Skip to content

Runs - Spam 2006

B53S3F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: B53S3F
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 7/11/2006
  • Type: online
  • Task: filter
  • Run description: Welcome to KidultPRIS! Nowadays most of us are tired of the constant bombardment of their inboxes by unwanted email. It is high time for us to construct a robust spam filter which can detect spam efficiently without regarding our legal mails as spam. Fortunately, KidultPRIS is one of the excellent spam filters that meet our needs.KidultPRIS is a command line program which is exploited by the members in the lab of Pattern Recognition and Intelligent System, Beijing University of Posts and Telecommunications.

B53S3pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: B53S3pcd
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/16/2006
  • Type: online
  • Task: run

B53S3pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: B53S3pci
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/16/2006
  • Type: online
  • Task: run

B53S3ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: B53S3ped
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/16/2006
  • Type: online
  • Task: run

B53S3pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: B53S3pei
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/16/2006
  • Type: online
  • Task: run

BASA2F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: BASA2F
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 7/11/2006
  • Type: active
  • Task: filter
  • Run description: Welcome to KidultPRIS! Nowadays most of us are tired of the constant bombardment of their inboxes by unwanted email. It is high time for us to construct a robust spam filter which can detect spam efficiently without regarding our legal mails as spam. Fortunately, KidultPRIS is one of the excellent spam filters that meet our needs.KidultPRIS is a command line program which is exploited by the members in the lab of Pattern Recognition and Intelligent System, Beijing University of Posts and Telecommunications.

BASA2pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: BASA2pci
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

BASA2pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: BASA2pei
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

BASS2F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: BASS2F
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 7/11/2006
  • Type: online
  • Task: filter
  • Run description: Welcome to KidultPRIS! Nowadays most of us are tired of the constant bombardment of their inboxes by unwanted email. It is high time for us to construct a robust spam filter which can detect spam efficiently without regarding our legal mails as spam. Fortunately, KidultPRIS is one of the excellent spam filters that meet our needs.KidultPRIS is a command line program which is exploited by the members in the lab of Pattern Recognition and Intelligent System, Beijing University of Posts and Telecommunications.

BASS2pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: BASS2pcd
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/17/2006
  • Type: online
  • Task: run

BASS2pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: BASS2pci
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/17/2006
  • Type: online
  • Task: run

BASS2ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: BASS2ped
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/17/2006
  • Type: online
  • Task: run

BASS2pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: BASS2pei
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/17/2006
  • Type: online
  • Task: run

CRMS1F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: CRMS1F
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: This is essentially unchanged from last year's submission; it is the Markov Random Field classifier with OSB (Orthogonal Sparse Bigram) features of length 2,3,4,and 5, and uses a thick-threshold training algorithm with a base thickness of 10 units +/- the ambivalent centerpoint. This is basically the same as last year's better submission, but now we get to see how it fares against delayed training.

CRMS1Fchi

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS1Fchi
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS1Fchidly

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS1Fchidly
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS1Fdelay

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS1Fdelay
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS1Ffull

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS1Ffull
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS2F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: CRMS2F
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: This is it is the Markov Random Field classifier with OSBU (Orthogonal Sparse Bigram) unique features of length 2,3,4,and 5, and uses a thick-threshold training algorithm with a base thickness of 10 units +/- the ambivalent centerpoint. Additionally, it keeps a log of all previously trained files and their known types, and retrains these periodically. The goal is to prevent the "dip rebound" that previous versions of CRM114 OSBU. The periodic retraining is incremental - for each new text, two old ones are retrained.

CRMS2Fchi

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS2Fchi
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS2Fchidly

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS2Fchidly
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS2Fdelay

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS2Fdelay
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS2Ffull

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS2Ffull
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS3F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: CRMS3F
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: This is the Markov Random Field classifier with OSB (Orthogonal Sparse Bigram) unique features of length 2,3,4,and 5, and uses a thick-threshold training algorithm with a base thickness of 20 units +/- the ambivalent centerpoint, which is twice the base thickness of the basic default system. This configuration uses more memory buckets than the default system as well.

CRMS3Fchi

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS3Fchi
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS3Fchidly

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS3Fchidly
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS3Fdelay

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS3Fdelay
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS3Ffull

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS3Ffull
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS4F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: CRMS4F
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: This is the Hyperspace (radiance KNN) classifier with OSB (Orthogonal Sparse Bigram) unique features of length 2,3,4,and 5, and trains best as here, in a very thin threshold. This filter is believed to be not as accurate as the other configurations, but it runs very VERY fast.

CRMS4Fchi

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS4Fchi
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS4Fchidly

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS4Fchidly
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS4Fdelay

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS4Fdelay
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

CRMS4Ffull

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CRMS4Ffull
  • Participant: mitsubhishi.yerazunis
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

dalS1F

Results | Participants | Summary | Appendix

  • Run ID: dalS1F
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 7/14/2006
  • Type: online
  • Task: filter
  • Run description: Variation on a byte n-gram technique.

dalS1pcd

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS1pcd
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS1pci

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS1pci
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS1ped

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS1ped
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS1pei

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS1pei
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS2F

Results | Participants | Summary | Appendix

  • Run ID: dalS2F
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 7/14/2006
  • Type: online
  • Task: filter
  • Run description: Variation on a byte n-gram technique.

dalS2pcd

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS2pcd
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS2pci

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS2pci
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS2ped

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS2ped
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS2pei

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS2pei
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS3F

Results | Participants | Summary | Appendix

  • Run ID: dalS3F
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 7/14/2006
  • Type: online
  • Task: filter
  • Run description: Variation on a byte n-gram technique.

dalS3pcd

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS3pcd
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS3pci

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS3pci
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS3ped

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS3ped
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS3pei

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS3pei
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS4F

Results | Participants | Summary | Appendix

  • Run ID: dalS4F
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 7/14/2006
  • Type: online
  • Task: filter
  • Run description: Variation on character n-gram technique

dalS4pcd

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS4pcd
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS4pci

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS4pci
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS4ped

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS4ped
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

dalS4pei

Results | Participants | Input | Summary | Appendix

  • Run ID: dalS4pei
  • Participant: dalhousieu.keselj
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

hitA1F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: hitA1F
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: active
  • Task: filter
  • Run description: This system explores the feasibility of constructing an SVM (Support Vector Machines)classifier for Spam Filter task. In this task, we adopts the IG (Information Gain) to select feature so that the feature noise is reduced. In active learning, the Informativeness and Diversity Criteria are adopted to achieve the high performance.

hitA1pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitA1pci
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/21/2006
  • Type: active
  • Task: run

hitA1pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitA1pei
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/21/2006
  • Type: active
  • Task: run

hitA2F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: hitA2F
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: active
  • Task: filter
  • Run description: This system explores the feasibility of constructing an SVM (Support Vector Machines)classifier for Spam Filter task. This system presents a new feature selection algorithm with the category information analysis in text classification. The algorithm is distinguished from others by providing a pre-fetching technique for classifier while it is compatible with efficient feature selection.In active learning, the Informativeness and Diversity Criteria are adopted to achieve the high performance.

hitA2pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitA2pci
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/21/2006
  • Type: active
  • Task: run

hitA2pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitA2pei
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/21/2006
  • Type: active
  • Task: run

hitS1F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: hitS1F
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: This system explores the feasibility of constructing an SVM (Support Vector Machines)classifier for Spam Filter task. In this framework, we adopts the IG (Information Gain) to select feature so that the feature noise is reduced. The feasibility of the approach has been checked on spam assassin corpus and Trec05 spam trecs. The results show that it can outperforms the baseline algorithm with high performance and efficiency.

hitS1pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitS1pcd
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/21/2006
  • Type: online
  • Task: run

hitS1pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitS1pci
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hitS1ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitS1ped
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hitS1pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitS1pei
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hitS2F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: hitS2F
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: This system explores the feasibility of constructing an SVM (Support Vector Machines)classifier for Spam Filter task. In this framework, we adopts the IG (Information Gain) to select feature so that the feature noise is reduced. The feasibility of the approach has been checked on spam assassin corpus and Trec05 spam trecs. The results show that it can outperforms the baseline algorithm with high performance and efficiency.

hitS2pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitS2pcd
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hitS2pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitS2pci
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hitS2ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitS2ped
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hitS2pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitS2pei
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hitS3F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: hitS3F
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: This system explores the feasibility of constructing an SVM (Support Vector Machines)classifier for Spam Filter task. This system presents a new feature selection algorithm with the category information analysis in spam detection. The algorithm obscure or reduce the noises of text features by computing the feature contribution with word and document frequency and introducing variance mechanism to mine the latent category information.

hitS3pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitS3pcd
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hitS3pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitS3pci
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hitS3ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitS3ped
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hitS3pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hitS3pei
  • Participant: harbin.zhao
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubA1F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: hubA1F
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: active
  • Task: filter
  • Run description: This filter was developed by the Knowledge Management Group of Humboldt University, Berlin in association with Strato AG. It is based on a winnow classifier with othogonal sparse bigrams.

hubA1pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubA1pci
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

hubA1pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubA1pei
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

hubA2F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: hubA2F
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: active
  • Task: filter
  • Run description: This filter was developed by the Knowledge Management Group of Humboldt University, Berlin in association with Strato AG. It is based on a winnow classifier with orthogonal sparse bigrams.

hubA2pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubA2pci
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

hubA2pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubA2pei
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

hubA3F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: hubA3F
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: active
  • Task: filter
  • Run description: This filter was developed by the Knowledge Management Group of Humboldt University, Berlin in association with Strato AG. It is based on a winnow classifier with orthogonal sparse bigrams.

hubA3pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubA3pci
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

hubA3pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubA3pei
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

hubA4F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: hubA4F
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: active
  • Task: filter
  • Run description: This filter was developed by the Knowledge Management Group of Humboldt University, Berlin in association with Strato AG. It is based on a winnow classifier with othogonal sparse bigrams.

hubA4pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubA4pci
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

hubA4pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubA4pei
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

hubS1F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: hubS1F
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: This filter was developed by the Knowledge Management Group of Humboldt University, Berlin in association with Strato AG. It is based on a winnow classifier with orthogonal sparse bigrams.

hubS1pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS1pcd
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS1pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS1pci
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS1ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS1ped
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS1pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS1pei
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS2F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: hubS2F
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: This filter was developed by the Knowledge Management Group of Humboldt University, Berlin in association with Strato AG. It is based on a winnow classifier with othogonal sparse bigrams.

hubS2pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS2pcd
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS2pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS2pci
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS2ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS2ped
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS2pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS2pei
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS3F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: hubS3F
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: This filter was developed by the Knowledge Management Group of Humboldt University, Berlin in association with Strato AG. It is based on a winnow classifier with orthogonal sparse bigrams.

hubS3pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS3pcd
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS3pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS3pci
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS3ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS3ped
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS3pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS3pei
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS4F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: hubS4F
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: This filter was developed by the Knowledge Management Group of Humboldt University, Berlin in association with Strato AG. It is based on a winnow classifier with othogonal sparse bigrams.

hubS4pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS4pcd
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS4pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS4pci
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS4ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS4ped
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

hubS4pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: hubS4pei
  • Participant: humboldtu.haider
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

ijsA1F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: ijsA1F
  • Participant: jozef-stefan-inst.bratko
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: active
  • Task: filter
  • Run description: Active learning using an extremely simple heuristic The most recent N messages in the email stream are trained on.

ijsA1pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ijsA1pci
  • Participant: jozef-stefan-inst.bratko
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: active
  • Task: run

ijsA1pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ijsA1pei
  • Participant: jozef-stefan-inst.bratko
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: active
  • Task: run

ijsA2pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ijsA2pci
  • Participant: jozef-stefan-inst.bratko
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: active
  • Task: run

ijsA2pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ijsA2pei
  • Participant: jozef-stefan-inst.bratko
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: active
  • Task: run

ijsS1F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: ijsS1F
  • Participant: jozef-stefan-inst.bratko
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: This filter contains a straightforward implementation of the PPM compression scheme. Messages are classification to the most probable class, as determined by the compression rate (i.e. probability of target document) exhibited by PPM models of ham and spam. The PPM model is adaptive, i.e. it is updated with statistics from the target document at each character position as the target document is scanned. Uses an order-6 PPM model, escape method D, full alphabet (all 256 symbols) and exclusion of seen symbols when estimating backoff probabilities. This system uses essentially the same algorithm as our 2005 submission labelled ijsSPAM2.

ijsS1pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ijsS1pcd
  • Participant: jozef-stefan-inst.bratko
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

ijsS1pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ijsS1pci
  • Participant: jozef-stefan-inst.bratko
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

ijsS1ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ijsS1ped
  • Participant: jozef-stefan-inst.bratko
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

ijsS1pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ijsS1pei
  • Participant: jozef-stefan-inst.bratko
  • Track: Spam
  • Year: 2006
  • Submission: 8/23/2006
  • Type: online
  • Task: run

KB3A1F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: KB3A1F
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 7/12/2006
  • Type: active
  • Task: filter
  • Run description: Welcome to KidultPRIS! Nowadays most of us are tired of the constant bombardment of their inboxes by unwanted email. It is high time for us to construct a robust spam filter which can detect spam efficiently without regarding our legal mails as spam. Fortunately, KidultPRIS is one of the excellent spam filters that meet our needs.KidultPRIS is a command line program which is exploited by the members in the lab of Pattern Recognition and Intelligent System, Beijing University of Posts and Telecommunications.

KB3A1pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: KB3A1pci
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

KB3A1pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: KB3A1pei
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

KB3S1F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: KB3S1F
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 7/12/2006
  • Type: online
  • Task: filter
  • Run description: Welcome to KidultPRIS! Nowadays most of us are tired of the constant bombardment of their inboxes by unwanted email. It is high time for us to construct a robust spam filter which can detect spam efficiently without regarding our legal mails as spam. Fortunately, KidultPRIS is one of the excellent spam filters that meet our needs.KidultPRIS is a command line program which is exploited by the members in the lab of Pattern Recognition and Intelligent System, Beijing University of Posts and Telecommunications.

KB3S1pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: KB3S1pcd
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/16/2006
  • Type: online
  • Task: run

KB3S1pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: KB3S1pci
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/16/2006
  • Type: online
  • Task: run

KB3S1ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: KB3S1ped
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/16/2006
  • Type: online
  • Task: run

KB3S1pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: KB3S1pei
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/16/2006
  • Type: online
  • Task: run

KB9A3F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: KB9A3F
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 7/11/2006
  • Type: active
  • Task: filter
  • Run description: Welcome to KidultPRIS! Nowadays most of us are tired of the constant bombardment of their inboxes by unwanted email. It is high time for us to construct a robust spam filter which can detect spam efficiently without regarding our legal mails as spam. Fortunately, KidultPRIS is one of the excellent spam filters that meet our needs.KidultPRIS is a command line program which is exploited by the members in the lab of Pattern Recognition and Intelligent System, Beijing University of Posts and Telecommunications.

KB9A3pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: KB9A3pci
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

KB9A3pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: KB9A3pei
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

KB9S4F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: KB9S4F
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 7/11/2006
  • Type: online
  • Task: filter
  • Run description: Welcome to KidultPRIS! Nowadays most of us are tired of the constant bombardment of their inboxes by unwanted email. It is high time for us to construct a robust spam filter which can detect spam efficiently without regarding our legal mails as spam. Fortunately, KidultPRIS is one of the excellent spam filters that meet our needs.KidultPRIS is a command line program which is exploited by the members in the lab of Pattern Recognition and Intelligent System, Beijing University of Posts and Telecommunications.

KB9S4pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: KB9S4pcd
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/16/2006
  • Type: online
  • Task: run

KB9S4pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: KB9S4pci
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/16/2006
  • Type: online
  • Task: run

KB9S4ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: KB9S4ped
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/16/2006
  • Type: online
  • Task: run

KB9S4pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: KB9S4pei
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/16/2006
  • Type: online
  • Task: run

oflA1F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: oflA1F
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 7/11/2006
  • Type: active
  • Task: filter
  • Run description: OSBF-Lua is a typical Bayesian classifier, but enhanced with OSB, a feature extraction technique, as its front-end and EDDC for feature selection.

oflA1pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflA1pci
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/7/2006
  • Type: active
  • Task: run

oflA1pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflA1pei
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/7/2006
  • Type: active
  • Task: run

oflA2pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflA2pci
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/7/2006
  • Type: active
  • Task: run

oflA2pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflA2pei
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/7/2006
  • Type: active
  • Task: run

oflA3pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflA3pci
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/7/2006
  • Type: active
  • Task: run

oflA3pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflA3pei
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/7/2006
  • Type: active
  • Task: run

oflA4pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflA4pci
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/7/2006
  • Type: active
  • Task: run

oflA4pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflA4pei
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/7/2006
  • Type: active
  • Task: run

oflS1F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: oflS1F
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 7/11/2006
  • Type: online
  • Task: filter
  • Run description: OSBF-Lua is a typical Bayesian classifier, but enhanced with OSB, a feature extraction technique, as its front-end and EDDC for feature selection.

oflS1pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS1pcd
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS1pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS1pci
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS1ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS1ped
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS1pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS1pei
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS2F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: oflS2F
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 7/11/2006
  • Type: online
  • Task: filter
  • Run description: OSBF-Lua is a typical Bayesian classifier, but enhanced with OSB, a feature extraction technique, as its front-end and EDDC for feature selection.

oflS2pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS2pcd
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS2pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS2pci
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS2ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS2ped
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS2pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS2pei
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS3F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: oflS3F
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 7/11/2006
  • Type: online
  • Task: filter
  • Run description: OSBF-Lua is a typical Bayesian classifier, but enhanced with OSB, a feature extraction technique, as its front-end and EDDC for feature selection.

oflS3pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS3pcd
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS3pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS3pci
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS3ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS3ped
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS3pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS3pei
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS4F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: oflS4F
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 7/11/2006
  • Type: online
  • Task: filter
  • Run description: OSBF-Lua is a typical Bayesian classifier, but enhanced with OSB, a feature extraction technique, as its front-end and EDDC for feature selection.

oflS4pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS4pcd
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS4pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS4pci
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS4ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS4ped
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

oflS4pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: oflS4pei
  • Participant: fidelis.assis
  • Track: Spam
  • Year: 2006
  • Submission: 8/3/2006
  • Type: online
  • Task: run

tamS1F

Results | Participants | Summary | Appendix

  • Run ID: tamS1F
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 7/12/2006
  • Type: online
  • Task: filter
  • Run description: SpamBayes 1.1a2 (http //spambayes.org), with modifications to improve filtering of wide-character email, particularly Asian. No pre-learning, chi-squared combination, with a semi-arbitrary 0.4 ham and spam cutoff.

tamS1pcd

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS1pcd
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS1pci

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS1pci
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS1ped

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS1ped
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS1pei

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS1pei
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS2F

Results | Participants | Summary | Appendix

  • Run ID: tamS2F
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: SpamBayes (spambayes.org) 1.a2 chi-squared combining, semi-arbitrary 0.4 cutoffs, bigram option enabled, otherwise defaults. Mostly split-on-whitespace tokenization. Trains on classify. Train-on-error. Doesn't use classification if fewer than 10 ham and 10 spam trained.

