Skip to content

Runs - Genomics 2005

ABBR003

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ABBR003
  • Participant: ibm.kanungo
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Allele task, using bayesian regression with full text representation and MH_Mesh check.

ABBR003SThr

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ABBR003SThr
  • Participant: ibm.kanungo
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Allele task, First, use bayesian regression with full text representation and MH_Mesh check. Second, use output from SVM for sanity check.

ABPLUS

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ABPLUS
  • Participant: erasmus.kors
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Abstract plus mesh headings plus chemicals

ABPLUSE

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ABPLUSE
  • Participant: erasmus.kors
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Abstracts plus mesh headings plus chemicals E

ABPLUSG

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ABPLUSG
  • Participant: erasmus.kors
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Abstracts plus mesh headings plus chemicals G

ABPLUST

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ABPLUST
  • Participant: erasmus.kors
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Abstracts plus mesh headings plus chemicals T

aDIMACSg9md

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aDIMACSg9md
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Article title, abstract and MEDLINE MeSH terms were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Gaussian prior, was trained and used to make predictions with maximum expected effectiveness threshold tuning.

aDIMACSg9w

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aDIMACSg9w
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Fulltext obtained from journal articles' subject, title, abstract and body fields were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Gaussian prior, was trained, and used to make predictions with maximum expected effectiveness threshold tuning.

aDIMACSl9md

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aDIMACSl9md
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Fulltext obtained from journal articles' subject, title, abstract and body fields were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Laplace prior, was trained, and used to make predictions with maximum expected effectiveness threshold tuning.

aDIMACSl9w

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aDIMACSl9w
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Fulltext obtained from journal articles' subject, title, abstract and body fields were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Laplace prior, was trained, and used to make predictions with maximum expected effectiveness threshold tuning.

aDUTCat1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aDUTCat1
  • Participant: dalianu.yang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/19/2005
  • Task: categorization
  • Run description: Titles, absracts, bodies are used to represent the documents, backspace-separated words as features, a svm classifier and set weights using tfidf. All texts are processed with A Biomedical Named Entity Recognizer(abner).

aDUTCat2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aDUTCat2
  • Participant: dalianu.yang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/19/2005
  • Task: categorization
  • Run description: Titles, absracts, bodies are used to represent the documents, backspace-separated words as features, a svm classifier and set weights using tfidf.

aFduMarsI

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aFduMarsI
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Porter Stemmer, Pubmed Stopword, Certain Domain Retrieval Otherness Model, SVM

aFduMarsII

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aFduMarsII
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Porter Stemmer, Pubmed Stopword, Certain Domain Retrieval Otherness Model, SVM, specified feature

aFduMarsIII

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aFduMarsIII
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Porter Stemmer, Pubmed Stopword, MeSH Tree Extracted Knowledge, Rocchio

Afull

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Afull
  • Participant: uwisconsin.craven
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: bag-of-words maximum entropy classifier

aibmadz05m1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aibmadz05m1
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Combined classifiers with probability thresholding.

aibmadz05m2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aibmadz05m2
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Combined classifiers with cross-validation thresholding.

aibmadz05s

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aibmadz05s
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Single classifiers.

aIBMIRLmet

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aIBMIRLmet
  • Participant: ibm-india.ramakrishnan
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: classifying using SVM the document set obtained as positive after the rules run (vectors mesh terms + class specific terms using the dic file).

aIBMIRLrul

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aIBMIRLrul
  • Participant: ibm-india.ramakrishnan
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: applying rules (mesh term and class specific term in medline record), formed using the training set, on the document set obtained after MH - Mice screening

aIBMIRLsvm

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aIBMIRLsvm
  • Participant: ibm-india.ramakrishnan
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: classifying using SVM of documents (vectors mesh terms + class specific terms using the dic file) obtained after MH - Mice screening

aLRIk1

Results | Participants | Input | Summary | Appendix

  • Run ID: aLRIk1
  • Participant: uparis-sud.kodratoff
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic

aLRIk2

Results | Participants | Input | Summary | Appendix

  • Run ID: aLRIk2
  • Participant: uparis-sud.kodratoff
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic + list.

aLRIk3

Results | Participants | Input | Summary | Appendix

  • Run ID: aLRIk3
  • Participant: uparis-sud.kodratoff
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic + rap + list.

Ameta

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Ameta
  • Participant: uwisconsin.craven
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: for each document, the posterior probabilites of individiual paragraphs -- as assigned by a primary maximum entropy classifier -- are tallied as a distribution, which is then classified by a secondary maxent classifier

aMUSCUIUC1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aMUSCUIUC1
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/30/2005
  • Task: categorization
  • Run description: This is triageA task with basic SVM classification

aMUSCUIUC2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aMUSCUIUC2
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/30/2005
  • Task: categorization
  • Run description: This is triageA task with SVM classification with semantic features

aMUSCUIUC3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aMUSCUIUC3
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/30/2005
  • Task: categorization
  • Run description: This is triageA task with SVM classification with semantic features and augmented training cases.

aNLMB

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aNLMB
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Mixture

aNLMF

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aNLMF
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Voting

aNTUMAC

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aNTUMAC
  • Participant: ntu.chen
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: Mesh30+Caption10+Abstract10+CaptionSEM10+AbstractSEM10

AOHSUBF

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: AOHSUBF
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: abstract title, word, MeSH, and gene tokens Chi-square feature selection Best-single feature classifier

AOHSUSL

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: AOHSUSL
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: abstract title, word, MeSH, and gene tokens Chi-square feature selection Slipper2 classifier

AOHSUVP

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: AOHSUVP
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: abstract title, word, MeSH, and gene tokens Chi-square feature selection Voting perceptron classifier

Apars

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Apars
  • Participant: uwisconsin.craven
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: averaging the posterior probabilities of selected individual paragraphs as assigned by a maximum entropy classifier trained on full documents

aQUNB8

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aQUNB8
  • Participant: queensu.shatkay
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: The probabilistic approach was used for creating probabilistic models of thematic clusters of all the irrelevant documents first, and the feature selection was done on each resulting thematic cluster. The selected features were used for the classification into "in"/"out" with respect to Allele category.

aQUT11

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aQUT11
  • Participant: queensu.shatkay
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: The probabilistic approach was used for creating probabilistic models of thematic clusters of all the irrelevant documents first, and the resulting thematic clusters were then used for classification into "in"/"out" with respect to Allele category.

aQUT14

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aQUT14
  • Participant: queensu.shatkay
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: The probabilistic approach was used for creating probabilistic models of thematic clusters of all the irrelevant documents first, and the resulting thematic clusters were then used for classification into "in"/"out" with respect to Allele category.

asubaral

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: asubaral
  • Participant: arizonau.baral
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: manual
  • Task: adhoc
  • Run description: Briefly list the most salient features of this run.

