Skip to content

Runs - Knowledge Base Acceleration 2013

BIT-ECQ

Participants | Proceedings | Input | Appendix

  • Run ID: BIT-ECQ
  • Participant: BIT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/27/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 675d456d0f41ef6700c60614e19afb5d
  • Run description: Entity and Redirect Pages'names(Wikipedia) or Display name in profile page (Twitter), query expansion with entites extraced from the wikipedia page content and existing citation artices, retrieve the documents from index and scaled the ranking score to (0,1000], ECQ means EntityCentricQuery

BIT-ECQUpdate

Participants | Proceedings | Input | Appendix

  • Run ID: BIT-ECQUpdate
  • Participant: BIT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/4/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: e1ae743784d01eac19cd6c7f74d24566
  • Run description: Update of basic ECQ query mehod, enrich citations for twitter entities. Entity and Redirect Pages'names(Wikipedia) or Display name in profile page (Twitter), query expansion with entites extraced from the wikipedia page content and existing citation artices, retrieve the documents from index and scaled the ranking score to (0,1000], ECQ means EntityCentricQuery

BIT-RFBurst

Participants | Proceedings | Input | Appendix

  • Run ID: BIT-RFBurst
  • Participant: BIT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 636305bd76f5da49b6ae0dc028d92c74
  • Run description: Add wikipedia view count busrt as a feature in Random Forest ranking method, more prone to Vital classification, train a uniform model for both wiki and twitter entity.

BIT-RFBurst_1

Participants | Proceedings | Input | Appendix

  • Run ID: BIT-RFBurst_1
  • Participant: BIT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 77e3a5b769c3cfec3176e1a9c8901d79
  • Run description: same as RFBust, while using kba2012 data as training data, Random Forest ranking method, train a gerneral model for all entities.

BIT-RFClassLoose

Participants | Proceedings | Input | Appendix

  • Run ID: BIT-RFClassLoose
  • Participant: BIT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/4/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 2e8fafe9f897c4053f00c48f477a5185
  • Run description: Random Forest classification method, train a uniform model for both wiki and twitter entity.

BIT-RFClassStrict

Participants | Proceedings | Input | Appendix

  • Run ID: BIT-RFClassStrict
  • Participant: BIT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/4/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 3f958c9a501955318f422c716f362392
  • Run description: Random Forest classification method, more prone to Vital classification, train a uniform model for both wiki and twitter entity.

BIT-RFDiffModel

Participants | Proceedings | Input | Appendix

  • Run ID: BIT-RFDiffModel
  • Participant: BIT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: fee66b19083463809069d97b3f720dba
  • Run description: Train two different models for Twitter and Wikipeida entities respectively. Using Random Forest ranking method, default setting in ranklib

BIT-RFMultiModel

Participants | Proceedings | Input | Appendix

  • Run ID: BIT-RFMultiModel
  • Participant: BIT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 24267dcd693576f8a8c64c680c38ac6e
  • Run description: Random Forest ranking method, more prone to Vital classification, train a independant model for each entity.

BIT-RFMultiModel_1

Participants | Proceedings | Input | Appendix

  • Run ID: BIT-RFMultiModel_1
  • Participant: BIT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: a754ed31f8badbe32534a2a89e053764
  • Run description: same as RFMultiModel, Tuned parameters, Random Forest ranking method, more prone to Vital classification, train a independant model for each entity.

BIT-RFRankUniModel

Participants | Proceedings | Input | Appendix

  • Run ID: BIT-RFRankUniModel
  • Participant: BIT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/4/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 001ff40de66799dce3979e263405ec81
  • Run description: Random Forest Ranking method, train a uniform model for both wiki and twitter entity.

CompInsights-ccr_baseline_1

Participants | Input | Appendix

  • Run ID: CompInsights-ccr_baseline_1
  • Participant: CompInsights
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/11/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: da7cfaef0b2a1bc02031c4760928e6a2
  • Run description: Entity title strings, redirects, and hand-constructed names provided high-recall filter of 22M StreamItems, then any document containing one of the surface form names is ranked vital with confidence proportional to length of surface form name.

CompInsights-ssf_baseline_1

Participants | Input | Appendix

  • Run ID: CompInsights-ssf_baseline_1
  • Participant: CompInsights
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/11/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: fec53338adabdc81a2bf861e37e99b72
  • Run description: Entity title strings, redirects, and hand-constructed names provided high-recall filter of 22M StreamItems, then any document containing one of the surface form names is ranked vital with confidence proportional to length of surface form name, and the longest sentence containing the longest surface form name is treated as a slot fill for all slot types for the given entity type.

CWI-J48_1213_13

Participants | Proceedings | Input | Appendix

  • Run ID: CWI-J48_1213_13
  • Participant: CWI
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 6023dc1f7cb181bb21c64ea403f67ef3
  • Run description: We have used a two-step approach. Step one uses Wikipedia name variants to filter documents and extract features. In step two, we use J48 as a classification algorithm. We have used kba2012 plus kba 2013 annotation for training Features used were googcle-cross-lingual dictionary, Jaccrd similarity, Cosine similarity, KL-divergence, PageRnk scores, Right and Left context, first and last mention positions .

CWI-J48_12_13

Participants | Proceedings | Input | Appendix

  • Run ID: CWI-J48_12_13
  • Participant: CWI
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 8c537f5fd33be012cf66347af812246c
  • Run description: We have used a two-step approach. Step one uses Wikipedia name variants to filter documents and extract features. In step two, we use J48 as a classification algorithm. We have used kba2012 annotation for training Features used were googcle-cross-lingual dictionary, Jaccrd similarity, Cosine similarity, KL-divergence, PageRnk scores, Right and Left context, first and last mention positions .

CWI-J48_13_13

Participants | Proceedings | Input | Appendix

  • Run ID: CWI-J48_13_13
  • Participant: CWI
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 382032e20f2d18e88bd1b6cd977066e9
  • Run description: We have used a two-step approach. Step one uses Wikipedia name variants to filter documents and extract features. In step two, we use J48 as a classification algorithm. We have used kba2013 annotation for training Features used were googcle-cross-lingual dictionary, Jaccrd similarity, Cosine similarity, KL-divergence, PageRnk scores, Right and Left context, first and last mention positions .

CWI-RM_all_1213_13

Participants | Proceedings | Input | Appendix

  • Run ID: CWI-RM_all_1213_13
  • Participant: CWI
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 25e58c0fe450f70ef7391d5082632a10
  • Run description: We have used a two-step approach. Step one uses Wikipedia name variants to filter documents and extract features. In step two, we use Random Forest as a classification algorithm. We have used kba2012 plus kba 2013 annotation for training Features used were googcle-cross-lingual dictionary, Jaccard similarity, Cosine similarity, KL-divergence, PageRnk scores, Right and Left context, first and last mention positions, body length, first pos form, mentioning body and some more features.

