{ "cells": [ { "cell_type": "markdown", "id": "9d54c60b", "metadata": {}, "source": [ "# Association\n", "\n", "![Two example molecules, each with multiple assocation sites](Molecule.drawio.svg)\n", "\n", "## Site Interactions\n", "\n", "Each unique site type per unique molecule is characterized by a numerical index ``siteid``, which (for consistency with C++) starts with ``0``. In the example above, the indices would go like:\n", "\n", "``0``: site type A on left molecule (multiplicity of 2)\n", "\n", "``1``: site type B on left molecule (multiplicity of 1)\n", "\n", "``2``: site type C on left molecule (multiplicity of 1)\n", "\n", "``3``: site type A on right molecule (multiplicity of 1)\n", "\n", "``4``: site type B on right molecule (multiplicity of 1)\n", "\n", "Within a molecule, the numbering of sites is arbitrary, but the mapping cannot be changed once it is defined.\n", "\n", "Association can occur when a site can \"dock\" with another kind of site. In the most common kind of association used to model hydrogen bonding, there are two classes of sites, positive or negative (``e`` and ``H`` in Clapeyron.jl). teqp allows for great flexibility in defining the site types and how they are permitted to interact with each other.\n", "\n", "The work of Langenbach and Enders (2012) shows how to construct a counting matrix to make the successive substitution faster because not all sites are included in the summation, rather the sites within a molecule are clustered into groups, since all sites of a similar type will have the same association fractions. Thus a counting matrix $\\mathbf{D}$ can be defined, with entries $D_{IJ}$ for the pair of siteid ``I`` and ``J`` with the pseudocode\n", "\n", "```python\n", "def get_DIJ(I, J):\n", " \"\"\" Return the value of an entry in the D_{IJ} matrix \n", "\n", " For a given unique site, look at all other sites on all other molecules\n", " \"\"\"\n", " _, typei = inv_mapping[I]\n", " _, typej = inv_mapping[J]\n", " if typej in interaction_partners[typei]:\n", " return counts[J]\n", " return 0\n", "```\n", "in which the dictionary ``interaction_parameters`` defines which sites are allowed to interact with each other. The typical alcohol+water family would be modeled with:\n", "```python\n", "interaction_parameters = {'e': ['H'], 'H': ['e']}\n", "```\n", "and to follow the system considered above, we would have:\n", "```python\n", "inv_mapping = {\n", " 0: (0, 'A'),\n", " 1: (0, 'B'),\n", " 2: (0, 'C'),\n", " 3: (1, 'A'),\n", " 4: (1, 'B')\n", "}\n", "counts = [2, 1, 1, 1, 1] # multiplicities for each siteid\n", "```\n", "The definition of the dictionary ``interaction_parameters`` would depend on how you want to allow the sites to associate. Sites that are not permitted to interact with each other are removed from the D matrix (are set to zero).\n", "\n", "The successive substitution step gives the estimated values with\n", "$$\n", "X_{\\rm step} = \\frac{1}{1+\\rho_N \\sum_Jx_JX_{J}D_{IJ}\\Delta_{IJ}}\n", "$$\n", "in which $\\rho_N$ is the number density (molecules per volume) of the entire mixture, $\\Delta_{IJ}$ is the interaction strength (volume per site) between site with ``siteid`` of ``I`` and that with ``siteid`` of ``J`` and $x_{J}$ is the mole fraction of the molecule that site ``J`` is found in.\n", "\n", "Acceleration can be achieved by taking only a partial step of successive substitution, weighted by $\\alpha$:\n", "$$\n", "X_{\\rm new} = \\alpha X_{\\rm old} + (1-\\alpha)X_{\\rm step}\n", "$$\n", "This is the method utilized in Langenbach and Enders.