ASVMN03

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ASVMN03
  • Participant: ibm.kanungo
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Allele task, use support vector machine with full text representation (tuned threshold) and MH_Mesh check.

aUCHSCnb1En3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aUCHSCnb1En3
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Categorized based on select bigrams, extracted strain names, and mesh terms. Classifications performed with NaiveBayes. More strict feature selection.

aUCHSCnb1En4

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aUCHSCnb1En4
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Categorized based on select bigrams, extracted strain names, and mesh terms. Classifications performed with NaiveBayes. Less strict feature selection.

aUCHSCsvm

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: aUCHSCsvm
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Categorized based on select bigrams, extracted strain names, and mesh terms. Classifications performed with Support Vector Machine.

CCP0

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CCP0
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: manual
  • Task: adhoc
  • Run description: LocusLink gene synonym expansion; stemming; topic-specific keyword expansion; UMLS for disease synonyms, with heavy manual filtering of synonyms for "cancer"; weighted title over abstract.

CCP1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: CCP1
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: manual
  • Task: adhoc
  • Run description: LocusLink gene synonym expansion, converting all synonyms to a "bag of words", weighting individual words by frequency in synset; stemming; topic-specific keyword expansion; UMLS for disease synonyms, also converted to BOW; weighted title over abstract.

cuhkrun1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: cuhkrun1
  • Participant: cuhk.lam
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic classification using context feature engineering and context association.

cuhkrun1E

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: cuhkrun1E
  • Participant: cuhk.lam
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic classification using context feature engineering and context association.

cuhkrun1G

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: cuhkrun1G
  • Participant: cuhk.lam
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic classification using context feature engineering and context association.

cuhkrun1T

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: cuhkrun1T
  • Participant: cuhk.lam
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic classification using context feature engineering and context association.

cuhkrun2A

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: cuhkrun2A
  • Participant: cuhk.lam
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Customized learning by exploiting the symmetric property of attributes and instances.

cuhkrun2E

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: cuhkrun2E
  • Participant: cuhk.lam
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Customized learning by exploiting the symmetric property of attributes and instances.

cuhkrun2G

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: cuhkrun2G
  • Participant: cuhk.lam
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Customized learning by exploiting the symmetric property of attributes and instances.

cuhkrun2T

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: cuhkrun2T
  • Participant: cuhk.lam
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Customized learning by exploiting the symmetric property of attributes and instances.

cuhkrun3A

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: cuhkrun3A
  • Participant: cuhk.lam
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Customized learning by exploiting the symmetric property of attributes and instances with all features.

cuhkrun3E

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: cuhkrun3E
  • Participant: cuhk.lam
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Customized learning by exploiting the symmetric property of attributes and instances with all features.

cuhkrun3G

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: cuhkrun3G
  • Participant: cuhk.lam
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Customized learning by exploiting the symmetric property of attributes and instances with all features.

cuhkrun3T

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: cuhkrun3T
  • Participant: cuhk.lam
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Customized learning by exploiting the symmetric property of attributes and instances with all features.

dcu1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: dcu1
  • Participant: dublincityu.gurrin
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: This run is the result of pseudo-relevance feedback on a baseline obtained with the DCU CDVP search engine Fisreal. Our search engine implements the BM25 probabilistic algorithm and the pseudo-relevance feedback is using Robertson Offer Weight method. The feedback aims at expanding the original queries with terms related to the generic structure of the queries, i.e. the Generic Topic Templates. The expansion terms were extracted from the sample search results using the relevance judgment provided.

dcu2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: dcu2
  • Participant: dublincityu.gurrin
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: This run is the result of pseudo-relevance feedback on a baseline obtained with the DCU CDVP search engine Fisreal. Our search engine implements the BM25 probabilistic algorithm and the pseudo-relevance feedback is using Robertson Offer Weight method. The feedback aims at expanding the original queries with terms related to the generic structure of the queries, i.e. the Generic Topic Templates (GTTs). The top 5 documents for each topic of the same GTT are assumed relevant and GTT-related structure terms are extracted from these documents to expand topics that are instances of that particular GTT.

dpsearch1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: dpsearch1
  • Participant: datapark.zakharov
  • Track: Genomics
  • Year: 2005
  • Submission: 7/27/2005
  • Type: manual
  • Task: adhoc
  • Run description: The DataparkSearch engine of upcoming 4.32 version has been used with fast method and default options of relevancy calculation.

dpsearch2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: dpsearch2
  • Participant: datapark.zakharov
  • Track: Genomics
  • Year: 2005
  • Submission: 7/27/2005
  • Type: manual
  • Task: adhoc
  • Run description: The DataparkSearch engine of upcoming 4.32 version has been used with full method and default options of relevancy calculation.

DUTAdHoc1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: DUTAdHoc1
  • Participant: dalianu.yang
  • Track: Genomics
  • Year: 2005
  • Submission: 7/30/2005
  • Type: manual
  • Task: adhoc
  • Run description: Our ad hoc task retreival system mainly includes the following features gene synonym expansion,medical term expansion based on the Metathesaurus of UMLS Knowledge Sources provided by NLM,different scoring strategy on different parts of Medline record(Title,Abstract,RN,MH,etc.).

DUTAdHoc2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: DUTAdHoc2
  • Participant: dalianu.yang
  • Track: Genomics
  • Year: 2005
  • Submission: 7/30/2005
  • Type: manual
  • Task: adhoc
  • Run description: Our ad hoc task retreival system mainly includes the following features gene synonym expansion,medical term expansion based on the Metathesaurus of UMLS Knowledge Sources provided by NLM,different scoring strategy on different parts of Medline record(Title,Abstract,RN,MH,etc.)and Pseudo-relevant feedback.

EBBR0006

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: EBBR0006
  • Participant: ibm.kanungo
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Expression task, use bayesian regression with full text representation (tuned threshold) and MH_Mesh check.