CWI-RM_all_12_13

Participants | Proceedings | Input | Appendix

  • Run ID: CWI-RM_all_12_13
  • Participant: CWI
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 53b8e6e4fa97f608342f0d7d1643aded
  • Run description: We have used a two-step approach. Step one uses Wikipedia name variants to filter documents and extract features. In step two, we use Random Forest as a classification algorithm. We have used annotation for training Features used were googcle-cross-lingual dictionary, Jaccard similarity, Cosine similarity, KL-divergence, PageRnk scores, Right and Left context, first and last mention positions, body length, first pos form, mentioning body and some more features.

CWI-RM_all_13_13

Participants | Proceedings | Input | Appendix

  • Run ID: CWI-RM_all_13_13
  • Participant: CWI
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 67d0fb786aaf3a450da2249ec1eb62c4
  • Run description: We have used a two-step approach. Step one uses Wikipedia name variants to filter documents and extract features. In step two, we use Random Forest as a classification algorithm. We have used kba2013 annotation for training. Features used were googcle-cross-lingual dictionary, Jaccard similarity, Cosine similarity, KL-divergence, PageRnk scores, Right and Left context, first and last mention positions, body length, first pos form, mentioning body and some more features.

CWI-RM_FPN_1213_13

Participants | Proceedings | Input | Appendix

  • Run ID: CWI-RM_FPN_1213_13
  • Participant: CWI
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: ce86118b0ba593b7bb8bcd31d23a5b82
  • Run description: We have used a two-step approach. Step one uses Wikipedia name variants to filter documents and extract features. In step two, we use Random Forest as a classification algorithm. We have used kba2012 plus kba 2013 annotation for training Features used were googcle-cross-lingual dictionary, Jaccrd similarity, Cosine similarity, KL-divergence, PageRnk scores, Right and Left context, first and last mention positions, body length, first pos form, .

CWI-RM_FPN_12_13

Participants | Proceedings | Input | Appendix

  • Run ID: CWI-RM_FPN_12_13
  • Participant: CWI
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 7875e1ab4ff92ce7d1291f1c2e39c7b9
  • Run description: We have used a two-step approach. Step one uses Wikipedia name variants to filter documents and extract features. In step two, we use Random Forest as a classification algorithm. We have used kba2012 annotation for training Features used were googcle-cross-lingual dictionary, Jaccrd similarity, Cosine similarity, KL-divergence, PageRnk scores, Right and Left context, first and last mention positions, body length, first pos form, .

CWI-RM_FPN_13_13

Participants | Proceedings | Input | Appendix

  • Run ID: CWI-RM_FPN_13_13
  • Participant: CWI
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: a38abfd49883225dcb724ac086251aa8
  • Run description: We have used a two-step approach. Step one uses Wikipedia name variants to filter documents and extract features. In step two, we use Random Forest as a classification algorithm. We have used kba2013 annotation for training. Features used were googcle-cross-lingual dictionary, Jaccrd similarity, Cosine similarity, KL-divergence, PageRnk scores, Right and Left context, first and last mention positions, body length, first pos form, .

CWI-RM_MB_1213_13

Participants | Proceedings | Input | Appendix

  • Run ID: CWI-RM_MB_1213_13
  • Participant: CWI
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: e32eae0f5f5c06858b4c2f1036961175
  • Run description: We have used a two-step approach. Step one uses Wikipedia name variants to filter documents and extract features. In step two, we use Random Forest as a classification algorithm. We have used kba2012 plus kba 2013 annotation for training Features used were googcle-cross-lingual dictionary, Jaccrd similarity, Cosine similarity, KL-divergence, PageRnk scores, Right and Left context, first and last mention positions, body length, first pos form, mentioning body.

CWI-RM_MB_12_13

Participants | Proceedings | Input | Appendix

  • Run ID: CWI-RM_MB_12_13
  • Participant: CWI
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 54a9d36c4843624955fc1961edc5e54b
  • Run description: We have used a two-step approach. Step one uses Wikipedia name variants to filter documents and extract features. In step two, we use Random Forest as a classification algorithm. We have used kba2012 annotation for training Features used were googcle-cross-lingual dictionary, Jaccrd similarity, Cosine similarity, KL-divergence, PageRnk scores, Right and Left context, first and last mention positions, body length, first pos form, mentioning body.

CWI-RM_MB_13_13

Participants | Proceedings | Input | Appendix

  • Run ID: CWI-RM_MB_13_13
  • Participant: CWI
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: cdeade4dead462d3b443cef59e69eb2e
  • Run description: We have used a two-step approach. Step one uses Wikipedia name variants to filter documents and extract features. In step two, we use Random Forest as a classification algorithm. We have used kba2013 annotation for training. Features used were googcle-cross-lingual dictionary, Jaccrd similarity, Cosine similarity, KL-divergence, PageRnk scores, Right and Left context, first and last mention positions, body length, first pos form, mentioning body.

gatordsr-gatordsr_final

Participants | Proceedings | Input | Appendix

  • Run ID: gatordsr-gatordsr_final
  • Participant: gatordsr
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/1/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 0cf9b1e88dff1d833a5a2e3eece24507
  • Run description: Document extraction using query entity matching with aliases, sentence extraction using alias matching and coreference. Slot extraction using patterns, NER tags and NP tags. 158,052 documents with query entities, 30,326 unique extracted slot values for 8 slots and 146 entities, 4 slots and 24 entities missing.

gatordsr-gatordsr_infer

Participants | Proceedings | Input | Appendix

  • Run ID: gatordsr-gatordsr_infer
  • Participant: gatordsr
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/4/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: db23439af6013c7d5f79f5cf0e7a148d
  • Run description: Document extraction using query entity matching with aliases, sentence extraction using alias matching and coreference. Slot extraction using patterns, NER tags and NP tags. 158,052 documents with query entities, 168,006 unique extracted slot values for 12 slots and 141 entities, 1 slots and 29 entities missing.

gatordsr-gatordsr_new

Participants | Proceedings | Input | Appendix

  • Run ID: gatordsr-gatordsr_new
  • Participant: gatordsr
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/12/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 0099ecd0d71d72546f42c5f6ed1e676f
  • Run description: Document extraction using query entity matching with aliases, sentence extraction using alias matching and co-reference. Slot extraction using patterns, NER tags and NP tags. 158,052 documents with query entities, 17885 unique extracted slot values for 8 slots and 139 entities, 4 slots and 31 entities missing.

