{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Multi-fluid EOS\n", "\n", "Peering into the innards of teqp" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:40:54.315398Z", "iopub.status.busy": "2024-03-15T22:40:54.315237Z", "iopub.status.idle": "2024-03-15T22:40:54.561272Z", "shell.execute_reply": "2024-03-15T22:40:54.560754Z" } }, "outputs": [ { "data": { "text/plain": [ "'0.19.1'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import timeit, json\n", "import pandas\n", "import numpy as np\n", "import teqp\n", "teqp.__version__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ancillary Equations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ancillary equations are provided along with multiparameter equations of state. The give a good *approximation* to the phase equilibrium densities. There are routines in teqp to use the ancillary equations provided with the EOS. First a class containing the ancillary equations is obtained, then methods on that class are called" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:40:54.588627Z", "iopub.status.busy": "2024-03-15T22:40:54.588213Z", "iopub.status.idle": "2024-03-15T22:40:54.625483Z", "shell.execute_reply": "2024-03-15T22:40:54.624968Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Densities are: 27357.335621492966 42.04100696197727 mol/m^3\n" ] } ], "source": [ "model = teqp.build_multifluid_model([\"Methane\"], teqp.get_datapath())\n", "anc = model.build_ancillaries()\n", "T = 100.0 # [K]\n", "rhoL, rhoV = anc.rhoL(T), anc.rhoV(T)\n", "print('Densities are:', rhoL, rhoV, 'mol/m^3')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "But those densities do not correspond to the *true* phase equilibrium solution, so we need to polish the solution:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:40:54.627586Z", "iopub.status.busy": "2024-03-15T22:40:54.627212Z", "iopub.status.idle": "2024-03-15T22:40:54.630369Z", "shell.execute_reply": "2024-03-15T22:40:54.629885Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "VLE densities are: 27357.147019094467 42.047982278351704 mol/m^3\n" ] } ], "source": [ "Niter = 10\n", "rhoLtrue, rhoVtrue = model.pure_VLE_T(T, rhoL, rhoV, Niter)\n", "print('VLE densities are:', rhoLtrue, rhoVtrue, 'mol/m^3')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And looking the densities, they are slightly different after the phase equilibrium calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ammonia-Water\n", "\n", "Tillner-Roth and Friend provided a hard-coded model that is in a form not compatible with the other multi-fluid models. It is available via the high-level factory function" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:40:54.632362Z", "iopub.status.busy": "2024-03-15T22:40:54.632002Z", "iopub.status.idle": "2024-03-15T22:40:54.636242Z", "shell.execute_reply": "2024-03-15T22:40:54.635769Z" } }, "outputs": [ { "data": { "text/plain": [ "-0.09731055757504622" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "AW = teqp.AmmoniaWaterTillnerRoth()\n", "AW.get_Ar01(300, 300, np.array([0.9, 0.0]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Pure fluid loading" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:40:54.638193Z", "iopub.status.busy": "2024-03-15T22:40:54.637887Z", "iopub.status.idle": "2024-03-15T22:40:57.283573Z", "shell.execute_reply": "2024-03-15T22:40:57.283025Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "32.6 ms ± 111 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" ] } ], "source": [ "# By default teqp looks for fluids relative to the set of fluids in ROOT/dev/fluids\n", "# The name (case-sensitive) should match the .json file, without the json extension.