\n", "\n", "## Interaction strength\n", "\n", "The interaction site strength is a matrix with side length of the number of ``siteid``. It is a block matrix because practically speaking the interaction sites are still about molecule-molecule interactions\n", "\n", "$$\n", "\\Delta_{IJ} = gb_{IJ}\\beta_{IJ}\\left(\\exp\\left(\\frac{\\epsilon_{IJ}}{RT}\\right)-1\\right)/N_A\n", "$$\n", "\n", "Reminder: $b$, $\\beta$, and $\\epsilon$ values are associated with the *molecule*, not the site.\n", "\n", "### CR1 combining rule\n", "\n", "In the CR1 combining rule:\n", "\n", "$$ b_{IJ} = b_{ij} = \\frac{b_i + b_j}{2} $$\n", "$$ \\beta_{IJ} = \\beta_{ij} = \\sqrt{\\beta_i\\beta_j} $$\n", "$$ \\epsilon_{IJ} = \\epsilon_{ij} = \\frac{\\epsilon_i + \\epsilon_j}{2} $$\n", "\n", "in which $i$ is the molecule index associated with ``siteid`` $I$ and the same for $j$ and $J$\n", "\n", "## Radial distribution function\n", "\n", "``CS``: $g= \\frac{2-\\eta}{2(1-\\eta)^2}$\n", "\n", "``KG``: $g= \\frac{1}{1 - 1.9\\eta}$\n", "\n", "where $\\eta = b_{\\rm mix}\\rho/4$ in which $\\rho$ is density with units to match the reciprocal of $b_{\\rm mix}$ (so if $b_{\\rm mix}$ is mean covolume per atom, then $\\rho$ is the number density $\\rho_{\\rm N}$)\n", "\n", "References:\n", "\n", "K. Langenbach & S. Enders (2012): Cross-association of multi-component systems, Molecular Physics, 110:11-12, 1249-1260; https://dx.doi.org/10.1080/00268976.2012.668963" ] }, { "cell_type": "code", "execution_count": 1, "id": "958b68b4", "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:40:36.040197Z", "iopub.status.busy": "2024-03-15T22:40:36.040034Z", "iopub.status.idle": "2024-03-15T22:40:36.109497Z", "shell.execute_reply": "2024-03-15T22:40:36.108963Z" } }, "outputs": [], "source": [ "import teqp, numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "id": "071a8b89", "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:40:36.112934Z", "iopub.status.busy": "2024-03-15T22:40:36.111928Z", "iopub.status.idle": "2024-03-15T22:40:36.122039Z", "shell.execute_reply": "2024-03-15T22:40:36.121595Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "D: [[0 1 0 2]\n", " [1 0 2 0]\n", " [0 1 0 2]\n", " [1 0 2 0]]\n", "∆: [[5.85623687e-27 5.85623687e-27 4.26510827e-27 4.26510827e-27]\n", " [5.85623687e-27 5.85623687e-27 4.26510827e-27 4.26510827e-27]\n", " [4.26510827e-27 4.26510827e-27 2.18581242e-27 2.18581242e-27]\n", " [4.26510827e-27 4.26510827e-27 2.18581242e-27 2.18581242e-27]]\n", "X_A: [0.062584 0.062584 0.10938445 0.10938445]\n", "siteid->(component, name): [[0, [0, 'H']], [1, [0, 'e']], [2, [1, 'H']], [3, [1, 'e']]]\n", "(component, name)->siteid: [[[0, 'H'], 0], [[0, 'e'], 1], [[1, 'H'], 2], [[1, 'e'], 3]]\n", "multiplicities: [1 1 2 2]\n" ] } ], "source": [ "ethanol = {\n", " \"a0i / Pa m^6/mol^2\": 0.85164, \n", " \"bi / m^3/mol\": 0.0491e-3, \n", " \"c1\": 0.7502, \n", " \"Tc / K\": 513.92,\n", " \"epsABi / J/mol\": 21500.0, \n", " \"betaABi\": 0.008, \n", " \"sites\": [\"e\",\"H\"]\n", "}\n", "water = {\n", " \"a0i / Pa m^6/mol^2\": 0.12277, \n", " \"bi / m^3/mol\": 0.0000145, \n", " \"c1\": 0.6736, \n", " \"Tc / K\": 647.13,\n", " \"epsABi / J/mol\": 16655.0, \n", " \"betaABi\": 0.0692, \n", " \"sites\": [\"e\",\"e\",\"H\",\"H\"]\n", "}\n", "\n", "jCPA = {\n", " \"cubic\": \"SRK\",\n", " \"radial_dist\": \"CS\",\n", "# \"combining\": \"CR1\", # No other option is implemented yet\n", " \"pures\": [ethanol, water],\n", " \"R_gas / J/mol/K\": 8.31446261815324\n", "}\n", "\n", "model = teqp.make_model({\"kind\": \"CPA\", \"model\": jCPA, \"validate\": False}, False)\n", "T = 303.15 # K\n", "rhomolar = 1/3.0680691201961814e-5 # mol/m^3\n", "molefracs = np.array([0.3, 0.7])\n", "\n", "# Note: passing data back and forth in JSON format is done for convenience and flexibility, not speed\n", "res = model.get_assoc_calcs(T, rhomolar, molefracs)\n", "\n", "print('D:', np.array(res['D']))\n", "print('∆:', np.array(res['Delta']))\n", "print('X_A:', np.array(res['X_A']))\n", "print('siteid->(component, name):', res['to_CompSite'])\n", "print('(component, name)->siteid:', res['to_siteid'])\n", "print('multiplicities:', np.array(res['counts']))" ] }, { "cell_type": "code", "execution_count": 3, "id": "4ec5d8f2", "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:40:36.125550Z", "iopub.status.busy": "2024-03-15T22:40:36.124648Z", "iopub.status.idle": "2024-03-15T22:40:36.160810Z", "shell.execute_reply": "2024-03-15T22:40:36.160317Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0 1 0 2]\n", " [1 0 2 0]\n", " [0 1 0 2]\n", " [1 0 2 0]]\n", "[[5.85623687e-27 5.85623687e-27 4.26510827e-27 4.26510827e-27]\n", " [5.85623687e-27 5.85623687e-27 4.26510827e-27 4.26510827e-27]\n", " [4.26510827e-27 4.26510827e-27 2.18581242e-27 2.18581242e-27]\n", " [4.26510827e-27 4.26510827e-27 2.18581242e-27 2.18581242e-27]]\n", "[[0.062584 0.062584 0.10938445 0.10938445]]\n" ] } ], "source": [ "# For completeness, here is the worked Python example that was used to develop the association implementation in teqp:\n", "\n", "import collections \n", "import numpy as np\n", "\n", "class AssocClass:\n", " def __init__(self, molecules):\n", " \n", " # Get all the kinds of sites present\n", " mapping = {}\n", " counts = {}\n", " \n", " def sort_sites(sites):\n", " counts = collections.Counter(sites)\n", " out = []\n", " for k in ['B', 'P', 'N']:\n", " if k in counts:\n", " out += [k]*counts[k]\n", " return out\n", " \n", " uid = 0 \n", " for i, molecule in enumerate(molecules):\n", " for site in sort_sites(set(molecule)):\n", " mapping[(i, site)] = uid\n", " counts[uid] = molecule.count(site)\n", " uid += 1\n", " inv_mapping = {v:k for k,v in mapping.items()} # from superindex to (molecule, site pair)\n", " \n", " interaction_partners = {\n", " 'B': ('N', 'P', 'B'),\n", " 'N': ('P', 'B'),\n", " 'P': ('N', 'B')\n", " }\n", " \n", " def get_DIJ(I, J):\n", " \"\"\" Return the value of an entry in the D_{IJ} matrix \n", " \n", " For a given unique site, look at all other sites on all other molecules\n", " \"\"\"\n", " _, typei = inv_mapping[I]\n", " _, typej = inv_mapping[J]\n", " if typej in interaction_partners[typei]:\n", " return counts[J]\n", " return 0\n", " \n", " Ngroups = len(mapping)\n", " D = np.zeros((Ngroups, Ngroups), dtype=int)\n", " for I in range(Ngroups):\n", " for J in range(Ngroups):\n", " D[I, J] = get_DIJ(I, J)\n", " \n", " # Store variables needed for later use\n", " self.D = D \n", " self.counts = counts\n", " self.inv_mapping = inv_mapping\n", " self.Ngroups = Ngroups\n", " \n", " # ethanol, water\n", " self.b_Lmol = np.array([0.0491, 0.0145])\n", " self.epsilon_barLmol = np.array([215.00, 166.55])\n", " self.beta = [8e-3, 69.2e-3]\n", " \n", " self.b_m3mol = self.b_Lmol/1e3\n", " R = 8.31446261815324 # J/(mol*K)\n", " self.epsilon_K = self.epsilon_barLmol*100/R # K, from (bar*L)/mol * (1e5 Pa/bar) * (Pa / 1000 L), Pa*m^3 = J, then we divide by R to do [J/mol]/[J/mol/K] -> K\n", " \n", " def get_xJ(self, moleculemolefracs):\n", " \"\"\" \n", " Return the fractions of sites within the mixture, not to be confused \n", " with the mole fractions of molecules within the mixture\n", " \"\"\"\n", " counter = 0\n", " xJ = np.zeros((self.D.shape[0],))\n", " for J in range(self.D.shape[0]):\n", " j, sitej = self.inv_mapping[J] # molecule index and site name\n", " xJ[J] = self.counts[J]*moleculemolefracs[j]\n", " counter += xJ[J]\n", " return xJ/counter\n", " \n", " def get_bmix(self, molefracs):\n", " return (self.b_m3mol*molefracs).sum()\n", " \n", " def get_bij(self, i, j):\n", " \"\"\" CR1 \"\"\"\n", " return (self.b_m3mol[i] + self.b_m3mol[j])/2\n", " \n", " def get_epsilon_k_IJ_CR1(self, *, i, j):\n", " \"\"\" CR1 \"\"\"\n", " return (self.epsilon_K[i] + self.epsilon_K[j])/2\n", "\n", " def get_beta_IJ_CR1(self, *, i, j):\n", " \"\"\" CR1 \"\"\"\n", " return (self.beta[i]*self.beta[j])**0.5\n", " \n", " def get_DeltaIJ(self, T, rhomolar, molefracs, *, i, j):\n", " b_ij = self.get_bij(i, j)\n", " bmix = self.get_bmix(molefracs)\n", " eta = bmix*rhomolar/4 # packing fraction\n", " g_ij = (2-eta)/(2*(1-eta)**3)\n", " beta = self.get_beta_IJ_CR1(i=i,j=j) # dimensionless\n", " eRT = self.get_epsilon_k_IJ_CR1(i=i,j=j)/T # epsilon/(R*T), dimensionless\n", " return g_ij*b_ij*beta*(np.exp(eRT)-1.0) # epsilon_k_IJ is in K, beta_IJ is dimensionless\n", " \n", " def get_Delta(self, T, rhomolar, *, molefracs, Ngroups):\n", " Delta = np.zeros((Ngroups, Ngroups))\n", " for I in range(Ngroups):\n", " i, _ = self.inv_mapping[I]\n", " for J in range(Ngroups):\n", " j, _ = self.inv_mapping[J]\n", " Delta[I, J] = self.get_DeltaIJ(T, rhomolar, i=i, j=j, molefracs=molefracs)\n", " return Delta\n", " \n", " def X_iter_Langenbach(self, T:float, rhomolar:float, molefracs, init):\n", " \"\"\"Iterate with successive substitution to obtain the non-bonded fraction of each site\n", "\n", " Args:\n", " T (float): Temperature, K\n", " rhomolar (float): Molar density, mol/m^3\n", " molefracs (array): Mole fractions of the components\n", " init (array): Starting values for X_A\n", "\n", " Returns:\n", " array: non-bonded fractions for each site as one big array, indexed by site family\n", " \n", " TODO: why do we need mole fractions here and site fractions elsewhere?\n", " \"\"\"\n", " # xJ = np.array(self.get_xJ(moleculemolefracs=molefracs), ndmin=2) # row vector\n", " \n", " XXJ = np.array([ molefracs[self.inv_mapping[J][0]] for J in range(self.Ngroups)])\n", " N_A = 6.02214076e23 # [1/mol]\n", " Delta = self.get_Delta(T, rhomolar, Ngroups=self.Ngroups, molefracs=molefracs)/N_A\n", " rhoN = rhomolar*N_A # number density, in 1/m^3\n", " Y = np.array(init[:], ndmin=2) # copy, row vector\n", " \n", " DD = self.D*Delta # coefficient-wise product\n", " DDX = XXJ*DD # coefficient-wise product\n", " \n", " for _ in range(30):\n", " # The naive treatment\n", " summer = 0.0\n", " for J in range(self.Ngroups):\n", " summer += Y[0,J]*XXJ[J]*self.D[:,J]*Delta[:,J]\n", " # Optimized treatment\n", " summer2 = (DDX@Y.T).squeeze()\n", " # print(summer, summer2)\n", " term = rhoN*summer2\n", " Y = 0.5*(Y+1/(1+term))\n", " \n", " return Y\n", " \n", " def X_A_pure_Langenbach(self, i:int, T:float, rhomolar:float):\n", " \"\"\"Calculate the association fractions for a pure fluid \n", " based upon the method of Eq. 20, from \n", " Langenbach & Enders, Mol. Phys. \n", " URL: https://www.tandfonline.com/doi/abs/10.1080/00268976.2012.668963\n", " \n", " Args:\n", " int (int): Index of the pure fluid\n", " T (float): Temperature, K\n", " rhomolar (float): Molar density, mol/m^3\n", " molefracs (_type_): Molar fractions, array\n", " \n", " TODO: why do we need site fractions here and mole fractions elsewhere?