IRIT-sig_irit_1

Participants | Proceedings | Input | Appendix

  • Run ID: IRIT-sig_irit_1
  • Participant: IRIT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 1e5d3b824416479fb5eac54ceb7cc7b7
  • Run description: Entity title and some predicates values from DBpedia are used as as surface form names, then any document containing one of the surface form names is keeped using lucene, then extracted some properties of vital documents from the given training data, and finally, extract these properties from all documents and apply a supervised classifer RandomForest

IRIT-sig_irit_2

Participants | Proceedings | Input | Appendix

  • Run ID: IRIT-sig_irit_2
  • Participant: IRIT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: e3fa1b2ff44fdb36f4b79810a9465af0
  • Run description: Entity title and some predicates values from DBpedia are used as surface form names, then any document containing one of the surface form names is keeped using lucene, then we extracted some properties of vital documents from the given training data, and finally, extract these properties from all documents and apply a supervised classifer RandomForest

IRIT-sig_irit_3

Participants | Proceedings | Input | Appendix

  • Run ID: IRIT-sig_irit_3
  • Participant: IRIT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: f2358d57c57c7629876efab3bddb08b5
  • Run description: Entity title and some predicates values from DBpedia are used as surface form names, then any document containing one of the surface form names is keeped using lucene, then we extracted some properties of vital documents from the given training data, and finally, extract these properties from all documents and apply a supervised classifer RandomForest

LSIS_LIA-no_update_S4

Participants | Proceedings | Input | Appendix

  • Run ID: LSIS_LIA-no_update_S4
  • Participant: LSIS_LIA
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: b45fef02abaa803191d7230e218642e3
  • Run description: S4 Classifier Score = S_c1 if S_c1 < 0.5; Score = 0.5+ (S_c1*S_c2)/2 else; The class [Garbage < 0.25; 0.25 <= Neutral < 0.5; 0.5 <= Useful < 0.75; vital >= 0.75] is based on Score

LSIS_LIA-no_update_S4_2

Participants | Proceedings | Input | Appendix

  • Run ID: LSIS_LIA-no_update_S4_2
  • Participant: LSIS_LIA
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: c16134c8e94a6bc050a6533de700e64b
  • Run description: S4Bis Classifier Score = S_c1 if S_c1 < 0.5; Score = 0.5+ (S_c1*S_c2)/2 else; The class [Garbage < 0.5; 0.5 <= Neutral] for S_c1 [Useful < 0.5; 0.5 <= vital] for S_c2

LSIS_LIA-no_update_S4_3

Participants | Proceedings | Input | Appendix

  • Run ID: LSIS_LIA-no_update_S4_3
  • Participant: LSIS_LIA
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 29ecfb16346fada0e68d9a0df211e04a
  • Run description: S4Tris Classifier Score = S_c1 if S_c1 < 0.5; Score = 0.5+ (S_c2)/2 else; The class [Garbage < 0.5; 0.5 <= Neutral] for S_c1 [Useful < 0.5; 0.5 <= vital] for S_c2

LSIS_LIA-upd_doc_S4_2

Participants | Proceedings | Input | Appendix

  • Run ID: LSIS_LIA-upd_doc_S4_2
  • Participant: LSIS_LIA
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: f4293ebb6af153121a3f39a9b7dc1b24
  • Run description: S4Bis Classifier Score = S_c1 if S_c1 < 0.5; Score = 0.5+ (S_c1*S_c2)/2 else; The class [Garbage < 0.5; 0.5 <= Neutral] for S_c1 [Useful < 0.5; 0.5 <= vital] for S_c2

LSIS_LIA-upd_doc_S4_3

Participants | Proceedings | Input | Appendix

  • Run ID: LSIS_LIA-upd_doc_S4_3
  • Participant: LSIS_LIA
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: b467d174957c0498062860919a1c18fd
  • Run description: S4Tris Classifier Score = S_c1 if S_c1 < 0.5; Score = 0.5+ (S_c2)/2 else; The class [Garbage < 0.5; 0.5 <= Neutral] for S_c1 [Useful < 0.5; 0.5 <= vital] for S_c2

LSIS_LIA-upd_document_S4

Participants | Proceedings | Input | Appendix

  • Run ID: LSIS_LIA-upd_document_S4
  • Participant: LSIS_LIA
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 9b78bea710cccb7bef01d655c43fa1d3
  • Run description: S4 Classifier Score = S_c1 if S_c1 < 0.5; Score = 0.5+ (S_c1*S_c2)/2 else; The class [Garbage < 0.25; 0.25 <= Neutral < 0.5; 0.5 <= Useful < 0.75; vital >= 0.75] is based on Score

LSIS_LIA-upd_snippet_S4

Participants | Proceedings | Input | Appendix

  • Run ID: LSIS_LIA-upd_snippet_S4
  • Participant: LSIS_LIA
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: fa363daa9bce46da67cd29cbced975a5
  • Run description: S4 Classifier Score = S_c1 if S_c1 < 0.5; Score = 0.5+ (S_c1*S_c2)/2 else; The class [Garbage < 0.25; 0.25 <= Neutral < 0.5; 0.5 <= Useful < 0.75; vital >= 0.75] is based on Score

LSIS_LIA-upd_snpt_S4_2

Participants | Proceedings | Input | Appendix

  • Run ID: LSIS_LIA-upd_snpt_S4_2
  • Participant: LSIS_LIA
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 58451d032753a61e97cf27776ff01bee
  • Run description: S4Bis Classifier Score = S_c1 if S_c1 < 0.5; Score = 0.5+ (S_c1*S_c2)/2 else; The class [Garbage < 0.5; 0.5 <= Neutral] for S_c1 [Useful < 0.5; 0.5 <= vital] for S_c2

LSIS_LIA-upd_snpt_S4_3

Participants | Proceedings | Input | Appendix

  • Run ID: LSIS_LIA-upd_snpt_S4_3
  • Participant: LSIS_LIA
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 49e80b87cbeef8ec15e9ea6091a7ff32
  • Run description: S4Tris Classifier Score = S_c1 if S_c1 < 0.5; Score = 0.5+ (S_c2)/2 else; The class [Garbage < 0.5; 0.5 <= Neutral] for S_c1 [Useful < 0.5; 0.5 <= vital] for S_c2

PRIS-pris0

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris0
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/12/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 38b44e117b676a65ffacab40669b3b7f
  • Run description: look for relative documents in elastcsearch index with exact entity name and alias as final results,set all the confidence score 1000

PRIS-pris1

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris1
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/12/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 1829c08591d53c4125e34cab10509f28
  • Run description: looks for relative documents in elastcsearch index with entity name, alias and query expansion wordsas search results. choose wiki page of each entity,turn it in to bag of words and select documents from seach results that has more than 10% words of the bag as final results