\n", "%timeit model = teqp.build_multifluid_model([\"Methane\"], teqp.get_datapath())" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:40:57.285757Z", "iopub.status.busy": "2024-03-15T22:40:57.285441Z", "iopub.status.idle": "2024-03-15T22:40:59.932743Z", "shell.execute_reply": "2024-03-15T22:40:59.932158Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "32.6 ms ± 164 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" ] } ], "source": [ "# And if you provide valid aliases, alias lookup will be used to resolve the name\n", "# But beware, this is rather a lot slower than the above because all fluid files need to be read\n", "# in to build the alias map\n", "%timeit model = teqp.build_multifluid_model([\"n-C1H4\"], teqp.get_datapath())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, how to make it faster? Only do it once and cache" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:40:59.934883Z", "iopub.status.busy": "2024-03-15T22:40:59.934599Z", "iopub.status.idle": "2024-03-15T22:41:02.575199Z", "shell.execute_reply": "2024-03-15T22:41:02.574690Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "32.1 ms ± 332 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" ] }, { "data": { "text/plain": [ "['1,2-DICHLOROETHANE',\n", " '1,2-dichloroethane',\n", " '1-BUTENE',\n", " '1-Butene',\n", " '100-41-4',\n", " '10024-97-2',\n", " '102687-65-0',\n", " '106-42-3',\n", " '106-97-8',\n", " '106-98-9']" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Here is the set of possible aliases to absolute paths of files\n", "# Building this map takes a little while (somewhat faster in C++) due to all the file reads\n", "# If you know your files will not change, good idea to build this alias map yourself.\n", "%timeit aliasmap = teqp.build_alias_map(teqp.get_datapath())\n", "aliasmap = teqp.build_alias_map(teqp.get_datapath())\n", "list(aliasmap.keys())[0:10] # the first 10 aliases in the dict" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:41:02.577334Z", "iopub.status.busy": "2024-03-15T22:41:02.577006Z", "iopub.status.idle": "2024-03-15T22:41:07.074591Z", "shell.execute_reply": "2024-03-15T22:41:07.074016Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "542 µs ± 3.18 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n" ] } ], "source": [ "# Then load the absolute paths from the alias map, \n", "# which will guarantee that you hit exactly what you were looking for,\n", "# resolving aliases as needed\n", "identifiers = [aliasmap[n] for n in [\"n-C1H4\"]]\n", "%timeit model = teqp.build_multifluid_model(identifiers, teqp.get_datapath())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "At some point soon teqp will support in-memory loading of JSON data for the pure components, without requiring reads from the operating system" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:41:07.080445Z", "iopub.status.busy": "2024-03-15T22:41:07.080153Z", "iopub.status.idle": "2024-03-15T22:41:07.083765Z", "shell.execute_reply": "2024-03-15T22:41:07.083272Z" } }, "outputs": [], "source": [ "# And you can also load the JSON that teqp is loading for the pure fluids\n", "pureJSON = teqp.collect_component_json(['Neon','Hydrogen'], teqp.get_datapath())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Mixture model loading" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:41:07.085716Z", "iopub.status.busy": "2024-03-15T22:41:07.085468Z", "iopub.status.idle": "2024-03-15T22:41:07.089801Z", "shell.execute_reply": "2024-03-15T22:41:07.089322Z" } }, "outputs": [], "source": [ "# Load the default JSON for the binary interaction parameters\n", "BIP = json.load(open(teqp.get_datapath()+'/dev/mixtures/mixture_binary_pairs.json'))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:41:07.091690Z", "iopub.status.busy": "2024-03-15T22:41:07.091390Z", "iopub.status.idle": "2024-03-15T22:41:07.097646Z", "shell.execute_reply": "2024-03-15T22:41:07.097200Z" } }, "outputs": [ { "data": { "text/plain": [ "{'BibTeX': 'Kunz-JCED-2012',\n", " 'CAS1': '74-82-8',\n", " 'CAS2': '74-84-0',\n", " 'F': 1.0,\n", " 'Name1': 'Methane',\n", " 'Name2': 'Ethane',\n", " 'betaT': 0.996336508,\n", " 'betaV': 0.997547866,\n", " 'function': 'Methane-Ethane',\n", " 'gammaT': 1.049707697,\n", " 'gammaV': 1.006617867}" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# You can obtain interaction parameters either by pairs of names, where name is the name that teqp uses, the [\"INFO\"][\"NAME\"] field\n", "params, swap_needed = teqp.get_BIPdep(BIP, ['Methane','Ethane'])\n", "params" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:41:07.099478Z", "iopub.status.busy": "2024-03-15T22:41:07.099178Z", "iopub.status.idle": "2024-03-15T22:41:07.105210Z", "shell.execute_reply": "2024-03-15T22:41:07.104712Z" } }, "outputs": [ { "data": { "text/plain": [ "{'BibTeX': 'Kunz-JCED-2012',\n", " 'CAS1': '74-82-8',\n", " 'CAS2': '74-84-0',\n", " 'F': 1.0,\n", " 'Name1': 'Methane',\n", " 'Name2': 'Ethane',\n", " 'betaT': 0.996336508,\n", " 'betaV': 0.997547866,\n", " 'function': 'Methane-Ethane',\n", " 'gammaT': 1.049707697,\n", " 'gammaV': 1.006617867}" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Or also by CAS#\n", "params, swap_needed = teqp.get_BIPdep(BIP, ['74-82-8','74-84-0'])\n", "params" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:41:07.107135Z", "iopub.status.busy": "2024-03-15T22:41:07.106826Z", "iopub.status.idle": "2024-03-15T22:41:07.253120Z", "shell.execute_reply": "2024-03-15T22:41:07.252604Z" }, "tags": [ "raises-exception" ] }, "outputs": [ { "ename": "ValueError", "evalue": "Can't match the binary pair for: 74-82-8/Ethane", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[13], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# But mixing is not allowed\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m params, swap_needed \u001b[38;5;241m=\u001b[39m \u001b[43mteqp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_BIPdep\u001b[49m\u001b[43m(\u001b[49m\u001b[43mBIP\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m74-82-8\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mEthane\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3\u001b[0m params\n", "\u001b[0;31mValueError\u001b[0m: Can't match the binary pair for: 74-82-8/Ethane" ] } ], "source": [ "# But mixing is not allowed\n", "params, swap_needed = teqp.get_BIPdep(BIP, ['74-82-8','Ethane'])\n", "params" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Estimation of interaction parameters\n", "\n", "Estimation of interaction parameters can be used when no mixture model is present. The ``flags`` keyword argument allows the user to control how estimation is applied. The ``flags`` keyword argument should be a dictionary, with keys of ``\"estimate\"`` to provide the desired estimation scheme as-needed. For now, the only allowed estimation scheme is ``Lorentz-Berthelot``. \n", "\n", "If it is desired to force the estimation, the ``\"force-estimate\"`` to force the use of the provided estimation scheme for all binaries, even when a proper mixture model is available. The value associated with ``\"force-estimate\"`` is ignored." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:41:07.255226Z", "iopub.status.busy": "2024-03-15T22:41:07.254899Z", "iopub.status.idle": "2024-03-15T22:41:07.261120Z", "shell.execute_reply": "2024-03-15T22:41:07.260608Z" } }, "outputs": [ { "data": { "text/plain": [ "{'F': 0.0, 'betaT': 1.0, 'betaV': 1.0, 'gammaT': 1.0, 'gammaV': 1.0}" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "params, swap_needed = teqp.get_BIPdep(BIP, ['74-82-8','74-84-0'], flags={'force-estimate':'yes', 'estimate': 'Lorentz-Berthelot'})\n", "params" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:41:07.263007Z", "iopub.status.busy": "2024-03-15T22:41:07.262708Z", "iopub.status.idle": "2024-03-15T22:41:07.268773Z", "shell.execute_reply": "2024-03-15T22:41:07.268250Z" } }, "outputs": [ { "data": { "text/plain": [ "{'BibTeX': 'Kunz-JCED-2012',\n", " 'CAS1': '74-82-8',\n", " 'CAS2': '74-84-0',\n", " 'F': 1.0,\n", " 'Name1': 'Methane',\n", " 'Name2': 'Ethane',\n", " 'betaT': 0.996336508,\n", " 'betaV': 0.997547866,\n", " 'function': 'Methane-Ethane',\n", " 'gammaT': 1.049707697,\n", " 'gammaV': 1.006617867}" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# And without the force, the forcing is ignored\n", "params, swap_needed = teqp.get_BIPdep(BIP, ['74-82-8','74-84-0'], flags={'estimate': 'Lorentz-Berthelot'})\n", "params" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:41:07.270700Z", "iopub.status.busy": "2024-03-15T22:41:07.270419Z", "iopub.status.idle": "2024-03-15T22:41:07.310224Z", "shell.execute_reply": "2024-03-15T22:41:07.309716Z" } }, "outputs": [], "source": [ "# And the same flags can be passed to the multifluid model constructor\n", "model = teqp.build_multifluid_model(\n", " ['74-82-8','74-84-0'], \n", " teqp.get_datapath(), \n", " flags={'force-estimate':'yes', 'estimate': 'Lorentz-Berthelot'})" ] } ], "metadata": { "celltoolbar": "Edit Metadata", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }