcoe
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/5/2013
- Task: sus
- MD5:
31ab80fef0c00c76beece3fc2f801dd5
- Run description: Filtering document by time interval and cosine similarity to the query topic Select sentence by considering relevance to the topic, novelty with previously seen sentences, coverage of previously seen event major name entities and predicates, and whether containing numbers. Predicates are annotated by using Stanford NLP toolkit, which the POS tagger is using a model trained with external resource.
TuneExternal2¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: TuneExternal2
- Participant: hltcoe
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/5/2013
- Task: sus
- MD5:
0ba27b7a98be529b3d13ce70c4b16c94
- Run description: Based on TuneBasePred run, use top relevant Wikipedia pages to initialize predicates for a query event. When calculate cosine similarity, use tf-idf as term weight, where Google idfs data is used.
uogTrEMMQ2¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uogTrEMMQ2
- Participant: uogTr
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/4/2013
- Task: sus
- MD5:
c5245341a428fd4df37ef8bec17e47bc
- Run description: Summary by hour, query focussed summary. Topic query expanded via external time-aligned corpora (wordnet & wikipedia). Ranking sentences by similarity to expanded query, summary selection considering redundancy and diversity.
uogTrNMM¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uogTrNMM
- Participant: uogTr
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
216e630eeef562e09ee4fa40ada3df56
- Run description: By hour summarisation from the English KBA corpus only. Selects one or more query-focued sentences per document, considering novelty and redundancy.
uogTrNMTm1MM3¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uogTrNMTm1MM3
- Participant: uogTr
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/4/2013
- Task: sus
- MD5:
d7c5cf9bd19f05c7667fe999939a7a99
- Run description: Summary by hour, ranking sentences by query, selection considering redundancy and diversity. Summary length over time adapted via topic modelling.
uogTrNMTm3FMM4¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uogTrNMTm3FMM4
- Participant: uogTr
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/4/2013
- Task: sus
- MD5:
653fd89abcd8bbf1764e654737414518
- Run description: Summary by hour, ranking sentences by query, summary selection considering redundancy and diversity. Sentences are adaptively selected using topic modelling and then filtered by their confidence value.
uogTrNSQ1¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: uogTrNSQ1
- Participant: uogTr
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
b92f4e4b6a9fcc0f38b7283b908f1442
- Run description: By hour summarisation from the English KBA corpus only. Ranks and then selects top sentences based upon the query and considers redundancy.
UWMDSqlec2t25¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UWMDSqlec2t25
- Participant: UWaterlooMDS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
413e8a20077b9cbc3c8ef285d6df9f8c
- Run description: Used LMD and Query Expansion with 25 expansion terms
UWMDSqlec4t50¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: UWMDSqlec4t50
- Participant: UWaterlooMDS
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: sus
- MD5:
de962e5d22124059ca68c0c6796a9c0e
- Run description: Used LMD and Query Expansion with 50 expansion terms
ValueTask¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: ValueTask
- Participant: ICTNET
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/4/2013
- Task: vt
- MD5:
98e3b4cf32996cecd32444138fa9733e
- Run description: we used the "KBA 2013 english-and-unknown-language streamcorpus", which is from October 2011 to February 2013.
VT1¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: VT1
- Participant: wim_GY_2013
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/1/2013
- Task: vt
- MD5:
e5814d7eaf45fe97b4d133aff0fe09fa
- Run description: We come from the Zhengzhou Information Science and Technology Institute. This is the first run we provide for the Vaule Tracking in TS2013. The run extracts the attribute values according to hand-coded rules.
VT2¶
Participants
| Proceedings
| Input
| Appendix
- Run ID: VT2
- Participant: wim_GY_2013
- Track: Temporal Summarization
- Year: 2013
- Submission: 9/3/2013
- Task: vt
- MD5:
5503dcdf41e65a143f0b3a89db17cdc4
- Run description: We come from Zhengzhou Information Science and Technology Institute. This is the second run we submit for the Vaule Tracking in TS2013. The run extracts the attribute values according to hand-coded rules with the help of CoreNLP.