PRIS-pris2

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris2
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/12/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 826f57c1ac70ef2dc78fc8e0dee42d64
  • Run description: looks for relative documents in elastcsearch index with entity name, alias and query expansion wordsas search results. choose at least 10 key words of each entity and select documents from seach results that has more than 60% key words of the set as final results

PRIS-pris3

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris3
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/12/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 6f761c2b582bfdc4931b2742fd85a01f
  • Run description: looks for relative documents in elastcsearch index with entity name, alias and query expansion words as search results. choose documents both in pris1 run and pris2 run

PRIS-pris_baseline

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris_baseline
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/2/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: bff860824ee37b2da4bd2f5c2accf80d
  • Run description: look for relative documents in elastcsearch index with exact entity name and alias as final results,set all the confidence score 1000

PRIS-pris_expansion

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris_expansion
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/2/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 4ad4862ca560eb21fe1331ee6c1fcf45
  • Run description: expanded words are from training data about 3000+ documents relevant to each most entity and also wikipedia pages; choose almost 100 key words of each entity and select documents from seach results according to the expansion score

PRIS-pris_keywords

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris_keywords
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/2/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 2ff296baf1e93e5b95128f7c2f606880
  • Run description: looks for relative documents in elastcsearch index with entity name, alias and query expansion wordsas search results. choose at least 10 key words of each entity and select documents from seach results that has more than 60% key words of the set as final results

PRIS-pris_merge

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris_merge
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/2/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: cfe4754a0dace9f2dd4e11faf5ff815e
  • Run description: looks for relative documents in elastcsearch index with entity name, alias and query expansion words as search results. choose documents both in pris1 run and pris2 run

PRIS-pris_similarity

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris_similarity
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/2/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 906246e878ff03e05df72585cca14a15
  • Run description: looks for relative documents in elastcsearch index with entity name, alias and query expansion wordsas search results. choose wiki page of each entity,turn it in to bag of words and select documents from seach results that has more than 10% words of the bag as final results

PRIS-pris_ssf_0

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris_ssf_0
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/12/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: b2d8b80568e05fc3d1cc58649aea5f32
  • Run description: a distributed system builds the index of big data ,deals with information retrieval and fills slots with pre-trained patterns

PRIS-pris_ssf_1

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris_ssf_1
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/12/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 5aebc48079448b429371a89d2fd91ca6
  • Run description: a distributed system builds the index of big data ,deals with information retrieval and fills slots with pre-trained patterns

PRIS-pris_ssf_2

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris_ssf_2
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/13/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: f1a3c62a093140fb7c3bbd7cbfa88403
  • Run description: a distributed system builds the index of big data ,deals with information retrieval and fills slots with pre-trained patterns

PRIS-pris_ssf_fst

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris_ssf_fst
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 37abfa4e759790f1a528cd56d7c797fc
  • Run description: a distributed system builds the index of big data ,deals with information retrieval and fills slots with pre-trained patterns

PRIS-pris_ssf_second

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris_ssf_second
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 92c4cde2647b789e14a6c322861dba16
  • Run description: distributed system builds the index of big data ,deals with information retrieval and fills slots with pre-trained patterns

PRIS-pris_svd

Participants | Proceedings | Input | Appendix

  • Run ID: PRIS-pris_svd
  • Participant: PRIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/3/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: eecc4679f97ab3ac841145ffc75bedd9
  • Run description: taking all search-related documents into term-document matrix and modeling a lsi model; taking the certain wikipedia page as query to search query-related documents in the model.

RetrieWin-Submission_2

Participants | Input | Appendix

  • Run ID: RetrieWin-Submission_2
  • Participant: RetrieWin
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/12/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: cc6254c60e3268ffecc96f7a1c6833a4
  • Run description: Collapses entity title strings and documents into sets of words and looks for fraction of exact match overlap with entity titles. Confidence is fraction of entity title words that appear in doc.

SCU-ssf_1

Participants | Proceedings | Input | Appendix

  • Run ID: SCU-ssf_1
  • Participant: SCU
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/13/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 4e0b10f5a6b051393b211bb65ac86544
  • Run description: Filter exact match, no duplicate doc id, remove negative relevance rating, byte range from clean visible

SCU-ssf_2

Participants | Proceedings | Input | Appendix

  • Run ID: SCU-ssf_2
  • Participant: SCU
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/13/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 247b8504d4c855604d175532f3f0ca7c
  • Run description: Filter exact match, no duplicate doc id, keep all relevance rating, byte range from clean visible

SCU-ssf_3

Participants | Proceedings | Input | Appendix

  • Run ID: SCU-ssf_3
  • Participant: SCU
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/4/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: dda802675163674b5cbad0177a2ffdaa
  • Run description: Keep confidence score, force relevance rating to 2, byte range from clean visible

SCU-ssf_4

Participants | Proceedings | Input | Appendix

  • Run ID: SCU-ssf_4
  • Participant: SCU
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/4/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 4928472e3f94ff7974f2d9e94139b26b
  • Run description: scale confidence score to the range 800-1000 for certain slots, keep all output

SCU-ssf_5

Participants | Proceedings | Input | Appendix

  • Run ID: SCU-ssf_5
  • Participant: SCU
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: c186202d3a35bc43e7623780292218f5
  • Run description: map confidence score to 400-1000, keep greater or equal 500

UAmsterdam-bl_na_wChis_c1

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-bl_na_wChis_c1
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 335b29ed42dd3693c0d62a58e08a80cb
  • Run description: Settings file settings_wChis_linear_5_100_100_conf1, bDirichletNB_Tchi True, iNrOfBuckets 100, sTimeBucketUnit examples, iTimeBucketLength 100, fConfidenceThreshold -100, bNoNewFeatureSelection True, sConfidenceScore confidence1, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-bl_na_wChis_c3

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-bl_na_wChis_c3
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 38af12b6ad76f69e54d7941b4bbf7780
  • Run description: Settings file settings_wChis_linear_5_100_100_conf3, bDirichletNB_Tchi True, iNrOfBuckets 100, sTimeBucketUnit examples, iTimeBucketLength 100, fConfidenceThreshold -100, bNoNewFeatureSelection True, sConfidenceScore confidence3, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-bl_na_wConcs_c1

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-bl_na_wConcs_c1
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: f69f58d09c13df9fd31a56b75a42cbbe
  • Run description: Settings file settings_wConcs_linear_5_100_100_conf1, bDirichletNB_Tchi True, iNrOfBuckets 100, sTimeBucketUnit examples, iTimeBucketLength 100, fConfidenceThreshold -100, bNoNewFeatureSelection True, sConfidenceScore confidence1, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedConcs

UAmsterdam-bl_na_wConcs_c3

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-bl_na_wConcs_c3
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 1086ca688c9c735f22c79f0ae8bc25c3
  • Run description: Settings file settings_wConcs_linear_5_100_100_conf3, bDirichletNB_Tchi True, iNrOfBuckets 100, sTimeBucketUnit examples, iTimeBucketLength 100, fConfidenceThreshold -100, bNoNewFeatureSelection True, sConfidenceScore confidence3, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedConcs

UAmsterdam-bsln_5_100_100

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-bsln_5_100_100
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/19/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: c0359809d328f3e703b379a5965b9831
  • Run description: Feature file settingsBaselineNoAdaption, bDirichletNB_Tchi True, iNrOfBuckets 100, sTimeBucketUnit examples, iTimeBucketLength 100, sDecayFunction flat, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sChi weightedConcs

UAmsterdam-uva_kba_run_1

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_1
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/24/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: c998ebda0f5395d5e6d1661b8a6c0f63
  • Run description: Settings file settings_1, bDirichletNB_Tchi True, iNrOfBuckets 10, sTimeBucketUnit examples, iTimeBucketLength 500, fConfidenceThreshold -200, sConfidenceScore confidence1, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedConcs

UAmsterdam-uva_kba_run_10

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_10
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 589e571bb7f2691f5e608badcbc1a66a
  • Run description: Settings file settings_10, bDirichletNB_Tchi True, iNrOfBuckets 80, sTimeBucketUnit examples, iTimeBucketLength 70, fConfidenceThreshold -75, sConfidenceScore confidence1, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_kba_run_11

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_11
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/27/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: e11cf849a4152a81cce84c838bf882ac
  • Run description: Settings file settings_11, bDirichletNB_Tchi True, iNrOfBuckets 80, sTimeBucketUnit examples, iTimeBucketLength 50, fConfidenceThreshold -75, sConfidenceScore confidence3, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_kba_run_12

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_12
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/27/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: b3508f8eb6d2a3d49d1c8cb47288839c
  • Run description: Settings file settings_12, bDirichletNB_Tchi True, iNrOfBuckets 80, sTimeBucketUnit examples, iTimeBucketLength 70, fConfidenceThreshold -75, sConfidenceScore confidence3, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_kba_run_13

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_13
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 79cb855d0c0ba41f52c2d969005530e1
  • Run description: Settings file settings_13, bDirichletNB_Tchi True, iNrOfBuckets 80, sTimeBucketUnit examples, iTimeBucketLength 50, fConfidenceThreshold -75, sConfidenceScore confidence1, sDecayFunction flat, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_kba_run_14

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_14
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/27/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 0ef18d04b2eb7a7c16d124c538bc63ca
  • Run description: Settings file settings_14, bDirichletNB_Tchi True, iNrOfBuckets 80, sTimeBucketUnit examples, iTimeBucketLength 70, fConfidenceThreshold -75, sConfidenceScore confidence1, sDecayFunction flat, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_kba_run_15

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_15
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/27/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 00e0106f248826099de0255e02360a42
  • Run description: Settings file settings_15, bDirichletNB_Tchi True, iNrOfBuckets 80, sTimeBucketUnit examples, iTimeBucketLength 50, fConfidenceThreshold -75, sConfidenceScore confidence3, sDecayFunction flat, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_kba_run_16

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_16
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/27/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 5126c7613ab24ebc89dd3592f7e6c6ae
  • Run description: Settings file settings_16, bDirichletNB_Tchi True, iNrOfBuckets 80, sTimeBucketUnit examples, iTimeBucketLength 70, fConfidenceThreshold -75, sConfidenceScore confidence3, sDecayFunction flat, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_kba_run_2

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_2
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: c27c572be1e4d504febb9b877817eebe
  • Run description: Settings file settings_2, bDirichletNB_Tchi True, iNrOfBuckets 40, sTimeBucketUnit examples, iTimeBucketLength 70, fConfidenceThreshold -200, sConfidenceScore confidence1, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedConcs

UAmsterdam-uva_kba_run_3

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_3
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: ea4f4e24648d1919eb68174f28b140c6
  • Run description: Settings file settings_3, bDirichletNB_Tchi True, iNrOfBuckets 10, sTimeBucketUnit examples, iTimeBucketLength 500, fConfidenceThreshold -200, sConfidenceScore confidence3, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedConcs

UAmsterdam-uva_kba_run_4

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_4
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 69726ae101c6157ae6c8a94bca19d1ac
  • Run description: Settings file settings_4, bDirichletNB_Tchi True, iNrOfBuckets 40, sTimeBucketUnit examples, iTimeBucketLength 70, fConfidenceThreshold -200, sConfidenceScore confidence3, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedConcs

UAmsterdam-uva_kba_run_5

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_5
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 04faf9b69486ae32b975040c31497270
  • Run description: Settings file settings_5, bDirichletNB_Tchi True, iNrOfBuckets 10, sTimeBucketUnit examples, iTimeBucketLength 500, fConfidenceThreshold -200, sConfidenceScore confidence1, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_kba_run_6

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_6
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: f666397aeafbf4422ec4668205149c96
  • Run description: Settings file settings_6, bDirichletNB_Tchi True, iNrOfBuckets 40, sTimeBucketUnit examples, iTimeBucketLength 70, fConfidenceThreshold -200, sConfidenceScore confidence1, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_kba_run_7

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_7
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 69eb40d7c6757d075c3c5d9659f37926
  • Run description: Settings file settings_7, bDirichletNB_Tchi True, iNrOfBuckets 10, sTimeBucketUnit examples, iTimeBucketLength 500, fConfidenceThreshold -200, sConfidenceScore confidence3, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_kba_run_8

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_8
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: d25be2d64c3bc2af9a3b98ad931e85c3
  • Run description: Settings file settings_8, bDirichletNB_Tchi True, iNrOfBuckets 40, sTimeBucketUnit examples, iTimeBucketLength 70, fConfidenceThreshold -200, sConfidenceScore confidence3, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_kba_run_9

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_9
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/27/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 3f29d5b874ca4fee532bd3b82fbaf0d7
  • Run description: Settings file settings_9, bDirichletNB_Tchi True, iNrOfBuckets 80, sTimeBucketUnit examples, iTimeBucketLength 50, fConfidenceThreshold -75, sConfidenceScore confidence1, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_kba_run_av

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_kba_run_av
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/28/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 5318c1a4997f3ae70d6c6a189096bd92
  • Run description: Every document in which a mention is found is considered to be vital.

UAmsterdam-uva_run_wChi_c1

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_run_wChi_c1
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 510dee3939250c44c4667ec04b7689c2
  • Run description: Settings file settings_wChis_linear_5_100_100_confidence1, bDirichletNB_Tchi True, iNrOfBuckets 100, sTimeBucketUnit examples, iTimeBucketLength 100, fConfidenceThreshold -100, sConfidenceScore confidence1, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_run_wChi_c3

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_run_wChi_c3
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: fe7c95d3d9b23dd1d57dd6d50c2f3359
  • Run description: Settings file settings_wChis_linear_5_100_100_confidence3, bDirichletNB_Tchi True, iNrOfBuckets 100, sTimeBucketUnit examples, iTimeBucketLength 100, fConfidenceThreshold -100, sConfidenceScore confidence3, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedChis

UAmsterdam-uva_run_wCon_c1

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_run_wCon_c1
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 71b66c9a97d059b37689265391a32fdd
  • Run description: Settings file settings_wConcs_linear_5_100_100_confidence1, bDirichletNB_Tchi True, iNrOfBuckets 100, sTimeBucketUnit examples, iTimeBucketLength 100, fConfidenceThreshold -100, sConfidenceScore confidence1, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedConcs

UAmsterdam-uva_run_wCon_c3

Participants | Proceedings | Input | Appendix

  • Run ID: UAmsterdam-uva_run_wCon_c3
  • Participant: UAmsterdam
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: f00a90c4f1b7aba6e8e73a34f2c36ba5
  • Run description: Settings file settings_wConcs_linear_5_100_100_confidence3, bDirichletNB_Tchi True, iNrOfBuckets 100, sTimeBucketUnit examples, iTimeBucketLength 100, fConfidenceThreshold -100, sConfidenceScore confidence3, sDecayFunction linear, iMaxNrOfFeatures 5, iNrOfFeatures 588693, sAdaptationMode pseudo, sChi weightedConcs

udel_fang-UDInfoK_Ex

Participants | Proceedings | Input | Appendix

  • Run ID: udel_fang-UDInfoK_Ex
  • Participant: udel_fang
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/27/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 1af4a3684ae6a8c2e12a86fba158be54
  • Run description: For each topic entity, the surface name variations are collected from DBPedia and Wikipedia. If a document has exact match with the topic entity or one of its surface name variations, it will be labeled as vital.

udel_fang-UDInfoK_Weight1

Participants | Proceedings | Input | Appendix

  • Run ID: udel_fang-UDInfoK_Weight1
  • Participant: udel_fang
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/27/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 4d42b865492f2a5bbabe402e91d909d7
  • Run description: For each topic entity, the surface name variations are collected from DBPedia and Wikipedia. Moreover, the related entities which connect to the topic entity in Wikipedia graph will also be collected, and the weight of each related entity will be estimated based on the training data. If a document has exact match with the topic entity or one of its surface name variations, it will be labeled as vital. The confidence score is determined by the number of related entity mentions and their weights in the document. Documents with confidence score above the threshold will be preserved.

udel_fang-UDInfoK_Weight2

Participants | Proceedings | Input | Appendix

  • Run ID: udel_fang-UDInfoK_Weight2
  • Participant: udel_fang
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/27/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 8e4944097eb6bb03e7289c8ba60dad71
  • Run description: For each topic entity, the surface name variations are collected from DBPedia and Wikipedia. Moreover, the related entities which connect to the topic entity in Wikipedia graph will also be collected, and the weight of each related entity will be estimated based on the training data. If a document has exact match with the topic entity or one of its surface name variations, it will be labeled as vital. The confidence score is determined by the number of related entity mentions and their weights in the document. Documents with confidence score above the threshold will be preserved.

udel_fang-UDInfoK_Wiki1

Participants | Proceedings | Input | Appendix

  • Run ID: udel_fang-UDInfoK_Wiki1
  • Participant: udel_fang
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/27/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 9aa98f2c7c6cb52ec08f82f4d001c118
  • Run description: For each topic entity, the surface name variations are collected from DBPedia and Wikipedia. Moreover, the related entities which connect to the topic entity in Wikipedia graph will also be collected. If a document has exact match with the topic entity or one of its surface name variations, it will be labeled as vital. The confidence score is determined by the number of related entity mentions in the document. Documents with confidence score above the threshold will be preserved.

udel_fang-UDInfoK_Wiki2

Participants | Proceedings | Input | Appendix

  • Run ID: udel_fang-UDInfoK_Wiki2
  • Participant: udel_fang
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/27/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 786852dec21985cc76e2003b59608332
  • Run description: For each topic entity, the surface name variations are collected from DBPedia and Wikipedia. Moreover, the related entities which connect to the topic entity in Wikipedia graph will also be collected. If a document has exact match with the topic entity or one of its surface name variations, it will be labeled as vital. The confidence score is determined by the number of related entity mentions in the document. Documents with confidence score above the threshold will be preserved.

uiucGSLIS-bayes01

Participants | Input | Appendix

  • Run ID: uiucGSLIS-bayes01
  • Participant: uiucGSLIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/30/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 7ec6618fa0b5a26c4b8d141b29506f4c
  • Run description: bayes updated models from vital fb. mu=2500. window=200

uiucGSLIS-bayes02

Participants | Input | Appendix

  • Run ID: uiucGSLIS-bayes02
  • Participant: uiucGSLIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/30/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 7298af2f205acd4b369453d2e2301278
  • Run description: bayes updated models from vital fb. mu=150. window=20

uiucGSLIS-bayes03

Participants | Input | Appendix

  • Run ID: uiucGSLIS-bayes03
  • Participant: uiucGSLIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/30/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: ed7f84f42ddc21445df5c2c0df237a1f
  • Run description: bayes updated models from vital fb. mu=2500. window=20

uiucGSLIS-bayes04

Participants | Input | Appendix

  • Run ID: uiucGSLIS-bayes04
  • Participant: uiucGSLIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/30/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 3323cb8146fbf0e0f59ca1b4cd8ae751
  • Run description: bayes updated models from vital fb. mu=2500. window=20

uiucGSLIS-bayes05

Participants | Input | Appendix

  • Run ID: uiucGSLIS-bayes05
  • Participant: uiucGSLIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/30/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 4453ce27ebf8a99237c89ea1b06caef6
  • Run description: bayes updated models from vital fb. mu=5000. window=20

uiucGSLIS-bayes06

Participants | Input | Appendix

  • Run ID: uiucGSLIS-bayes06
  • Participant: uiucGSLIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/30/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 4e02e3e8a33949dd910bcb39b56a899d
  • Run description: bayes updated models from vital fb. mu=1500. window=50

uiucGSLIS-bayes07

Participants | Input | Appendix

  • Run ID: uiucGSLIS-bayes07
  • Participant: uiucGSLIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/30/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 197edadb39ac3d223b8b20763a9a58bd
  • Run description: bayes updated models from vital fb. mu=2500. window=50