EBBR0006SThr

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: EBBR0006SThr
  • Participant: ibm.kanungo
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Expression task, First use bayesian regression with full text representation (tuned threshold) and MH_Mesh check. Second, use output from SVM for sanity check.

eDIMACSg9md

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eDIMACSg9md
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Article title, abstract and MEDLINE MeSH terms were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Gaussian prior, was trained and used to make predictions with maximum expected effectiveness threshold tuning.

eDIMACSg9w

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eDIMACSg9w
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Fulltext obtained from journal articles' subject, title, abstract and body fields were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Gaussian prior, was trained, and used to make predictions with maximum expected effectiveness threshold tuning.

eDIMACSl9md

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eDIMACSl9md
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Article title, abstract and MEDLINE MeSH terms were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Laplace prior, was trained and used to make predictions with maximum expected effectiveness threshold tuning.

eDIMACSl9w

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eDIMACSl9w
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Fulltext obtained from journal articles' subject, title, abstract and body fields were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Laplace prior, was trained, and used to make predictions with maximum expected effectiveness threshold tuning.

eDUTCat1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eDUTCat1
  • Participant: dalianu.yang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/19/2005
  • Task: categorization
  • Run description: Titles, absracts, bodies are used to represent the documents, only nouns as features, a svm classifier and set weights using tfidf. All texts are processed with A Biomedical Named Entity Recognizer(abner).

eDUTCat2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eDUTCat2
  • Participant: dalianu.yang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/19/2005
  • Task: categorization
  • Run description: Titles, absracts, bodies are used to represent the documents, backspace-separated words as features, a svm classifier and set weights using tfidf.

eFduMarsI

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eFduMarsI
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Porter Stemmer, Pubmed Stopword, Certain Domain Retrieval Otherness Model, SVM

eFduMarsII

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eFduMarsII
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Porter Stemmer, Pubmed Stopword, Certain Domain Retrieval Otherness Model, SVM, specified feature

eFduMarsIII

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eFduMarsIII
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Porter Stemmer, Pubmed Stopword, MeSH Tree Extracted Knowledge, Rocchio

Efull

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Efull
  • Participant: uwisconsin.craven
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: bag-of-words maximum entropy classifier

eibmadz05m1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eibmadz05m1
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Combined classifiers with probability thresholding.

eibmadz05m2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eibmadz05m2
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Combined classifiers with cross-validation thresholding.

eibmadz05s

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eibmadz05s
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Single classifiers.

eIBMIRLmet

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eIBMIRLmet
  • Participant: ibm-india.ramakrishnan
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: classifying using svmlight the document set obtained as positive after the rules run (vectors mesh terms + class specific terms using the dic file).

eIBMIRLrul

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eIBMIRLrul
  • Participant: ibm-india.ramakrishnan
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: applying rules (mesh term and class specific term in medline record), formed using the training set, on the document set obtained after MH - Mice screening

eIBMIRLsvm

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eIBMIRLsvm
  • Participant: ibm-india.ramakrishnan
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: classifying using SVM of documents (vectors mesh terms + class specific terms using the dic file) obtained after MH - Mice screening

eLRIk1

Results | Participants | Input | Summary | Appendix

  • Run ID: eLRIk1
  • Participant: uparis-sud.kodratoff
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: automatic

eLRIk2

Results | Participants | Input | Summary | Appendix

  • Run ID: eLRIk2
  • Participant: uparis-sud.kodratoff
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic + list.

eLRIk3

Results | Participants | Input | Summary | Appendix

  • Run ID: eLRIk3
  • Participant: uparis-sud.kodratoff
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic + Rap + list.

Emeta

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Emeta
  • Participant: uwisconsin.craven
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: for each document, the posterior probabilites of individiual paragraphs -- as assigned by a primary maximum entropy classifier -- are tallied as a distribution, which is then classified by a secondary maxent classifier

eMUSCUIUC1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eMUSCUIUC1
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/30/2005
  • Task: categorization
  • Run description: This is triageE task with SVM classification with semantic features and augmented training cases. Records without MeSH term mice are removed

eMUSCUIUC2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eMUSCUIUC2
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/30/2005
  • Task: categorization
  • Run description: This is triageE task with SVM classification with semantic features.

eMUSCUIUC3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eMUSCUIUC3
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/30/2005
  • Task: categorization
  • Run description: This is triageE task with SVM classification with semantic features and augmented training cases. Record without MeSH mice are also included.

eNLMF

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eNLMF
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Voting

eNLMKNN

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eNLMKNN
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Mixture

eNTUMAC

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eNTUMAC
  • Participant: ntu.chen
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: Mesh10+Caption10+CaptionSEM10

EOHSUBF

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: EOHSUBF
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: abstract title, word, MeSH, and gene tokens Chi-square feature selection Best-single feature classifier

EOHSUSL

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: EOHSUSL
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: abstract title, word, MeSH, and gene tokens Chi-square feature selection Slipper2 classifier

EOHSUVP

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: EOHSUVP
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: abstract title, word, MeSH, and gene tokens Chi-square feature selection Voting perceptron classifier

Epars

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Epars
  • Participant: uwisconsin.craven
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: averaging the posterior probabilities of selected individual paragraphs as assigned by a maximum entropy classifier trained on full documents

eQUNB11

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eQUNB11
  • Participant: queensu.shatkay
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: The probabilistic approach was used for creating probabilistic models of thematic clusters of all the irrelevant documents first, and the feature selection was done on each resulting thematic cluster. The selected features were then used for classification into "in"/"out" with respect to Expression category.

eQUNB19

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eQUNB19
  • Participant: queensu.shatkay
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: The naive Bayes approach for classification into "in"/"out" with respect to Expression category. The different costs on different misclassifications were taken into account.

eQUT18

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eQUT18
  • Participant: queensu.shatkay
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: The probabilistic approach was used for creating probabilistic models of thematic clusters of all the irrelevant documents first, and the resulting thematic clusters were then used for classification into "in"/"out" with respect to Expression category

ESVMN075

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ESVMN075
  • Participant: ibm.kanungo
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Expression task, use support vector machine with full text representation (tuned threshold) and MH_Mesh check.

eUCHSCnb1En3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eUCHSCnb1En3
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Categorized based on select bigrams, extracted strain names, and mesh terms. Classifications performed with NaiveBayes. More strict feature selection.

eUCHSCnb1En4

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eUCHSCnb1En4
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Categorized based on select bigrams, extracted strain names, and mesh terms. Classifications performed with NaiveBayes. Less strict feature selection.

eUCHSCsvm

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: eUCHSCsvm
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Categorized based on select bigrams, extracted strain names, and mesh terms. Classifications performed with Support Vector Machine.

FTA

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: FTA
  • Participant: erasmus.kors
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Fulltext A

FTE

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: FTE
  • Participant: erasmus.kors
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Fulltext E

FTG

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: FTG
  • Participant: erasmus.kors
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Fulltext G

FTT

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: FTT
  • Participant: erasmus.kors
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: Fulltext T

GAbsBBR0083

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: GAbsBBR0083
  • Participant: ibm.kanungo
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Go annotation task, use bayesian regression with abstract text representation (derived threshold) and MH_Mesh check.

GBBR004

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: GBBR004
  • Participant: ibm.kanungo
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Go annotation task, use bayesian regression with full text representation (tuned threshold) and MH_Mesh check.

gDIMACSg9md

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gDIMACSg9md
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Article title, abstract and MEDLINE MeSH terms were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Gaussian prior, was trained and used to make predictions with maximum expected effectiveness threshold tuning.

gDIMACSg9w

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gDIMACSg9w
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Fulltext obtained from journal articles' subject, title, abstract and body fields were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Gaussian prior, was trained, and used to make predictions with maximum expected effectiveness threshold tuning.

gDIMACSl9md

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gDIMACSl9md
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Article title, abstract and MEDLINE MeSH terms were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Laplace prior, was trained and used to make predictions with maximum expected effectiveness threshold tuning.

gDIMACSl9w

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gDIMACSl9w
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Fulltext obtained from journal articles' subject, title, abstract and body fields were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Laplace prior, was trained, and used to make predictions with maximum expected effectiveness threshold tuning.

gDUTCat1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gDUTCat1
  • Participant: dalianu.yang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/19/2005
  • Task: categorization
  • Run description: Documents are classified indepedently by three parts, its PMID record's MeSH term, full text, and title plus abstract. Then the results are combined by a evaluation program. We use a svm classifier, backspace-separated words as features, a tfidf method to set weights. Full texts are processed by A Biomedical Named Entity Recognizer(abner). Finally the positive instances are filtered with a algorithm according to the numbers of proteins of each document.

gDUTCat2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gDUTCat2
  • Participant: dalianu.yang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/19/2005
  • Task: categorization
  • Run description: Documents are classified indepedently by three parts, its PMID record's MeSH term, full text, and title plus abstract. Then the results are combined by a evaluation program. We use a svm classifier, backspace-separated words as features, a tfidf method to set weights. Full texts are processed by A Biomedical Named Entity Recognizer(abner).

genome1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: genome1
  • Participant: csusm.guillen
  • Track: Genomics
  • Year: 2005
  • Submission: 7/31/2005
  • Type: automatic
  • Task: adhoc
  • Run description: We used the INDRI system developed by UMASS and CMU to create five indexes. Then we used the "runquery" option to retrieve documents using the five indexes. The topics were mapped to the INDRI format before retrieving the documents.

genome2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: genome2
  • Participant: csusm.guillen
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: We used the INDRI system developed by UMASS and CMU to create five indexes. Then we used the "runquery" option including the feedback parameter with 100 documents to retrieve documents. The topics were mapped to the INDRI system format before running the queries.

gFduMarsI

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gFduMarsI
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Porter Stemmer, Pubmed Stopword, Certain Domain Retrieval Otherness Model, SVM

gFduMarsII

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gFduMarsII
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Porter Stemmer, Pubmed Stopword, Certain Domain Retrieval Otherness Model, SVM, specified feature

gFduMarsIII

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gFduMarsIII
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Porter Stemmer, Pubmed Stopword, MeSH Tree Extracted Knowledge, Rocchio

Gfull

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Gfull
  • Participant: uwisconsin.craven
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: bag-of-words maximum entropy classifier

gibmadz05m1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gibmadz05m1
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Combined classifiers with probability thresholding.

gibmadz05m2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gibmadz05m2
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Combined classifiers with cross-validation thresholding.

gibmadz05s

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gibmadz05s
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Single classifiers.

gIBMIRLmet

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gIBMIRLmet
  • Participant: ibm-india.ramakrishnan
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: classifying using SVM the document set obtained as positive after the rules run (vectors mesh terms + class specific terms using the dic file).

gIBMIRLrul

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gIBMIRLrul
  • Participant: ibm-india.ramakrishnan
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: applying rules (mesh term and class specific term in medline record), formed using the training set, on the document set obtained after MH - Mice screening

gIBMIRLsvm

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gIBMIRLsvm
  • Participant: ibm-india.ramakrishnan
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: classifying using SVM of documents (vectors mesh terms + class specific terms using the dic file) obtained after MH - Mice screening

gLRIk1

Results | Participants | Input | Summary | Appendix

  • Run ID: gLRIk1
  • Participant: uparis-sud.kodratoff
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic

gLRIk2

Results | Participants | Input | Summary | Appendix

  • Run ID: gLRIk2
  • Participant: uparis-sud.kodratoff
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic + list.

gLRIk3

Results | Participants | Input | Summary | Appendix

  • Run ID: gLRIk3
  • Participant: uparis-sud.kodratoff
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic + List + Rap .

Gmeta

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Gmeta
  • Participant: uwisconsin.craven
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: for each document, the posterior probabilites of individiual paragraphs -- as assigned by a primary maximum entropy classifier -- are tallied as a distribution, which is then classified by a secondary maxent classifier

gMUSCUIUC1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gMUSCUIUC1
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/30/2005
  • Task: categorization
  • Run description: This is triageG task with SVM classification with full vocabulary.

gMUSCUIUC2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gMUSCUIUC2
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/30/2005
  • Task: categorization
  • Run description: This is triageG task with SVM classification with sematnic feature. Parameter 'j' is set to 8.

gMUSCUIUC3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gMUSCUIUC3
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/30/2005
  • Task: categorization
  • Run description: This is triageG task with SVM classification with sematnic feature. Parameter 'j' is set to 20.

gNLMF

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gNLMF
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Voting

gNTUMAC

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gNTUMAC
  • Participant: ntu.chen
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: Mesh10+Caption10+MeshSEM10

GOHSUBF

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: GOHSUBF
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: abstract title, word, MeSH, and gene tokens Chi-square feature selection Best-single feature classifier

GOHSUSL

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: GOHSUSL
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: abstract title, word, MeSH, and gene tokens Chi-square feature selection Slipper2 classifier

GOHSUVP

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: GOHSUVP
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: abstract title, word, MeSH, and gene tokens Chi-square feature selection Voting perceptron classifier

Gpars

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Gpars
  • Participant: uwisconsin.craven
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: averaging the posterior probabilities of selected individual paragraphs as assigned by a maximum entropy classifier trained on full documents

gQUNB12

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gQUNB12
  • Participant: queensu.shatkay
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: The naive Bayes approach was used for classification into "in"/"out" with respect to GO category. The different costs on different misclassifications were taken into account.

gQUNB15

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gQUNB15
  • Participant: queensu.shatkay
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: The probabilistic approach was used for creating probabilistic models of thematic clusters of all the irrelevant documents first, and the feature selection was done on each resulting thematic cluster. The selected features were then used for classification into "in"/"out" with respect to GO category.

gQUT22

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gQUT22
  • Participant: queensu.shatkay
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: The probabilistic approach was used for creating probabilistic models of thematic clusters of all the irrelevant documents first, and the resulting thematic clusters were then used for classification into "in"/"out" with respect to GO category

GSVMN08

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: GSVMN08
  • Participant: ibm.kanungo
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Go annotation task, use support vector machine with full text representation (tuned threshold) and MH_Mesh check.

gUCHSCnb1En3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gUCHSCnb1En3
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Categorized based on select bigrams, extracted strain names, and mesh terms. Classifications performed with NaiveBayes. More strict feature selection.

gUCHSCnb1En4

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gUCHSCnb1En4
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Categorized based on select bigrams, extracted strain names, and mesh terms. Classifications performed with NaiveBayes. Less strict feature selection.

gUCHSCsvm

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: gUCHSCsvm
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Categorized based on select bigrams, extracted strain names, and mesh terms. Classifications performed with Support Vector Machine.

i2r1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: i2r1
  • Participant: iir.yu
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Automatic run of Institute for Infocomm Research.

i2r2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: i2r2
  • Participant: iir.yu
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: The 2nd run from Institute for Infocomm Research

iasl1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: iasl1
  • Participant: academia.sinica.tsai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Without using query expansion in Template 1. Without relevance feedback.

iasl2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: iasl2
  • Participant: academia.sinica.tsai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/2/2005
  • Type: automatic
  • Task: adhoc
  • Run description: With query expansion in Template 1 and relevance feedback

ibmadz05bs

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ibmadz05bs
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Primary run. Enhanced automatic relevance feedback. Synonyms from external resources. Queries enhanced by bi-grams.

ibmadz05us

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: ibmadz05us
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Secondary run. Enhanced automatic relevance feedback. Synonyms from external resources.

iitprf011003

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: iitprf011003
  • Participant: iit.urbain
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Modivied pvn with 1 iteration RF.

LPC6

Results | Participants | Input | Summary | Appendix

  • Run ID: LPC6
  • Participant: langpower.yang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/27/2005
  • Task: categorization
  • Run description: System built using rule-based NLP parsing and concept-based indexing.

LPC7

Results | Participants | Input | Summary | Appendix

  • Run ID: LPC7
  • Participant: langpower.yang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/27/2005
  • Task: categorization
  • Run description: System built using rule-based NLP parsing and concept-based indexing.

MARYGEN1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: MARYGEN1
  • Participant: umaryland.oard
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: InQuery with proximity operators for phrases identified using MetaMap and disease name expansion using MetaMap

NCBIMAN

Results | Participants | Input | Summary | Appendix

  • Run ID: NCBIMAN
  • Participant: nlm.wilbur
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: manual
  • Task: adhoc
  • Run description: Same as NCBITHQ for all queries except template 1 (100-109) which used manual theme generation.

NCBITHQ

Results | Participants | Input | Summary | Appendix

  • Run ID: NCBITHQ
  • Participant: nlm.wilbur
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Phrases and their variants are extracted from each query and used to form boolean queries. The non-gene resuls are expanded using a "theme" approach (naive Bayes scoring) to rescore the results. Document scores from individual queries are converted to probabilites and combined with fuzzy logic operations. Template 1 uses the MEDLINE nearest neighbor function instead of boolean queries on separate phrases, and combines the results with a generic "protocol theme".

NLM1G

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: NLM1G
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Mixture

NLM1T

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: NLM1T
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Mixture

NLM2A

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: NLM2A
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: ML methods

NLM2E

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: NLM2E
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: ML methods

NLM2G

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: NLM2G
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: ML methods

NLM2T

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: NLM2T
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: ML methods

NLMfusionA

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: NLMfusionA
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: combination of four systems NCBI, Smart, InQuery, EZIR with query expansion

NLMfusionB

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: NLMfusionB
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: combination by template of four systems NCBI, Smart, InQuery, EZIR with query expansion

NTUgah1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: NTUgah1
  • Participant: ntu.chen
  • Track: Genomics
  • Year: 2005
  • Submission: 7/30/2005
  • Type: automatic
  • Task: adhoc
  • Run description: The Entrez Gene and MeSH databases are used to identify important topic terms and their synonymns. For a topic, documents are first ranked by whether they contain all the important terms, and than by BM25 scores.

NTUgah2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: NTUgah2
  • Participant: ntu.chen
  • Track: Genomics
  • Year: 2005
  • Submission: 7/30/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Same as NTUgah1, except that documents which contain all important terms in their abstracts or titles are ranked higher than those which contain important terms appearing only in their MeSH fields.

OHSUall

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: OHSUall
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 7/29/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Briefly list the most salient features of this run.

OHSUkey

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: OHSUkey
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 7/29/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Briefly list the most salient features of this run.

PDnoSE

Results | Participants | Input | Summary | Appendix

  • Run ID: PDnoSE
  • Participant: upadova.bacchin
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: This is a TF-IDF vector based IR system.

PDSESe02

Results | Participants | Input | Summary | Appendix

  • Run ID: PDSESe02
  • Participant: upadova.bacchin
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: The IR system uses a query expansion technique based on symbol recognition.

SFUshi

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: SFUshi
  • Participant: simon-fraseru.shi
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: manual
  • Task: adhoc
  • Run description: 1. Make use of public gene/protein database to expand query; 2. Use structured query to express logic relations among query terms; 3. Use pseudo relevance feedback;

TBBR0004

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: TBBR0004
  • Participant: ibm.kanungo
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Tumor task, use bayesian regression with full text representation (derived threshold) and MH_Mesh check.