tamS2pcd

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS2pcd
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS2pci

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS2pci
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS2ped

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS2ped
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS2pei

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS2pei
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS3F

Results | Participants | Summary | Appendix

  • Run ID: tamS3F
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 7/12/2006
  • Type: online
  • Task: filter
  • Run description: SpamBayes 1.1a2 (spambayes.org). No pre-learning, chi-squared combination, split-on-whitespace (mostly) tokenization. Automatically adjusts the cutoff rate based on the number of ham & spam trained. (Since train-on-error is used, this also effects which messages are trained).

tamS3pcd

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS3pcd
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS3pci

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS3pci
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS3ped

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS3ped
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS3pei

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS3pei
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS4F

Results | Participants | Summary | Appendix

  • Run ID: tamS4F
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 7/12/2006
  • Type: online
  • Task: filter
  • Run description: SpamBayes 1.1a2 (spambayes.org). Train-on-everything, split-on-whitespace (mostly), chi-squared combination, semi-arbitrary ham & spam cutoff at 0.4. Also adds tokenization of attached images (which plain SpamBayes ignores).

tamS4pcd

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS4pcd
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS4pci

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS4pci
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS4ped

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS4ped
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tamS4pei

Results | Participants | Input | Summary | Appendix

  • Run ID: tamS4pei
  • Participant: masseyu.meyer
  • Track: Spam
  • Year: 2006
  • Submission: 8/6/2006
  • Type: online
  • Task: run

tufS1F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: tufS1F
  • Participant: tufts.sculley
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: Filter is TuftSpam filter. No prior training. Flags set to -N 4 and -T 100.

tufS1pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tufS1pcd
  • Participant: tufts.sculley
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

tufS1pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tufS1pci
  • Participant: tufts.sculley
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

tufS1ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tufS1ped
  • Participant: tufts.sculley
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

tufS1pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tufS1pei
  • Participant: tufts.sculley
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

tufS2F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: tufS2F
  • Participant: tufts.sculley
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: Filter is TuftSpam filter. No prior training. Flags set to -N 5 and -T 100.

tufS2pcd

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tufS2pcd
  • Participant: tufts.sculley
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

tufS2pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tufS2pci
  • Participant: tufts.sculley
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

tufS2ped

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tufS2ped
  • Participant: tufts.sculley
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

tufS2pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tufS2pei
  • Participant: tufts.sculley
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: online
  • Task: run

tufS3F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: tufS3F
  • Participant: tufts.sculley
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: Filter is TuftSpam filter. No prior training. Flags set to -N 6 and -T 100.

tufS4F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: tufS4F
  • Participant: tufts.sculley
  • Track: Spam
  • Year: 2006
  • Submission: 7/13/2006
  • Type: online
  • Task: filter
  • Run description: Filter is TuftSpam filter. No prior training. Flags set to -N 7 and -T 100.

WEIA4F

Results | Participants | Proceedings | Summary | Appendix

  • Run ID: WEIA4F
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 7/11/2006
  • Type: active
  • Task: filter
  • Run description: Welcome to KidultPRIS! Nowadays most of us are tired of the constant bombardment of their inboxes by unwanted email. It is high time for us to construct a robust spam filter which can detect spam efficiently without regarding our legal mails as spam. Fortunately, KidultPRIS is one of the excellent spam filters that meet our needs.KidultPRIS is a command line program which is exploited by the members in the lab of Pattern Recognition and Intelligent System, Beijing University of Posts and Telecommunications.

WEIA4pci

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WEIA4pci
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run

WEIA4pei

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: WEIA4pei
  • Participant: beijingu-posts-tele.weiran
  • Track: Spam
  • Year: 2006
  • Submission: 8/22/2006
  • Type: active
  • Task: run