uiucGSLIS-bayes08

Participants | Input | Appendix

  • Run ID: uiucGSLIS-bayes08
  • Participant: uiucGSLIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/30/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 4ee4f34f650227962871a2f583be13df
  • Run description: CHANGE ME

uiucGSLIS-bayes09

Participants | Input | Appendix

  • Run ID: uiucGSLIS-bayes09
  • Participant: uiucGSLIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/30/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 58bf2c1598436531c9e10c3c9e308773
  • Run description: CHANGE ME

uiucGSLIS-static01

Participants | Input | Appendix

  • Run ID: uiucGSLIS-static01
  • Participant: uiucGSLIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/29/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 02abee27e16c78f84e3e2f6c250b6511
  • Run description: simple wikitext baseline. optimized on 'vital'

uiucGSLIS-static02

Participants | Input | Appendix

  • Run ID: uiucGSLIS-static02
  • Participant: uiucGSLIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/29/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 40faa36e609e01708eec341e833fbf6e
  • Run description: static system with training-based relevance feedback models (all vital)

uiucGSLIS-static03

Participants | Input | Appendix

  • Run ID: uiucGSLIS-static03
  • Participant: uiucGSLIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/30/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: ee1b2a7841eb967a4ea1617d647cde28
  • Run description: CHANGE ME

uiucGSLIS-static04

Participants | Input | Appendix

  • Run ID: uiucGSLIS-static04
  • Participant: uiucGSLIS
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/30/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 380db043cdd4105f08af3cfe3026ad2c
  • Run description: CHANGE ME

UMass_CIIR-T2ELMax

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-T2ELMax
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 6ac31d6ee217bc9c6e2e23ea756e3492
  • Run description: Entity Linked top 2 docs from SDM for each entity for each week; max linking score.

UMass_CIIR-T2ELMax_1

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-T2ELMax_1
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/4/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: c6dfd4df11a70ffa7a990a8c4ac5017b
  • Run description: Entity Linked top 2 docs from SDM for each entity for each week; max linking score with a -1.0 threshold.

UMass_CIIR-T2ELMax_1_tw

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-T2ELMax_1_tw
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 0ac6b34fa2e0876c548df6dcf0811ec0
  • Run description: Entity Linked top 2 docs from SDM for each entity for each week; max linking score with a -1.0 threshold. Added top 2 docs from SDM for twitter ents.

UMass_CIIR-T2ELMax_TO

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-T2ELMax_TO
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/4/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: d04e9fa0e21e18356f2a199bea514eca
  • Run description: Entity Linked top 2 docs from SDM for each entity for each week; max linking score; only top ranked entity.

UMass_CIIR-T2ELMax_TO_1_tw

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-T2ELMax_TO_1_tw
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 0a555603d08afcaaae35f0a8f58a2bc5
  • Run description: Entity Linked top 2 docs from SDM for each entity for each week; max linking score; only top ranked entity with a -1.0 threshold. Added top 2 docs from SDM for twitter ents.

UMass_CIIR-T2ELMax_TO_tw

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-T2ELMax_TO_tw
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 957ee10203eb5b36065df99f92afbcd5
  • Run description: Entity Linked top 2 docs from SDM for each entity for each week; max linking score; only top ranked entity. Added top 2 docs from SDM for twitter ents.

UMass_CIIR-T2ELMax_tw

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-T2ELMax_tw
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: d813f3b3d114ffabdcace4cdb670084e
  • Run description: Entity Linked top 2 docs from SDM for each entity for each week; max linking score. Added top 2 docs from SDM for twitter ents.

UMass_CIIR-T2ELMaxTO_1

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-T2ELMaxTO_1
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/4/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 21f5f579bb904b9ee017d9b8450391c8
  • Run description: Entity Linked top 2 docs from SDM for each entity for each week; max linking score; only top ranked entity with a -1.0 threshold.

UMass_CIIR-t2LinkProb_tw

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-t2LinkProb_tw
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/4/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 32f15dd6fb25063537c98249c106928b
  • Run description: Entity Linked top 2 docs from SDM for each entity for each week; maximum likelihood entity probability scoring. Added top 2 docs from SDM for twitter ents.

UMass_CIIR-top2LinkedProb

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-top2LinkedProb
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/4/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 4bb83d59ee74dd7a31992332b895e827
  • Run description: Entity Linked top 2 docs from SDM for each entity for each week; maximum likelihood entity probability scoring.

UMass_CIIR-wrm_trm_r

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrm_trm_r
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 87a164bcd4f5427d35e0bba7367ef7de
  • Run description: Retrieval-based method. Retrieval model for wiki entities rm-sdm; Retrieval model for twitter entities rm-sdm; confidence prediction based on rank.

UMass_CIIR-wrm_trm_s

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrm_trm_s
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 274909339571c2304bebfa430609cd0a
  • Run description: Retrieval-based method. Retrieval model for wiki entities rm-sdm; Retrieval model for twitter entities rm-sdm; confidence prediction based on score.

UMass_CIIR-wrm_tsdm_r

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrm_tsdm_r
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 73dd03691c9081d83e8ec6ea1d2df174
  • Run description: Retrieval-based method. Retrieval model for wiki entities rm-sdm; Retrieval model for twitter entities sdm; confidence prediction based on rank.

UMass_CIIR-wrm_tsdm_s

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrm_tsdm_s
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 8ba0416bfb3db38e382c3d45c1b9e319
  • Run description: Retrieval-based method. Retrieval model for wiki entities rm-sdm; Retrieval model for twitter entities sdm; confidence prediction based on score.

UMass_CIIR-wrm_tskq_r

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrm_tskq_r
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 7aeed8a0dcd720c53ce14b3be5c79736
  • Run description: Retrieval-based method. Retrieval model for wiki entities rm-sdm; Retrieval model for twitter entities sketchQuery; confidence prediction based on rank.

UMass_CIIR-wrm_tskq_s

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrm_tskq_s
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 8d9330bd3ffa7f8de36a7a2d30ce6dbf
  • Run description: Retrieval-based method. Retrieval model for wiki entities rm-sdm; Retrieval model for twitter entities sketchQuery; confidence prediction based on score.

UMass_CIIR-wrn_tsdm_r

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrn_tsdm_r
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: b27dce7b89b5c7a2157f0af3c40cacd5
  • Run description: Retrieval-based method. Retrieval model for wiki entities entityRepr; Retrieval model for twitter entities sdm; confidence prediction based on rank.

UMass_CIIR-wrn_tsdm_s

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrn_tsdm_s
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 00f075a203d5e8d3751c658e34306108
  • Run description: Retrieval-based method. Retrieval model for wiki entities entityRepr; Retrieval model for twitter entities sdm; confidence prediction based on score.