TBBR0004SThr

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: TBBR0004SThr
  • Participant: ibm.kanungo
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Tumor task, First use bayesian regression with full text representation (derived threshold) and MH_Mesh check. Second, use output from SVM for sanity check.

Tcsusm1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Tcsusm1
  • Participant: csusm.guillen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: The documents went through two passes. In the first pass we selected those documents containing the keywords as they appear in Area tumor column "Always select" (Library Triage Cheat Sheet). In a second pass we discarded those documents including Cell Lines for mouse and human (Library Triage Cheat Sheet). The decision making process in both passes is done with decision rules

Tcsusm2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Tcsusm2
  • Participant: csusm.guillen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: A third pass was added at the end for this run. In this pass we filtered the documents left from the second pass using the keywords not to choose documents. The decision making process was also done with decision rules.

tDIMACSg9md

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tDIMACSg9md
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Article title, abstract and MEDLINE MeSH terms were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Gaussian prior, was trained and used to make predictions with maximum expected effectiveness threshold tuning.

tDIMACSg9w

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tDIMACSg9w
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Fulltext obtained from journal articles' subject, title, abstract and body fields were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Gaussian prior, was trained, and used to make predictions with maximum expected effectiveness threshold tuning.

tDIMACSl9md

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tDIMACSl9md
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Article title, abstract and MEDLINE MeSH terms were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Laplace prior, was trained and used to make predictions with maximum expected effectiveness threshold tuning.

tDIMACSl9w

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tDIMACSl9w
  • Participant: rutgers.dayanik
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Fulltext obtained from journal articles' subject, title, abstract and body fields were used for document representation. Text representation stemmed, logtf-idf, cosine normalization. A classifier, Bayesian Binary Regression (BBR) with Laplace prior, was trained, and used to make predictions with maximum expected effectiveness threshold tuning.

tDUTCat1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tDUTCat1
  • Participant: dalianu.yang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/19/2005
  • Task: categorization
  • Run description: Titles, absracts, bodies are used to represent the documents, backspace-separated words as features, a svm classifier , set weights using tfidf, all texts are processed with A Biomedical Named Entity Recognizer(abner).

tDUTCat2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tDUTCat2
  • Participant: dalianu.yang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/19/2005
  • Task: categorization
  • Run description: Titles, absracts are used to represent the documents, backspace-separated words as features, a svm classifier , set weights using tfidf.

tFduMarsI

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tFduMarsI
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Porter Stemmer, Pubmed Stopword, Certain Domain Retrieval Otherness Model, SVM

tFduMarsII

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tFduMarsII
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Porter Stemmer, Pubmed Stopword, Certain Domain Retrieval Otherness Model, SVM, specified feature

tFduMarsIII

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tFduMarsIII
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Porter Stemmer, Pubmed Stopword, MeSH Tree Extracted Knowledge, Rocchio

Tfull

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Tfull
  • Participant: uwisconsin.craven
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: bag-of-words maximum entropy classifier

THUIRgA0p9x

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: THUIRgA0p9x
  • Participant: tsinghua.ma
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: CV version.

THUIRgen1S

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: THUIRgen1S
  • Participant: tsinghua.ma
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Structural Query Language; UniSentence, BiSentence and Multi-field Retrieval; Internal Resource Utility; Iterative Result Fusion; Stemming, Stopword, BM2500, Pseudo-relevance feedback; (More details will be involved in our report.)

THUIRgen2P

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: THUIRgen2P
  • Participant: tsinghua.ma
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Pattern Generation; Pattern Matching and Scoring; Prefix, Midfix, and Suffix for Given Template Expansion; Balance Between Precision and Recall; Internal Resource Utility. (More details will be involved in our report.)

THUIRgenA1p1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: THUIRgenA1p1
  • Participant: tsinghua.ma
  • Track: Genomics
  • Year: 2005
  • Submission: 8/31/2005
  • Task: categorization
  • Run description: Baseline run. Only distanced bigram features.

THUIRgenE1p8

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: THUIRgenE1p8
  • Participant: tsinghua.ma
  • Track: Genomics
  • Year: 2005
  • Submission: 8/31/2005
  • Task: categorization
  • Run description: Baseline run. Only distanced bigram features.

THUIRgenG1p1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: THUIRgenG1p1
  • Participant: tsinghua.ma
  • Track: Genomics
  • Year: 2005
  • Submission: 8/31/2005
  • Task: categorization
  • Run description: Baseline run. Only distanced bigram features.

THUIRgenGMNG

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: THUIRgenGMNG
  • Participant: tsinghua.ma
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: n-gram features. MeSH lib added.

THUIRgenT1p5

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: THUIRgenT1p5
  • Participant: tsinghua.ma
  • Track: Genomics
  • Year: 2005
  • Submission: 8/31/2005
  • Task: categorization
  • Run description: Baseline run. Only distanced bigram features.

tibmadz05m1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tibmadz05m1
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Combined classifiers with probability thresholding.

tibmadz05m2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tibmadz05m2
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Combined classifiers with cross-validation thresholding.

tibmadz05s

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tibmadz05s
  • Participant: ibm.zhang
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Single classifiers.

tIBMIRLmet

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tIBMIRLmet
  • Participant: ibm-india.ramakrishnan
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: classifying using svmlight the document set obtained as positive after the rules run (vectors mesh terms + class specific terms using the dic file).

tIBMIRLrul

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tIBMIRLrul
  • Participant: ibm-india.ramakrishnan
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: applying rules (mesh term and class specific term in medline record), formed using the training set, on the document set obtained after MH - Mice screening

tIBMIRLsvm

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tIBMIRLsvm
  • Participant: ibm-india.ramakrishnan
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: classifying using SVM documents (vectors mesh terms + class specific terms using the dic file) obtained after MH - Mice screening

tLRIk1

Results | Participants | Input | Summary | Appendix

  • Run ID: tLRIk1
  • Participant: uparis-sud.kodratoff
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic

tLRIk2

Results | Participants | Input | Summary | Appendix

  • Run ID: tLRIk2
  • Participant: uparis-sud.kodratoff
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic + list.

tLRIk3

Results | Participants | Input | Summary | Appendix

  • Run ID: tLRIk3
  • Participant: uparis-sud.kodratoff
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Automatic + list + rap.

Tmeta

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Tmeta
  • Participant: uwisconsin.craven
  • Track: Genomics
  • Year: 2005
  • Submission: 9/2/2005
  • Task: categorization
  • Run description: for each document, the posterior probabilites of individiual paragraphs -- as assigned by a primary maximum entropy classifier -- are tallied as a distribution, which is then classified by a secondary maxent classifier

tMUSCUIUC1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tMUSCUIUC1
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/30/2005
  • Task: categorization
  • Run description: This is triageG task with SVM classification with sematnic feature. Parameter 'j' is set to 20.

tMUSCUIUC2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tMUSCUIUC2
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/30/2005
  • Task: categorization
  • Run description: This is triageG task with SVM classification with sematnic feature and augmented training cases. Parameter 'j' is set to 20.

tMUSCUIUC3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tMUSCUIUC3
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/30/2005
  • Task: categorization
  • Run description: This is triageG task with SVM classification with sematnic feature and augmented training cases. Parameter 'j' is set to 20. Records without MeSH terms under the subtree 'neoplasma'.

tNLMF

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tNLMF
  • Participant: nlm-umd.aronson
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Voting

tnog10

Results | Participants | Input | Summary | Appendix

  • Run ID: tnog10
  • Participant: tno.erasmus.kraaij
  • Track: Genomics
  • Year: 2005
  • Submission: 7/31/2005
  • Type: automatic
  • Task: adhoc
  • Run description: JM smoothed language model

tnog10p

Results | Participants | Input | Summary | Appendix

  • Run ID: tnog10p
  • Participant: tno.erasmus.kraaij
  • Track: Genomics
  • Year: 2005
  • Submission: 7/31/2005
  • Type: automatic
  • Task: adhoc
  • Run description: JM smoothed language model, + Journal title prior

tNTUMAC

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tNTUMAC
  • Participant: ntu.chen
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: Mesh30+Caption30+Abstract30+AbstractSEM10+CaptionSEM30

tNTUMACasem

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tNTUMACasem
  • Participant: ntu.chen
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: AbstractSEM10

tNTUMACwj

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tNTUMACwj
  • Participant: ntu.chen
  • Track: Genomics
  • Year: 2005
  • Submission: 8/24/2005
  • Task: categorization
  • Run description: Mesh30+Caption30+wjAbstract30+AbstractSEM10+CaptionSEM30

TOHSUBF

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: TOHSUBF
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: abstract title, word, MeSH, and gene tokens Chi-square feature selection Best-single feature classifier

TOHSUSL

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: TOHSUSL
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: abstract title, word, MeSH, and gene tokens Chi-square feature selection Slipper2 classifier

TOHSUVP

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: TOHSUVP
  • Participant: ohsu.hersh
  • Track: Genomics
  • Year: 2005
  • Submission: 8/22/2005
  • Task: categorization
  • Run description: abstract title, word, MeSH, and gene tokens Chi-square feature selection Voting perceptron classifier

Tpars

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: Tpars
  • Participant: uwisconsin.craven
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: averaging the posterior probabilities of selected individual paragraphs as assigned by a maximum entropy classifier trained on full documents

tQUNB3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tQUNB3
  • Participant: queensu.shatkay
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: The naive Bayes approach was used for for classification into "in"/"out" with respect to Tumor category. The different costs on different misclassifications were taken into account.

tQUT10

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tQUT10
  • Participant: queensu.shatkay
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: The probabilistic approach was used for creating probabilistic models of thematic clusters of all the irrelevant documents first, and the resulting thematic clusters were then used for classification into "in"/"out" with respect to the Tumor category.

tQUT14

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tQUT14
  • Participant: queensu.shatkay
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: The probabilistic approach was used for creating probabilistic models of thematic clusters of all the irrelevant documents first, and the resulting thematic clusters were then used for classification into "in"/"out" with respect to the Tumor category.

TSVM0035

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: TSVM0035
  • Participant: ibm.kanungo
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Tumor task, use support vector machine with full text representation (tuned threshold) and MH_Mesh check.

tUCHSCnb1En3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tUCHSCnb1En3
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Categorized based on select bigrams, extracted strain names, and mesh terms. Classifications performed with NaiveBayes. More strict feature selection.

tUCHSCnb1En4

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tUCHSCnb1En4
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Categorized based on select bigrams, extracted strain names, and mesh terms. Classifications performed with NaiveBayes. Less strict feature selection.

tUCHSCsvm

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: tUCHSCsvm
  • Participant: ucolorado.cohen
  • Track: Genomics
  • Year: 2005
  • Submission: 9/1/2005
  • Task: categorization
  • Run description: Categorized based on select bigrams, extracted strain names, and mesh terms. Classifications performed with Support Vector Machine.

UAmscombGeFb

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UAmscombGeFb
  • Participant: uamsterdam.aidteam
  • Track: Genomics
  • Year: 2005
  • Submission: 7/29/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Run that combines MeSH-heading based blind feedback with gene name synonym and acronym expansion

UAmscombGeMl

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UAmscombGeMl
  • Participant: uamsterdam.aidteam
  • Track: Genomics
  • Year: 2005
  • Submission: 7/29/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Run that combines gene name synonym and acronym expansion with automatic MeSH-heading lookup procedure

UBIgeneA

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UBIgeneA
  • Participant: suny-buffalo.ruiz
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Automatic run using gene expansion with MeSH terms, minimal stemming, and restricted word bigrams. IR system SMART, weighting scheme atn.ann

UICgen1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UICgen1
  • Participant: uillinois-chicago.liu
  • Track: Genomics
  • Year: 2005
  • Submission: 7/29/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Porter stemming; OKAPI; Query expansion; Weighting scheme

UIowa05GN101

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UIowa05GN101
  • Participant: uiowa.eichmann
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Precision focussed run. Uses a more stringent threshold on the ranked results.

UIowa05GN102

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UIowa05GN102
  • Participant: uiowa.eichmann
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Recall focussed run.

UIUCgAuto

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UIUCgAuto
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/2/2005
  • Type: automatic
  • Task: adhoc
  • Run description: This run is produced completely automatically from the original topic description. It performs pseudo feedback based on the structure of the query using a language modeling approach.

UIUCgInt

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UIUCgInt
  • Participant: uiuc.zhai
  • Track: Genomics
  • Year: 2005
  • Submission: 8/2/2005
  • Type: interactive
  • Task: adhoc
  • Run description: This run is produced with human relevance judgments on the top 20 documents from the initial retrieval run. It also uses biology resources to automatically expand the original queries.

UMD01

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UMD01
  • Participant: umichigan-dearborn.murphey
  • Track: Genomics
  • Year: 2005
  • Submission: 7/27/2005
  • Type: automatic
  • Task: adhoc
  • Run description: We extracted key words from each topic and combine keywords with logic connection AND or OR. We then calculated similarity scores of all documents with this combination and sorted the results.

UMD02

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UMD02
  • Participant: umichigan-dearborn.murphey
  • Track: Genomics
  • Year: 2005
  • Submission: 7/30/2005
  • Type: automatic
  • Task: adhoc
  • Run description: We extracted key words from each topic,then calculated similarity scores by Okapi BM25 method and sorted the results.

UniGe2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UniGe2
  • Participant: u.geneva
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: This runs merges two different lists 1) a run with query expansion, based on gene and protein names and rocchio; 2) a run with expansion based on MeSH terms. Warning this run is intended to replace the run 'UniGeC' ! Please, run 'UniGeC' is corrupted and should be deleted.

UniGeNe

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UniGeNe
  • Participant: u.geneva
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Data fusion (combination of two result lists) by a) a probabilistic model + pseudo-relance feedback (10 docs / 20 terms) b) same probabilistic model with modified queries (with thesaurus of gene and protein names) + PRF (10 docs / 20 terms)

UniNeHug2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UniNeHug2
  • Participant: uneuchatel.savoy
  • Track: Genomics
  • Year: 2005
  • Submission: 7/27/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Probabilistic model + pseudo-relance feedback (10docs / 20 terms)

UniNeHug2c

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: UniNeHug2c
  • Participant: uneuchatel.savoy
  • Track: Genomics
  • Year: 2005
  • Submission: 7/27/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Data fusion (combination of two result lists) by a) a probabilistic model + pseudo-relance feedback (10docs / 20 terms) b) same probabilistic model with modified queries (with genomics DB) + PRF (10 docs / 20 terms)

uta05a

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: uta05a
  • Participant: utampere.pirkola
  • Track: Genomics
  • Year: 2005
  • Submission: 7/17/2005
  • Type: automatic
  • Task: adhoc
  • Run description: This is a simple run that serves as a baseline for our second run. Topic keys were used in queries, no expansion etc. was used. Different columns of a template were linked by a Boolean conjunction.

uta05i

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: uta05i
  • Participant: utampere.pirkola
  • Track: Genomics
  • Year: 2005
  • Submission: 7/29/2005
  • Type: interactive
  • Task: adhoc
  • Run description: 1. Synonymous gene names for the topic gene names were retrieved from the Entrez Gene. 2. Our automatic queries (uta05a) were expanded with the synonyms. 3. The expanded queries were run on the test database. 4. Final queries (Boolean queries) were formulated by further expanding the queries with MH terms and synonyms found in the top documents of the initial search.

uwmtEg05

Results | Participants | Input | Summary | Appendix

  • Run ID: uwmtEg05
  • Participant: uwaterloo.clarke
  • Track: Genomics
  • Year: 2005
  • Submission: 7/4/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Plain Okapi BM25 run, with stemming applied to all terms that do not contain numerical characters.

uwmtEg05fb

Results | Participants | Input | Summary | Appendix

  • Run ID: uwmtEg05fb
  • Participant: uwaterloo.clarke
  • Track: Genomics
  • Year: 2005
  • Submission: 7/4/2005
  • Type: automatic
  • Task: adhoc
  • Run description: Okapi BM25 run with standard Okapi feedback; stemming applied to all terms that do not contain numerical characters. This is a two-stage run, using the top 40 documents returned by the first stage to add pseudo-relevance feedback terms to the query in the second stage.

wim1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: wim1
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: language model,greek letter,query expansion

wim2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: wim2
  • Participant: fudan.niu
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: gene noun,okapi,query expansion

YAMAHASHI1

Results | Participants | Input | Summary | Appendix

  • Run ID: YAMAHASHI1
  • Participant: utokyo.takahashi
  • Track: Genomics
  • Year: 2005
  • Submission: 8/2/2005
  • Type: manual
  • Task: adhoc
  • Run description: Using MeSH for ranking.

YAMAHASHI2

Results | Participants | Input | Summary | Appendix

  • Run ID: YAMAHASHI2
  • Participant: utokyo.takahashi
  • Track: Genomics
  • Year: 2005
  • Submission: 8/2/2005
  • Type: manual
  • Task: adhoc
  • Run description: Not Using MeSH for ranking.

york05ga1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: york05ga1
  • Participant: yorku.huang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: 1. use Okapi BM25 System with stuctured query function 2. use rules to expand the terms. 3. use BioNLP utility to identify the long form and acronym pairs. 4. use some rules to rebalance the weight for query term. 5. blank feedback with special term selection technique

york05ga2

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: york05ga2
  • Participant: yorku.huang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: 1. Use Okapi BM25 2. Blank feedback with term selection technique.

york05ga3

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: york05ga3
  • Participant: yorku.huang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: automatic
  • Task: adhoc
  • Run description: voting from the results from different systems. different sources are given the equal weight to vote. this run is voted by york05ga1 and york05ga2.

york05ga4

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: york05ga4
  • Participant: yorku.huang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/2/2005
  • Type: automatic
  • Task: adhoc
  • Run description: 1. use Okapi BM25 System with structured query function 2. use Acromed and LocusLink database to expand the terms 3. automatically delete redundant terms. 4. rebalance the weight for terms in the query 5. blank feedback with special term selection technique.

york05ga5

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: york05ga5
  • Participant: yorku.huang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/2/2005
  • Type: automatic
  • Task: adhoc
  • Run description: 1. use Okapi BM25 System with structured query function 2. use Acromed and LocusLink database to expand the terms, for some term not in database, fuzzy search has been used 3. automatically delete redundant terms. 4. rebalance the weight for terms in the query 5. blank feedback with special term selection technique.

york05gm1

Results | Participants | Proceedings | Input | Summary | Appendix

  • Run ID: york05gm1
  • Participant: yorku.huang
  • Track: Genomics
  • Year: 2005
  • Submission: 8/1/2005
  • Type: manual
  • Task: adhoc
  • Run description: 1. use Okapi BM25 system with structured query function 2. use Acromed and LocusLink database to expand the terms. 3. mannualy select good quality expanded terms 4. use some rules to rebalance the weight for query term 5. blank feedback with special term selection technique