teqp 0.19.1
Loading...
Searching...
No Matches
derivs.hpp
Go to the documentation of this file.
1#pragma once
2
3namespace teqp{
4namespace cppinterface{
5
10 std::vector<char> vars;
11 Eigen::ArrayXXd J;
12 Eigen::ArrayXd v;
13};
14
26template<typename Array>
27auto build_iteration_Jv(const std::vector<char>& vars, const Eigen::Array<double, 3, 3>& Ar, const Eigen::Array<double, 3, 3>& Aig, const double R, const double T, const double rho, const Array &z){
28 IterationMatrices im; im.J.resize(vars.size(), 2); im.v.resize(vars.size()); im.vars = vars;
29
30 auto A = Ar + Aig;
31 Eigen::ArrayXd& v = im.v;
32 Eigen::ArrayXXd& J = im.J;
33 auto Trecip = 1.0/T;
34 auto dTrecipdT = -Trecip*Trecip;
35
36 // Define some lambda functions for things that *might* be needed
37 // The lambdas are used to get a sort of lazy evaluation. The lambdas are
38 // only evaluated on an as-needed basis. If the lambda is not called,
39 // no cost is incurred.
40 //
41 // Probably the compiler will inline these functions anyhow.
42 //
43 // Derivatives of total alpha; alpha = a/(R*T) = a*R/Trecip
44 auto alpha = [&](){ return A(0,0); };
45 auto dalphadTrecip = [&](){ return A(1,0)/Trecip; };
46 auto dalphadrho = [&](){ return A(0,1)/rho; };
47 auto d2alphadTrecip2 = [&](){ return A(2,0)/(Trecip*Trecip); };
48 auto d2alphadTrecipdrho = [&](){ return A(1,1)/(Trecip*rho); };
49 auto d2alphadrho2 = [&](){ return A(0,2)/(rho*rho); };
50 //
51 // Derivatives of total Helmholtz energy a in terms of derivatives of alpha
52 auto dadTrecip = [&](){ return R/(Trecip*Trecip)*(Trecip*dalphadTrecip()-alpha());};
53 auto d2adTrecip2 = [&](){ return R/(Trecip*Trecip*Trecip)*(Trecip*Trecip*d2alphadTrecip2()-2*Trecip*dalphadTrecip()+2*alpha());};
54 auto dadrho = [&](){return R/Trecip*(dalphadrho());};
55 auto d2adrho2 = [&](){return R/Trecip*(d2alphadrho2());};
56 auto d2adTrecipdrho = [&](){ return R/(Trecip*Trecip)*(Trecip*d2alphadTrecipdrho()-dalphadrho());};
57
58 for (auto i = 0; i < vars.size(); ++i){
59 switch(vars[i]){
60 case 'T':
61 v(i) = T;
62 J(i, 0) = 1.0;
63 J(i, 1) = 0.0;
64 break;
65 case 'D':
66 v(i) = rho;
67 J(i, 0) = 0.0;
68 J(i, 1) = 1.0;
69 break;
70 case 'P':
71 v(i) = rho*R*T*(1 + Ar(0,1));
72 J(i, 0) = rho*R*(1 + Ar(0,1) - Ar(1,1));
73 J(i, 1) = R*T*(1 + 2*Ar(0,1) + Ar(0,2));
74 break;
75 case 'S':
76 v(i) = Trecip*Trecip*dadTrecip();
77 J(i, 0) = (Trecip*Trecip*d2adTrecip2() + 2*Trecip*dadTrecip())*dTrecipdT;
78 J(i, 1) = Trecip*Trecip*d2adTrecipdrho();
79 break;
80 default:
81 throw std::invalid_argument("bad var: " + std::to_string(vars[i]));
82 }
83 }
84 return im;
85}
86
87}
88};
auto build_iteration_Jv(const std::vector< char > &vars, const Eigen::Array< double, 3, 3 > &Ar, const Eigen::Array< double, 3, 3 > &Aig, const double R, const double T, const double rho, const Array &z)
A convenience function for calculation of Jacobian terms of the form and where is one of the therm...
Definition derivs.hpp:27
std::vector< char > vars
The set of variables matching the rows in the Jacobian.
Definition derivs.hpp:10
Eigen::ArrayXd v
The values of the thermodynamic variables matching the variables in vars.
Definition derivs.hpp:12
Eigen::ArrayXXd J
The Jacobian.
Definition derivs.hpp:11