UMass_CIIR-wrn_tskq_s

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrn_tskq_s
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 2943a80769c65f30fe055a1c4dfad971
  • Run description: Retrieval-based method. Retrieval model for wiki entities entityRepr; Retrieval model for twitter entities sketchQuery; confidence prediction based on score.

UMass_CIIR-wrt_tsdm_r

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrt_tsdm_r
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 2a6cd4f2e75491182058ab5c150dad8a
  • Run description: Retrieval-based method. Retrieval model for wiki entities entityReprTextOnly; Retrieval model for twitter entities sdm; confidence prediction based on rank.

UMass_CIIR-wrt_tsdm_s

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrt_tsdm_s
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: f1c21443e715fe24644c436e0cb6f478
  • Run description: Retrieval-based method. Retrieval model for wiki entities entityReprTextOnly; Retrieval model for twitter entities sdm; confidence prediction based on score.

UMass_CIIR-wrt_tskq_r

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrt_tskq_r
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: cb4aebc7033b3b4460b657ffb0ec3a87
  • Run description: Retrieval-based method. Retrieval model for wiki entities entityReprTextOnly; Retrieval model for twitter entities sketchQuery; confidence prediction based on rank.

UMass_CIIR-wrt_tskq_s

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrt_tskq_s
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: e5c721295027f454605a8f7a55c4be55
  • Run description: Retrieval-based method. Retrieval model for wiki entities entityReprTextOnly; Retrieval model for twitter entities sketchQuery; confidence prediction based on score.

UMass_CIIR-wrtn_tsdm_r

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrtn_tsdm_r
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 709f60f8355e22d28cebe3b8c42d34f4
  • Run description: Retrieval-based method. Retrieval model for wiki entities entityReprTextNames; Retrieval model for twitter entities sdm; confidence prediction based on rank.

UMass_CIIR-wrtn_tsdm_s

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrtn_tsdm_s
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 5c30caeb9fd50328ec82a0b572979981
  • Run description: Retrieval-based method. Retrieval model for wiki entities entityReprTextNames; Retrieval model for twitter entities sdm; confidence prediction based on score.

UMass_CIIR-wrtn_tskq_r

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrtn_tskq_r
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 4b221cba61f027137e6a55b6b7102d74
  • Run description: Retrieval-based method. Retrieval model for wiki entities entityReprTextNames; Retrieval model for twitter entities sketchQuery; confidence prediction based on rank.

UMass_CIIR-wrtn_tskq_s

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wrtn_tskq_s
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 219107d25e34bb10ab9143c30ae63370
  • Run description: Retrieval-based method. Retrieval model for wiki entities entityReprTextNames; Retrieval model for twitter entities sketchQuery; confidence prediction based on score.

UMass_CIIR-wsdm_tsdm_r

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wsdm_tsdm_r
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 2e636359ae09ad986090687119f8f9c2
  • Run description: Retrieval-based method. Retrieval model for wiki entities sdm; Retrieval model for twitter entities sdm; confidence prediction based on rank.

UMass_CIIR-wsdm_tsdm_s

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wsdm_tsdm_s
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: f4acdaa5f32afc51eb5a3ada11708df9
  • Run description: Retrieval-based method. Retrieval model for wiki entities sdm; Retrieval model for twitter entities sdm; confidence prediction based on score.

UMass_CIIR-wskq_tsdm_r

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wskq_tsdm_r
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 1d51dd5904e127874bd1a2a69cbf8587
  • Run description: Retrieval-based method. Retrieval model for wiki entities sketchQuery; Retrieval model for twitter entities sdm; confidence prediction based on rank.

UMass_CIIR-wskq_tsdm_s

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wskq_tsdm_s
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 6e30c8b6b41e7dfedbb02b367928cd5f
  • Run description: Retrieval-based method. Retrieval model for wiki entities sketchQuery; Retrieval model for twitter entities sdm; confidence prediction based on score.

UMass_CIIR-wskq_tskq_r

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wskq_tskq_r
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: 1b301e840369785c9735e29b4e086cb7
  • Run description: Retrieval-based method. Retrieval model for wiki entities sketchQuery; Retrieval model for twitter entities sketchQuery; confidence prediction based on rank.

UMass_CIIR-wskq_tskq_s

Participants | Proceedings | Input | Appendix

  • Run ID: UMass_CIIR-wskq_tskq_s
  • Participant: UMass_CIIR
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 9/5/2013
  • Type: automatic
  • Task: kba-ccr-2013
  • MD5: a1824b5dcfed31334196b6fc0821d740
  • Run description: Retrieval-based method. Retrieval model for wiki entities sketchQuery; Retrieval model for twitter entities sketchQuery; confidence prediction based on score.

WiscDEFT-baseline

Participants | Proceedings | Input | Appendix

  • Run ID: WiscDEFT-baseline
  • Participant: WiscDEFT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/13/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: a5880b3967d73d5267d24d5a8e9960ec
  • Run description: Basic system built based on Wisconsin's KBP system with few additional rules for new relations.

WiscDEFT-baseline2

Participants | Proceedings | Input | Appendix

  • Run ID: WiscDEFT-baseline2
  • Participant: WiscDEFT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/13/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 413b9ba74b454a59444643e40b138510
  • Run description: Basic system built based on Wisconsin's KBP system with few additional rules for new relations.

WiscDEFT-run1

Participants | Proceedings | Input | Appendix

  • Run ID: WiscDEFT-run1
  • Participant: WiscDEFT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/26/2013
  • Type: manual
  • Task: kba-ssf-2013
  • MD5: fdfa5270886c50ff619e407ea4658083
  • Run description: Basic system built based on Wisconsin's KBP system with few additional rules for new relations.

WiscDEFT-run2

Participants | Proceedings | Input | Appendix

  • Run ID: WiscDEFT-run2
  • Participant: WiscDEFT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 8/27/2013
  • Type: manual
  • Task: kba-ssf-2013
  • MD5: 47fe4225abf05f87c439b475d14e70f2
  • Run description: Basic system built based on Wisconsin's KBP system with few additional rules for new relations.

WiscDEFT-test

Participants | Proceedings | Input | Appendix

  • Run ID: WiscDEFT-test
  • Participant: WiscDEFT
  • Track: Knowledge Base Acceleration
  • Year: 2013
  • Submission: 6/11/2013
  • Type: automatic
  • Task: kba-ssf-2013
  • MD5: 9f40a04ac6635897ea6aeca111083290
  • Run description: Collapses entity title strings and documents into sets of words and looks for fraction of exact match overlap with entity titles. Confidence is fraction of entity title words that appear in doc.