\n", " \"\"\"\n", " molefracs = [0]*len(self.b_m3mol)\n", " molefracs[i] = 1\n", " xJ = self.get_xJ(moleculemolefracs=molefracs)\n", " N_A = 6.02214076e23 # [1/mol]\n", " Delta = self.get_Delta(T, rhomolar, Ngroups=self.Ngroups, molefracs=molefracs)/N_A\n", " common = np.array(2*rhomolar*N_A*(xJ@self.D@Delta), ndmin=2).sum(axis=0)\n", " return (np.sqrt(1+2*common)-1)/common\n", " \n", " def X_A_pure_HuangRadosz(self, *, i:int, T:float, rhomolar:float, klass:str):\n", " \"\"\"Use the explicit solutions from Huang and Radosz to obtain the \n", " association fraction for a pure fluid\n", "\n", " Args:\n", " i (int): The fluid index for which the method is being applied\n", " T (float): Temperature, K\n", " rhomolar (float): Molar density, in mol/m^3\n", " klass (str): Association class, one in {'2B','3B','4C'}\n", "\n", " Returns:\n", " float: value of X_A\n", " \"\"\"\n", " \n", " b_ij = b_cubic = self.get_bij(i=i,j=i)\n", " betaABi = self.get_beta_IJ_CR1(i=i,j=i)\n", " R = 8.31446261815324\n", " RT = R*T\n", " epsABi = self.get_epsilon_k_IJ_CR1(i=i,j=i)*R # To get J/mol\n", " \n", " eta = b_ij*rhomolar/4 # packing fraction\n", " g_vm_ref = (2-eta)/(2*(1-eta)**3)\n", " DeltaAiBj = g_vm_ref*(np.exp(epsABi/RT) - 1.0)*b_cubic* betaABi\n", " \n", " if klass == '2B':\n", " X_A = (-1.0 + (1.0 + 4.0 * rhomolar * DeltaAiBj)**0.5) / (2.0 * rhomolar * DeltaAiBj)\n", " elif klass == '3B':\n", " X_A = ((-(1.0 - rhomolar * DeltaAiBj) + np.sqrt((1.0 + rhomolar * DeltaAiBj)**2 + 4.0 * rhomolar * DeltaAiBj)) / (4.0 * rhomolar * DeltaAiBj))\n", " elif klass == '4C':\n", " X_A = (-1.0 + np.sqrt(1.0 + 8.0 * rhomolar * DeltaAiBj)) / (4.0 * rhomolar * DeltaAiBj)\n", " \n", " return X_A\n", " \n", "if __name__ == '__main__':\n", " a = AssocClass([('B'), ('P','N','N'), ('P')])\n", " assert(a.D.tolist() == [[1, 1, 2, 1], [1, 0, 2, 0], [1, 1, 0, 1], [1, 0, 2, 0]])\n", " \n", " #### 4C water\n", " a = AssocClass([(), ('P','P','N','N')])\n", " T = 303.15\n", " rhomolar = 1/1.7915123921401366e-5\n", " X_A_Clapeyron = 0.07920738195861185 # version 0.5.9\n", " X_A_HR = a.X_A_pure_HuangRadosz(i=1, T=T, rhomolar=rhomolar, klass='4C')\n", " X_A_La = a.X_A_pure_Langenbach(i=1, T=T, rhomolar=rhomolar)[0]\n", " assert(abs(X_A_HR - X_A_Clapeyron) < 1e-10)\n", " assert(abs(X_A_La - X_A_Clapeyron) < 1e-10)\n", " a.X_iter_Langenbach(T=T, rhomolar=rhomolar, molefracs=[0,1], init=np.array([1.0, 1.0]))\n", " \n", " ### 2B ethanol\n", " a = AssocClass([('P','N'), ()])\n", " T = 303.15\n", " rhomolar = 1/1.7915123921401366e-5\n", " X_A_Clapeyron = 0.020464699705843845 # version 0.5.9\n", " X_A_HR = a.X_A_pure_HuangRadosz(i=0, T=T, rhomolar=rhomolar, klass='2B')\n", " X_A_La = a.X_A_pure_Langenbach(i=0, T=T, rhomolar=rhomolar)[0]\n", " assert(abs(X_A_HR - X_A_Clapeyron) < 1e-10)\n", " assert(abs(X_A_La - X_A_Clapeyron) < 1e-10)\n", " a.X_iter_Langenbach(T=T, rhomolar=rhomolar, molefracs=[1,0], init=np.array([1.0, 1.0]))\n", "\n", " a = AssocClass([('P','N'), ('P','P','N','N')])\n", " T = 303.15\n", " print(a.D)\n", " rhomolar = 1/3.0680691201961814e-5\n", " print(a.get_Delta(T, rhomolar, molefracs=[0.3, 0.7], Ngroups=4)/6.02214076e23)\n", " print(a.X_iter_Langenbach(T=T, rhomolar=rhomolar, molefracs=[0.3,0.7], init=np.array([1.0, 1.0, 1, 1])))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 5 }