{ "cells": [ { "cell_type": "markdown", "id": "56b72ffe", "metadata": {}, "source": [ "# Quantum PR\n", "\n", "The quantum-corrected Peng-Robinson model of Aasen *et al.* (https://doi.org/10.1063/1.5111364) can be used to account for quantum effects by empirical fits to the Feynman-Hibbs corrections.\n", "\n", "The conventional Peng-Robinson approach is used, with an adjusted covolume $b_i$ given by\n", "\n", "$$\n", "b_i = b_{i, PR}\\beta_i(T)\n", "$$\n", "with \n", "$$\n", "\\beta_i(T) = \\left(\\frac{1+A_i/(T+B_i)}{1+A_i/(T_{ci} + B_i)}\\right)^3\n", "$$\n", "and Twu alpha functions are used to correct the attractive part." ] }, { "cell_type": "code", "execution_count": 1, "id": "b64ec2f0", "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:41:42.153674Z", "iopub.status.busy": "2024-03-15T22:41:42.153508Z", "iopub.status.idle": "2024-03-15T22:41:42.630645Z", "shell.execute_reply": "2024-03-15T22:41:42.630127Z" } }, "outputs": [ { "data": { "text/plain": [ "'0.19.1'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np, matplotlib.pyplot as plt, pandas\n", "import CoolProp.CoolProp as CP\n", "\n", "import teqp\n", "teqp.__version__" ] }, { "cell_type": "code", "execution_count": 2, "id": "a7069986", "metadata": { "execution": { "iopub.execute_input": "2024-03-15T22:41:42.632888Z", "iopub.status.busy": "2024-03-15T22:41:42.632641Z", "iopub.status.idle": "2024-03-15T22:41:44.572518Z", "shell.execute_reply": "2024-03-15T22:41:44.572074Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG5CAYAAABhrVVvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOl0lEQVR4nOzdd3xUVfrH8c/0Se+kkELovUhvAoogqIhlbatrd12xYlvL2lZlV9S1/Cxr17U3VCxgoylI7yW0BJKQ3jOZPvf3x02GBAIkIclMMs97d15z57Y8YWLmm3PPPUejKIqCEEIIIUSA0Pq6ACGEEEKI9iThRwghhBABRcKPEEIIIQKKhB8hhBBCBBQJP0IIIYQIKBJ+hBBCCBFQJPwIIYQQIqBI+BFCCCFEQJHwI4QQQoiAIuFHCCGEEAHFL8LPK6+8wuDBgwkPDyc8PJyxY8fyww8/eLfbbDbmzJlDTEwMoaGhXHDBBRQUFPiwYiGEEEJ0VBp/mNtr4cKF6HQ6evXqhaIovPvuu8yfP5+NGzcyYMAA/va3v/Hdd9/xzjvvEBERwc0334xWq+X333/3delCCCGE6GD8Ivw0Jjo6mvnz53PhhRcSFxfHhx9+yIUXXgjArl276NevH6tWrWLMmDE+rlQIIYQQHYne1wUcye1289lnn2GxWBg7dizr16/H6XQydepU7z59+/YlNTX1uOHHbrdjt9u9rz0eD6WlpcTExKDRaNr8+xBCCCHEyVMUhaqqKpKSktBqW6e3jt+En61btzJ27FhsNhuhoaEsWLCA/v37s2nTJoxGI5GRkQ32j4+PJz8//5jnmzdvHo8++mgbVy2EEEKI9pCdnU1ycnKrnMtvwk+fPn3YtGkTFRUVfP7551x55ZUsW7asxee77777mDt3rvd1RUUFqampZGdnEx4e3holCyGEEKKNVVZWkpKSQlhYWKud02/Cj9FopGfPngAMHz6ctWvX8vzzz3PxxRfjcDgoLy9v0PpTUFBAQkLCMc9nMpkwmUxHra+7o0wIIYQQHUdrdlnxi1vdG+PxeLDb7QwfPhyDwcAvv/zi3ZaRkcHBgwcZO3asDysUQgghREfkFy0/9913HzNmzCA1NZWqqio+/PBDli5dyuLFi4mIiODaa69l7ty5REdHEx4ezi233MLYsWPlTi8hhBBCNJtfhJ/CwkL+8pe/kJeXR0REBIMHD2bx4sWcccYZAPznP/9Bq9VywQUXYLfbmT59Oi+//LKPqxZCCCFER+S34/y0tsrKSiIiIqioqJA+P0IIIUQH0Raf337b50cIIYQQoi1I+BFCCCFEQJHwI4QQQoiAIuFHCCGEEAFFwo8QQgghAoqEHyGEEEIEFAk/QgghhAgoEn6EEEIIEVAk/AghhBAioEj4EUIIIURAkfAjhBBCiIAi4UcIIYQQAUXCjxBCCCECioQfIYQQQgQUCT9CCCGECCgSfoQQQggRUCT8CCGEECKgSPgRQgghRECR8COEEEKIgCLhRwghhBABRcKPEEIIIQKKhB8hhBBCBBQJP0IIIYQIKBJ+hBBCCBFQJPwIIYQQIqBI+BFCCCFEQJHwI4QQQoiAIuFHCCGEEAFFwo8QQgghAoqEHyGEEEIEFAk/QgghhAgoEn6EEEIIEVAk/AghhBAioEj4EUIIIURAkfAjhBBCiIAi4UcIIYQQAUXCjxBCCCECioQfIYQQQgQUva8LEM337KWzUDweNFodcz/6ut5rLXM/+sbX5QkhhBB+TVp+Opi6oAOgeNw8c/HZ9V57ePbSWb4sTwghhPB7En46mLqg09LtQgghRKCT8NPBaLTHf8s0Wl07VSKEEEJ0TBJ+OpC8vRl0G3LKcfeZ+9HX7VSNEEII0TFJh+cOwFZdzbL332Tbkp9OuO+zl54rAUgIIYQ4Dgk/fi5ry0YWvfQslvKyJu2veNxtXJEQQgjRscllLz/l8bhZ+dkHfPHkQ1jKy4hOSuaSR59qQp8feUuFEEKI45FPSj9kr7Gw4F+Psurzj0BRGHz6mVz+7+fp2rc/cz/6xhtwNFodQ6ad5T1OxvkRQgghTkwue/mZyuJCFvzrUYqzD6A3mTjj+pvpP3FKg33qAo7b5eS1m64G4Ny7/0HPEaPbvV4hhBCio5Hw40cK9u9lwVOPYSkrJSQqmvPufZj49B7H3H/v2j+oqSgnJCqa9KHD27FSIYQQouOS8OMnDm7bwldPPYbTbiM2tRvn3fsw4bFxx9xfURQ2LvoWgEGnTUOnl7dSCCGEaAr5xPQDWZs38PX8x3E5HaQOGsqsufdhCg457jEHtmwkd9d2dHo9g08/s50qFUIIITo+v+jwPG/ePEaOHElYWBhdunRh9uzZZGRkNNhn8uTJaDSaBo8bb7zRRxW3nv0b1vLVU4/hcjrofspIzrvnoRMGH8XjYcWH7wIwZNpZhMXEtkepQgghRKfgF+Fn2bJlzJkzhz/++IOffvoJp9PJtGnTsFgsDfa7/vrrycvL8z6eeuopH1XcOvasXcXXTz+B2+Wi16hxzLrzfvRG4wmPy1i1gsKsfRiDghh93kXtUKkQQgjRefjFZa9FixY1eP3OO+/QpUsX1q9fz6mnnupdHxwcTEJCQnuX1yb2b1zLt//5Fx63mz5jJzLj5jub1G/HabOx4qP3ABhxzvkEh0e0dalCCCFEp+IXLT9HqqioACA6OrrB+g8++IDY2FgGDhzIfffdR01NzTHPYbfbqaysbPDwFzm7trPwmXl43G76jp/EzFvuanKH5d8/+4DKogLCYuMYftbsti1UCCGE6IT8ouWnPo/Hw+2338748eMZOHCgd/1ll11GWloaSUlJbNmyhXvvvZeMjAy+/PLLRs8zb948Hn300fYqu8kKs/bz1b8P9/E586Y70OqaNhN7/r49bPhOnbfrjOvmYDQHtWWpQgghRKekURRF8XUR9f3tb3/jhx9+4LfffiM5OfmY+/3666+cfvrp7N27lx49jh4Lx263Y7fbva8rKytJSUmhoqKC8PDwNqn9RMrycvn44XupqSina9/+XHD/YxhM5iYd63a5+OD+Oyg6kEnf8ZM469a727haIYQQwvcqKyuJiIho1c9vv2r5ufnmm/n2229Zvnz5cYMPwOjR6mjGxwo/JpMJk8nUJnW2RHVZKZ8/8Q9qKsqJ69ad2fc81OTgA7Bu4ZcUHcjEHBrGlCuvb8NKhRBCiM7NL8KPoijccsstLFiwgKVLl5Kenn7CYzZt2gRAYmJiG1d38pw2G1899RiVRYVEJiRywX2PYg4JbfLx+Xt3s/KzDwCY/JfrCI6IbKNKhRBCiM7PL8LPnDlz+PDDD/n6668JCwsjPz8fgIiICIKCgti3bx8ffvghM2fOJCYmhi1btnDHHXdw6qmnMnjwYB9Xf3yKx8MPLz1Lwf69mMPCueC+xwiJjGry8faaGr57YT4et5veYybQ/9TT2rBaIYQQovPzi/DzyiuvAOpAhvW9/fbbXHXVVRiNRn7++Weee+45LBYLKSkpXHDBBTz44IM+qLZ5Vnz8HnvWrESn13PuXQ8QmdC8lqpf3nqF8oI8wuO6cMYNN6PRaNqoUiGEECIw+EX4OVGf65SUFJYtW9ZO1bSerb/+yNqvPwdg+o23kdx3QLOO377sF3auWIJGq2XmLXc361KZEEIIIRrnl+P8dAbZ27fw8xsvATD2wkvpN3FKs44vPZTLL2+qLWLjLryMrn36tXqNQgghRCCS8NMGKouLWFg7enPf8ZMYe+FlzTreXlPD108/jtNuI7n/QEad96c2qlQIIYQIPBJ+WpnL4WDhs09iraqkS3oPpt14a7P66dR1kC7NzSY0Ooazb7sXrbZpgyAKIYQQ4sQk/LSyX99+lfx9ezCHhjFr7v0YjM0ba2jVFx+zb90f6PR6Zt15f7PuDBNCCCHEiUn4aUVbflnE1l9/RKPRctZt9xDRJb5Zx+9dt5pVn38IwNTr5pDYs09blCmEEEIENAk/rSRvTwa/vvUqAOMvuYJug4c16/iSnGx++L+nARh25jkMnHJGq9cohBBCCAk/rcJaXcXC//wLt8tFz5FjGXXuhc06vqaygq+eegyH1Upy/4FMuuLaNqpUCCGEEBJ+TpKiKPz46vNUlRQRmZDImTfd0awOzk67ja/+/RjlBXlEdInnnNv/jk7vF8MvCSGEEJ2ShJ+TtGnxt+xdq3ZQPvu2ezEFBzf5WI/HzfcvPkPe3gzMoWGcf9+jMm+XEEII0cYk/JyEgsx9LPvfmwCcevk1xHfv2azjl733JnvXrvJOfRGddPyZ7IUQQghx8uT6Sgs5rDV89/y/cbtc9BgxmmFnntOs49d/9zUbfvgGgDPnzCW538C2KDPgvXTjr8fdPudVmShWCCECjbT8tNAvb71KWd4hQmNimX7jbc3q57P7j99Y+r83AJh42VX0HXdqW5UZ0E4UfJq6jxBCiM5Fwk8LZKz6jR3Lf1XH87n1boLCwpt8bNbmDXz3wtOgKAw5YwYjZ13QhpUKIYQQ4kgSfpqpurTEO2Hp6PP+1KyZ2nMzdvL1M0/gcbvoPWYCp11zY7NajETT2aqdvi5BCCGEn5I+P82gKAqLX30eW3UV8d17MuaCS5t8bGHWfhb86xFcdjvdhg5n5i13ypxdrcTt9lCYVUXOrlIKsyopzqmmuszepGOHTk3BZnFiDjG0cZVCCCH8hYSfZtj84/dkbd6A3mBkxpw7mzweT1leLl88+RD2GgtJffoza+596PTyYXsyKopqOLCthOydZeTuLsNpc7foPJt+zmbP2gLOuW0oMUmhrVylEEIIfyThp4lKD+Ww7P23AJj456uJSU5p0nGVxUV89viD1FSUE9etO+fd+xAGk7ktS+20qsts7F1fyJ61BRQeqGqwzRxiILlvFIk9I4lLCSWmayiv37G8See1VDj49sXNXPrQaIxB8p+EEEJ0dvKbvgk8HjeLXnkOl8NO2uBhDJt+VpOOqyop5rPH7qequIioxK5ceP9jmEOkdaE5rNUO9q0vZM+6Qg7tLQdFXa/RakjqFUlq/2hS+kUTmxyKRtuy/lPhcUFUFlnZsiSbETPTW694IYQQfknCTxNsWvQtebt3YQwKYtpfb0WjPXE/8arSYj597D7vtBUXPvi4jN7cRIpHIWd3GTtWHGL/piI8bsW7LbFnBL1GxNPjlC4EhxtP+mvNefU0dq48xK/v7WLv+iIJP0IIEQAk/JxAeUE+Kz5+D4BT/3wN4bFxJzymurSEzx57gPL8PMLj4rno4XlNOi7QOawudq7MY+vSHCqKrN71calh9BoRT88RXQiLbvolwzmvntZgHJ/GXgN07R0FQHlBDYqiyB14QgjRyUn4OQ5FUfjxvy/gsttJGTCYwadPP+Ex1WWlfPrPByjLyyU8rgsXPfQk4bFd2qHajquy2MqWX3PYsfKQt+Oywayjz6gE+k9MIi4lrMXnPnIE58ZGdK7r5+N2efC4FHQGCT9CCNGZSfg5jq2/LCZ7+xb0RhPTbrjlhJe7qstK+eyx+yk7lENYbBwXPfQkEV3i26najqfoYBXrFx1g/8ZClNorW1EJwQw+LYU+oxMwmNpnKIC6MYEMJh06gwx9JYQQnZ2En2OoLC5i2fvqpKUTLvkLkQmJx9+/qJDP/vkA5QV5hMXEcdFD84joktAepXY4efsqWP9DFge2lXjXpfaPZvDpKaT2i25xx+WWKsu3ABDajEtqQgghOi4JP41QFIWf33gJh9VKYu++DJtx9nH3Lz2Uy+ePP0hVSVFt5+YniIyX4HOkQ3vLWbNwP7kZ5QBoNNBzRDzDz0wjpqvv7oLL21sBQGKPCJ/VIIQQov1I+GlExsrlZG5ch06vZ/pfbzvuSMxFB7P4vHYcn+ikZC78x+OERce2Y7X+r+hgFX98vZ+D29WWHq1OQ98xCQybnkZkl2Cf1qYoCllbiwFI6hXp01qEEEK0Dwk/R7BZqln6njrj+ujzLz7uYIZ5ezP48smHsVmqievWnQvvf0xuZ6+nLN/C6m/2s29DEaCOzdNvfCIjZnRr1l1bbak4u5qy/Bp0Bi3pgyW0CiFEIJDwc4TfPv4flvIyopKSGTnrwmPul71jKwv+/RhOm3pp7Py/PyIDGNayVTtZ810m25fl4vEooIHeI+MZeXa6z1t6jrTj90MAdBsUK6M7CyFEgJDf9vXk7c1g80/fAzD12pvQGxqffytz03q+efoJXE4HqQMHc+7d/8BoDmrPUv2S2+Vh27Jc1n6Xib3GBUC3QTGMmd3Dp316jsVa5WDXyjwABk7q6uNqhBBCtBcJP7U8bjc/v/4yKAr9J04hdeDgRvfb+fsyFr30HzxuF91PGck5d9yH3njyIw13dFlbivnt8z1UFKqDE8Z0DWX8n3qS0jfax5Ud29alObicHuJSw+jaO9LX5QghhGgnEn5qbVr8LYVZ+zCFhDDpimsb3Wfdwi+9k5v2GTuRGTc3fWb3zqqq1MaKT3aTuVntNBwUbmTMrO70HZeItp1vWW8Om8XJliU5AAybliqjOgshRAAJ7E/uWtVlpfz+6fsAnHrZ1Ud1WlY8Hpa9/xbrv/sKgFNmnsvkK65t0hxfnZXb7WHzz9ms/S4Tl8ODVqth6BkpDJ/RDaPZ/3+s1n2fhb3GRUzXEHqcIiNwCyFEIPH/T6l28NtH7+KwWkno2ZtBp01rsM3ldLL4lefY9fsyAE69/BpGnH1eQLcUHNpTztIPMyjLUwcHTOoVyaRL+xCdFOLjypqmosjK1qVqq8+483v6dQuVEEKI1hfw4efQ7l1sX/YLAKdd/dcGrTn2mhq+eeZxDm7bglanY/rfbqf/xCm+KtXnHDYXfyzYx9ZluQAEhRkYd0FP+oxO6FBh8PfP9+BxK6T0iyJ1QIyvyxFCCNHOAjr8KB4Pv779XwAGTJ5KYs8+3m2VxUV89dRjFB3IxGAOYtbc++g25BRflepz2btKWfK/XVSV2ADoPyGJsef1wBzS+B1x/mr/piIyNxej1WoYf2EvX5cjhBDCBwI6/Gxb9jMF+/dgDApm4qVXetcX7N/Lgqcew1JWSnBEJOf//RHiu/f0YaW+47C6WPnlXravUMfDCYs2M+Uvff36Lq5jcVhdLP94NwBDp6X65e33Qggh2l7Ahh+bpZoVH74LwNgLLyUkMgqAPWtX8f2LT+Oy24lJTuW8ex8O2JnZc3eX8fM7O6gutQPqWDhjz+vRITo0N+aPr/ZhKbcTHhfEyJndfF2OEEIIH+mYn2Kt4I8vPsJaWUF0UjLDzjwbRVFY9+0Cln/wNigK3Yacwtm334spuGN04m1NbreHtQszWb/4ACgQHmtmyhX9SO4T5evSWix7R6m3r9LkS/ugNx57vjYhhBCdW0CGn5LcbDYu+haAKVfdAGj46bUX2frrjwAMmXYWp111A1pd4H1AlhfW8NNbOyjMqgSg37hEJlzUq8O29oA6ps8v7+4A1NarlP4d75KdEEKI1tNxP9FOwvIP3sbjdtN9+CgSevbmy3kPc3DbZtBomPKX6xg2Y1aHunupNSiKwq5V+az4ZDdOuxtTsJ7Jf+5Lz+EdewwcRVFY+kEGlgoHkfHBjLsgMPtuCSGEOCzgwk/2jm3sX78GjVbL0Gkz+fDBuyg7lIPBZOas2+6mx/DRvi6x3TntbpZ+uIvdqwsA6No7ktOv6u83M6+fjF2r8ti3oRCtVsMZ1/THIJe7hBAi4AVc+Pn9k/cA6Db0FL597ikc1hpCY2I5756H6NKtu4+ra39l+RYWvbaN0kMWNFoNo2elM2xaWqcY+K84p4plH6l3d408J50uaeE+rkgIIYQ/CLjwU3Qgk5CgIDI3rgdFoWvf/pxzx33eu70CyZ51BSz53y6cdjfB4UamXz+ApF6d49/BbnWx6L/bcDs9pA6IYfj0NF+XJIQQwk8EXPgBcLtcAAw5YyZTrroenb5jDdR3stwuDyu/2Oud2LNr70jOuHYAIREmH1fWOhRFYcl7O6koshIaZeKMq/uj6QQtWUIIIVpHQIYfrU7P6dfcyOCpZ/q6lHZXU+lg0WtbydtbAcAp09MYPSsdra7zTNK66ads9m0sQqvTMP2GgZhDAyvcCiGEOL6ACz+GoGAu+scTdO3b39eltLvinGq+f3kLVaU2jGYdU6/uT/qQOF+X1aqythazcsFeAMZf2IuE9AgfVySEEMLfBFz4ueyfT9O1ew9fl9Hu9m8q4qe3d+Cyu4mIC2LmTYOJTuxcAziW5ln46c3toKhzjw2a3NXXJQkhhPBDARd+wmM7V0vHiSiKwvofDrD6m/0AJPeNYvr1AzvchKQnYrM4+e7lLThsbpJ6RXLqJb0DbqwmIYQQTRNw4SeQuJ0efv3fTnavUcfvGTQ5mfF/6omuE/XvAbUD96LXtlFZZCUsxsyZNwxEp+9c36MQQojWI+Gnk7JbXfzw6hZyM8rRajVMvKQ3A0/tfJeBFEXh1//tJDejDINJx8y/DSYozOjrsoQQQvgxCT+dUHWZnW//bxMluRYMJh1n/nUgqf1jfF1Wm/jj6/3sXl2AVqvhzBsGEpsc6uuShBBC+Dm/uDYwb948Ro4cSVhYGF26dGH27NlkZGQ02MdmszFnzhxiYmIIDQ3lggsuoKCgwEcV+6+SQ9V88dQ6SnItBIcbOe+uUzpt8Nm2LIcNiw4AMPnyvqQO6JzfpxBCiNblF+Fn2bJlzJkzhz/++IOffvoJp9PJtGnTsFgs3n3uuOMOFi5cyGeffcayZcs4dOgQ559/vg+r9j+5u8v4cv4GqsvsRCUEc8E9w4lLCfN1WW1i/6Yiln+sTl0x6px0+o1L9HFFQgghOgqNoiiKr4s4UlFREV26dGHZsmWceuqpVFRUEBcXx4cffsiFF14IwK5du+jXrx+rVq1izJgxJzxnZWUlERERVFRUEB7e+eZ4ytpSzKLXtuF2eUjsEcHMmwZ3uju66uRmlLHw/zbjdnroPyGJyX/uI3d2CSFEJ9UWn99+0fJzpIoKdfTh6OhoANavX4/T6WTq1Kneffr27UtqaiqrVq1q9Bx2u53KysoGj85qz7oCfnh1K26Xh/Qhscy6bWinDT4FmZV89/IW3E4P3QbHMulSuaVdCCFE8/hd+PF4PNx+++2MHz+egQMHApCfn4/RaCQyMrLBvvHx8eTn5zd6nnnz5hEREeF9pKSktHXpPrFz5SF+enM7Ho9C71HxTL9hIHqjztdltYmS3GoWvrgJp91dO17RgE41LYcQQoj24XefHHPmzGHbtm18/PHHJ3We++67j4qKCu8jOzu7lSr0H1uWZPPre7tQFOg/MYmpV/XvdGP41CkvqOHr5zdhr3GR0D2cGTcOQm/onCFPCCFE2/KrW91vvvlmvv32W5YvX05ycrJ3fUJCAg6Hg/Ly8gatPwUFBSQkJDR6LpPJhMnUOWYpb8yGxQdYtWAfAEOnpjDugp6d9vJPZYmVr5/fiLXSQUxyKGfNGYLR7Fc/ukIIIToQv2gmUBSFm2++mQULFvDrr7+Snp7eYPvw4cMxGAz88ssv3nUZGRkcPHiQsWPHtne5Plc/+Iw8O71zB59iK189s5HqUjuR8cHMurXz9mcSQgjRPvziz+c5c+bw4Ycf8vXXXxMWFubtxxMREUFQUBARERFce+21zJ07l+joaMLDw7nlllsYO3Zsk+706kw2/nTQG3xGz+rOiJndfFtQG6ostvLVsxupKrUR0SWIc28fRnC4jN4shBDi5PjFre7HarV4++23ueqqqwB1kMM777yTjz76CLvdzvTp03n55ZePednrSJ3hVvfNv2Tz22d7AHVsm5FnpZ/giI6rstjKgmc3eFt8Zt8xjJDIznsZUwghROPa4vPbL8JPe+jo4WfLkmxWfKIGnxEzuzF6VncfV9R2KoqsfPUfCT5CCCHa5vPbLy57iePbtjzXG3yGn5nGqHM6b4tPeUENXz+3keqy2uAzdxghERJ8hBBCtB4JP35uz7oCln2kznM2bFoqo8/t3mk7NxfnVPPNC5uwVjok+AghhGgzEn782IHtJfz89g5QYMCpXRl7Xo9OG3zy91fw7f9txl7jIjYllHNuGSqdm4UQQrQJCT9+Km9fBYte3YrHrdBrRBdOvaTzTuOQvauU71/ZisvuJqF7BGffPBhTsNzOLoQQom1I+PFDxTnVfPfSZlxOD6kDojn9qv5otZ0z+OzfVMTiN7bhcSmk9Itixo2DMZhk5GYhhBBtR8KPn6kstrLwhbppHCI486+D0On9YizKVrdzZR5L3t+F4lHoPiyOadcMQGfonN+rEEII/yHhx4/YLE6+/b/N1FQ6iOkawllzBmPohJOUKorCuu+zWLMwE4C+YxKYckVfmaRUCCFEu5Dw4yfcTg8/vLqVsvwaQiJNnH3zkE45jYPH7WHZR7vZ8dshAE6ZnsaY2Z33DjYhhBD+R8KPH1AUhV//t5NDe8oxmHWcffMQQqPMvi6r1Tntbn58YxtZW0vQaGDixb0ZNDn5xAcKIYQQrUjCjx9Y/c1+dq8pQKPVcOYNA4lNDvV1Sa3OWuXg25e2UJhVic6gZdq1A+g+NM7XZQkhhAhAEn58bOfKQ6z/4QAAk//ch9T+MT6uqPWV5Vv49qUtVBZZMYXoOeumIST2iPB1WUIIIQKUhB8fyttbztIP1NGbR8zsRv/xST6uqPVl7yhl0evbcFhdhMWYOeeWIUQlhPi6LCGEEAFMwo+PVJXa+OG/6iCGPYbFMerszjdf17ZlOSz/ZA+KRyGxRwQzbhxEUJiM2iyEEMK3JPz4gMPm4ruXt2CtchKbEsrpV/VH04kGMfS4Pfz2+V62LskBoM/oBKZc3lfG8BFCCOEXJPy0M8Wj8Mu7OynJqSYozMDMv3WuEY3tVhc/vr6NgztKARgzuzunTE+TW9mFEEL4DQk/7WzdD1ns31iEVqdhxl8HERbdeW5pL8u3eMcq0hu0TL2mPz2GdfF1WUIIIUQDEn7a0YFtJaz5Vh3VeNJlfUjsGenbglpR5uYifn57Bw6bm5BIEzP/NoguaeG+LksIIYQ4ioSfdlJRZOWnt7aDAgNO7dpp7uxSPAprv89ibW2oS+wZwfTrBxISYfJxZUIIIUTjJPy0A5fDzaLXtmKvcRGfHs7EP/XydUmtwm518fPbO8jaUgzAoMnJjL+wZ6ediFUIIUTnIOGnjSmKwrIPMyjOVjs4n3nDwE5x11Npntq/p7ygBp1ey6TL+tBvXKKvyxJCCCFOSMJPG9v5ex67/shHo4Fp1w7oFHN27V6bz9L3M3Da3YRGmZhxo/TvEUII0XFI+GlDxTnVLP9kNwBjZvcguW+0jys6OS6nm98+28v25bkAdO0dybTrBhIcLgMXCiGE6Dgk/LQRh83F4te34XZ6SB0Qw7AzUn1d0kmpKLKy+PVtFB2sAtTpOEae1Q2truNfwhNCCBFYJPy0AUVRWP7RbsoLagiJNDH16n4degTn/RuL+OW9nTisLswhBqZe05+0AZ1vAlYhhBCBQcJPG9i1Ko+M1flotBqmXTuAoNCOeVnI7fKwasE+Nv+SDUBC93CmXTewUw3MKIQQIvBI+Gll5QU1LP9Y7ecz6px0knpF+ragFirLt/DTWzu8l7mGTk1hzHk90MllLiGEEB2chJ9W5HZ5+PHN7bgcHrr2iWL49DRfl9RsiqKwc2UeKz7ZjcvhwRSi5/S/9CN9SJyvSxNCCCFahYSfVrRm4X6KDlZhCtYztQPO1G6vcbL0gwz2ri8EoGufSKZeNYDQKBmtWQghROch4aeV5GSUseHHgwBMuaJvhwsMeXvL+emtHVSV2tBqNYyalc6waWloO1iAE0IIIU5Ewk8rsNc4+fntHaBA//GJHWomc7fbw7rvsli/6ACKRyE81sy0awcSny6DFgohhOicJPy0gt8+3YOl3E5EXBDjO9C8XaWHLPz8zuFOzb1HxzPpkj4Yg+THQgghROcln3InKXNLMbv+yAcNnH5Vf4xm//8nVTwKm3/N5o+v9uN2qZ2aJ13ah14j4n1dmhBCCNHm/P+T2o/Zqp0sfX8XAEOnppLYI8LHFZ1YZYmVX9/dSe7ucgBSB8Rw2l/6EhLRsfooCSGEEC0l4eckLP9kNzWVDqISghl9TrqvyzmuulvYf/9sDw6bG71Jx4QLe9J/QhIajXRqFkIIEThaNGKd0+nk9NNPZ8+ePa1dT4exb2Mhe9YWoNHA6Vf2R2/U+bqkY6oqtfHti5tZ8r9dOGxuErpHcMmDIxkwsasEHyGEEAGnRS0/BoOBLVu2tHYtHYa1ysGyDzMAGDY9zW/vjFIUhe0rDrHyy704bW50ei2jZqUzdGqq3MIuhBAiYLX4stfll1/Om2++yb/+9a/WrKdDWPbRbqxVTqKTQhh1ln9e7qoosrLk/V3kZpQBkNA9gtP+0peohBAfVyZE4Nk79QycOTkn3K/frp3tUI0QosXhx+Vy8dZbb/Hzzz8zfPhwQkIafqg+++yzJ12cP9qzroB9GwrRaDVMvao/OoN/zXXl8ShsXZrDH1/tw+XwoDdoGTO7B4OmJEtrjxA+0NTgA7Czbz/Q6ei3fVsbVyVEYGtx+Nm2bRunnHIKALt3726wrbP2I7FZnKz4RP1eh89IIy41zMcVNVScU82S93dRmFUJQFKvSE77S18i4oJ9XJkQnVvRyy9T/MKLrXMyt5udAwZKABKiDbU4/CxZsqQ16+gQVn65F2uVk6jEEEbM6ObrcrxcDjdrv8ti008H8XgUjGYdY8/vyYAJSR1ufjEhOppWDT513O7WPZ8QogG51b2JDu0pY+fveQBM/nMfdHr/uNyVvbOUpR9mUFlkBaDHsDgmXtybkEgZt0eI9lD84v+1/kl1/nv3qBCdwUmHnx07dnDw4EEcDkeD9bNmzTrZU/sNt9PDkvfVu7v6T0wiqWekbwsCaiodrPxiLxmr8wEIiTRx6iW96T40zseVCREY3NUWHJmZhJ1xBlU//tiq55ZLXkK0rRaHn/3793PeeeexdetWNBoNiqIAh/v7uDtRs+36xQcoL6ghKNzI2Nk9fFqLx6OwfXkuf3y9H4fVBRoYNCmZMed2lzm5hGhlisuFMzcXe2YmjswsHJmZOLLUZ1dRUZt93Z19+8mdX0K0oRZ/Wt52222kp6fzyy+/kJ6ezpo1aygpKeHOO+/k6aefbs0afaos38L6RVkATLyoF+YQg89qKciqZNmHGd6JSONSw5h0aR+/HWdIiI5AURTcZWUNgo29LuhkZ4PTecxjdbGxaI1GnIcOtWPFQoiT1eLws2rVKn799VdiY2PRarVotVomTJjAvHnzuPXWW9m4cWNr1ukTikdh6QcZeFwKaQNj6Dm8i0/qsFmcrP56P9tW5IICxiA9Y87tzoBTu8rt60I0kcdux3HgwFEtOPasLDwVFcc8TmM2Y0xLw5iejjG9G6b0dIzdumHs1g1deDg7+/Vvx+9CCNEaWhx+3G43YWHqrd6xsbEcOnSIPn36kJaWRkZGRqsV6EsZq/M5tKccvVHLqZf0bvdb+D1uDzt+O8TqbzKxWdS/PnuPjmfc+T1lIlIhGqEoCq6CgtrWm4aXqpy5uVB7ef4oGg2GxEQ14HTr1iDo6BMS0GiPfYND9HXXUvr6G636fcglLyHaVovDz8CBA9m8eTPp6emMHj2ap556CqPRyGuvvUb37t1bs0afsFtdrFywD4CRZ6UTHhvUrl8/J6OM3z7dTUmuBYDopBBOvbg3XftEtWsdQvijus7GjqzagJNVe6kqKwvFaj3mcdqwMIzp6ZjSuzUMOmlpaM3mZtVg27mT0vf+R+V3353st3OUvWecQc+ffmr18wohVC0OPw8++CAWi/rB/Nhjj3H22WczceJEYmJi+OSTT1qtQF9Z+20m1koHkfHBDDk9pd2+bmWxld+/2Mv+jWpnSlOwntGzujNgYhJanX/cXi9Ee2hxZ2O9HmNycm3rTcNLVbqYmJNqwVU8Hqp//ZWSd97Bum69d7150CCi/3IFYdOnkzF4SIvPX8eZ3bQRoYUQLdPi8DN9+nTvcs+ePdm1axelpaVERUV1+BGeSw9Z2LpE/eUz8aJe7TKmj8PmYsOiA2z6ORu3y4NGq2HgqV0ZdXY65lDfdbIWoi15OxvXhprmdjY2det21KUqY3IyGkPr/jejuFxU/rCIktf+i33PXnWlXk/49OlEX3E5QUOHevc1JCc3eTqLYzEkJ5/U8UKI42uVe6PrbnOPjo5ujdP5lKIorPh0Nx6PQvqQWFIHxLTt1/Mo7F6Tz8oF+6ipUMdKSu4bxYQ/9SKma2ibfm0h2ounpkbtbJyVpbbkZGXhyFJfeyorj3nciTobtzXF4aD8668pef0NnAcPAqANDSXqssuI+vNlGOLjjzqm588/HZ7PS6dr+mjNtfsakpPp+bNc8hKiLZ1U+HnzzTf5z3/+w549ewDo1asXt99+O9ddd12rFOcL+zYUkbOrDJ1ey/gLe7Xp1yrIrGTFp7spyFR/+YfHmhl/YS/Sh8R2+NYzEXgUp1O9TJWVVRtusmr742ThKig49oF1nY29rTdN72zcVhSPh8pvv6Xo+RfUjtKALjKS6KuuJOqyy04YvOqHl6ZMbCqBR4j21eLw89BDD/Hss89yyy23MHbsWEC9/f2OO+7g4MGDPPbYY00+1/Lly5k/fz7r168nLy+PBQsWMHv2bO/2q666infffbfBMdOnT2fRokUtLb9RToeb379Qg9yw6alExLVNJ+eKIiurv97HnnWFABhMOkbM7MaQ01L8bpZ4IepTFAVXYdHhcFP/kZ0NLtcxj9VFRXlbbdRLVWnqcmpqszsbtxVFUbCsWEHhs//BvmsXAPq4OKKvvYaoiy5CG9z8SYIl1Ajhf1ocfl555RVef/11Lr30Uu+6WbNmMXjwYG655ZZmhR+LxcKQIUO45pprOP/88xvd58wzz+Ttt9/2vjaZWv9W7w2LDlBdaic02sQp09Na/fzWagfrvs9i27JcPG4FNNB3dAJjzusht64Lv6EoCu6SEhwHD+I4cBDHwQM4Dxz0hhxPTc0xj9WYzYcDTm24MdXeTaWLjGy/b6IFbDt3UjDvX9SsWQOod4bFXH890Vdcjjaofe/2FEK0rRaHH6fTyYgRI45aP3z4cFzH+euvMTNmzGDGjBnH3cdkMpGQkNCs8zZHRZGVjT+q1/QnXNgLg7H1JhZ0Otxs/iWbjYsP4LCp1/9T+kcz9rwexKWEtdrXEaKpFI8HV2Hh4XBzMFsNOwcP4jxw4LgBB60WQ3KyemnKG3TUhz4+3ieXqU6Gu7KSohdepOzDD8HjQWM0EnX55cRcfx36KBlaQojOqMXh54orruCVV17h2WefbbD+tdde489//vNJF3akpUuX0qVLF6KiojjttNN4/PHHiYk5dmdku92O3W73vq48TqdKgFVf7sXt8pDcN4ruw1pnclCPR2HXqjzWfLMfS21n5tiUUMad35OUfh2/c7jwb4rbjTMvD2dtqFGDzkGcBw/gOJiNUu+/j6PU9sMxpKViTE3DmJpy+K6q5GQ0RmP7fSNtRFEUKr7+msL5T+MuKQEgfOYMutx1F4akJB9XJ4RoS80KP3PnzvUuazQa3njjDX788UfGjBkDwOrVqzl48CB/+ctfWrXIM888k/PPP5/09HT27dvH/fffz4wZM1i1ahU6XeMtNPPmzePRRx9t0vnz9pazb2MRGg1M+FOvk+5srCgKB7aWsOqrfZQeUsdCCos2M/rc7vQeGY9GpqQQraSuk3H9cOO9TJWbe9xbxdHpMCR3rQ03qRjTUjGkpGBMS8OQnIy2EwScY3EcPEjeAw9Ss3YtAMbu3Un4x4OE1PZfFEJ0bhpFOdZ470ebMmVK006q0fDrr7+2rCCN5qgOz0fav38/PXr04Oeff+b0009vdJ/GWn5SUlKoqKggvN6dGoqi8MVT6ynIrKT/hCSmXN63RXXXyd1dxupv9pO3V50ryBSsZ8TMbgyalCydmUWLeOx2nNnZDfvg1F6mch46dNxbqTUGA4bUVDXcpKbULqepQScxsdXHw/F3isdD2ccfUzj/aRSrFU1QEHFzbiL6L3/pFK1ZQnRGlZWVREREHPX5fTKa1fKzZMmSVvmiJ6t79+7Exsayd+/eY4Yfk8nUpE7Re9cXUpBZid6kY9Q56S2uqSCzktXf7CN7ZxkAOoOWwVOSOWV6mk9nghcdg8diwVEbcJwNWnEO4srPP/acVNR2Mq5ruakXboypqWofnGO0jgYaR04ueQ8+SM0ffwAQPGoUiU8+gVEGFBQi4LTKIIftLScnh5KSEhITE0/qPG6nhz++UufvOmVaaovuuCrOqWb1N/vJ2lIMgFanof/4JIbP6EZolNzBJQ7zWK1qoMk6oA74dyCr9vkA7qLi4x6rDQ3FmJparw/O4bCjj4uTcaFOoGLht+Q/8ggeiwWN2UyXO+8k6s+XdbjO2UKI1uEX4ae6upq9e/d6X2dmZrJp0yaio6OJjo7m0Ucf5YILLiAhIYF9+/Zxzz330LNnzwZTbLTE1mU5VBbbCIkwMnRqarOOLcu3sObbTPbWjtWj0UCfsYmMnNmt3SdBFf7DY7fXttzUBhxv0Dlw/IH+UAfRaxBu6i5TpaWh6wTTxviCx2aj4IknKf/sMwCCTjmFpHlPYkxr/aEshBAdh1+En3Xr1jXoT1TXsfrKK6/klVdeYcuWLbz77ruUl5eTlJTEtGnT+Oc//3lSY/3Yqp2s+z4LgNHndsdgatqlgdI8C+t/yGLP2gLvlYieI7ow6ux0ohJCWlyP6DgUhwNHTk6jLTiuvONfotJGRKjTNdR/dFPDji4ioh2/i87Pvj+T3DvuwJ6RARoNsX/7G7FzbpLLgEII/wg/kydP5nj9rhcvXtzqX3Pd91nYa1zEdA2lz5gTXz4rya1m3Q9Z7F1fCLWldhscy+hZ6cQmy1g9nU3dQH/2ffux79uLY99+dZC/AwfUTsYezzGP1YaGNgw2tcuGtDQZN6adVH7/PXkP/gNPTQ26mBi6zn+KkHHjfF2WEMJPNDv8PPTQQ5x77rkMHz68LeppF5XFVrYuU+faGXdBD7THufW8OKeKdd9lsW9jkXdd96FxjJjZjbhUCT0dnaIouPLzse/dh2P/Pux792Hfvx/H3r24KyqOeZwmOLjxFpy0NHTR0XKJykcUj4ei556n5LXXALVTc9LT8zF06eLjyoQQ/qTZ4ScnJ4cZM2ZgNBo555xzmDVrFqeffjrGDnSb6NpvM/G4FZL7RpHav/GBEgsPVLLu+ywyN9d2RNVAj2FdGDGzG7HJMtt6R+SursaekYFt1y7suzKwZWTg2Lv32KMZazQYUlIwde+OsUd37zQNhrQ06WTsh9zVFg7dcw/VtcNsxFx3LXF33CGXuYQQR2l2+HnrrbfweDz8/vvvLFy4kNtvv528vDzOOOMMzj33XM4++2yio/139OLSPAsZq/MBGDO7x1HbCzIrWft9Jge2qiO+ooFeI+IZPiONmCQJPR2Boig4cw9hz9iFbecu9XlXBs7s7MYP0OsxpqWpIadnD0w9emLq0R1jerrfTLgpjs+Rk0PO327CvmcPGqORxMf/ScSsWb4uSwjhp5o1yOGx7Ny5k4ULF/L111+zfv16Ro0axaxZs7j00kvp2rVra9R50uoGSfr8PyvJ32Wl+9A4Ztw4CFA/LHMzytiw+IB3nB6NBnqPSmD4jDTpyOznXMXFWLdswbplC7YtW7Bu247nGNOZ6OPjMfXtg7lvP8x9+2Dq1QtjaqoMcNeBWdasIffW23CXl6OPiyP5/14kaMgQX5clhGglPh/k8Fj69etHv379uOeeeygqKuKbb77hm2++AeCuu+5qjS/RajK3FBNsCmH0rO54PAqZm4rYsPgAhQeqANBoNfQZHc/wM7sRGR/s42rFkTxWK7bt27Fu2VobeDbjOpR39I4GA6YePTD37Vsbdvpi6tNHOhx3MmUff0L+44+Dy4V54ECSX/o/DPHxvi5LCOHnWqXlpyOoS47zr/6GIRO607V3FBt+PEBFoRUAvUFLv/FJDJ2aIuP0+BF3VRU169dTs2YtNWvWYNu58+jpHDQaTD17YB48mKBBgwkaPAhTz57SmtOJKU4nBfP+pc7EDoTPnEnik0/IZUohOiG/bfnpSDQayN5Zyu416oBzpmA9gyYnM3hKMkFh8mHpa0eFnR07jrqtXN+lC0FDBmMeNJigwYMxDxyILlQuTQYKd3k5Obff4Z2mIu7224n56w3SAV0I0WQBF34UBaxVTkKjTAw5PYX+E5IwmgPun8FvKG431i1bqF62DMtvvzcadoxpaQSPGqU+RgzHcJLTmoiOy753L9k3zcF58CCa4GC6zn+KsGPM7yeEEMfSok/9AwcOsGXLFuLj4xk1alRr19SmIuKCmHBuP3qPikenl3l9fMFdWYnlt9+oXraM6uUrcJeVNdjeIOyMGil9OAQA1cuWkTv3TjwWC4auXUl++WXMfXr7uiwhRAfU7PDz0UcfcdVVV+F0OtFoNAwbNowffviBuLi4tqiv1V1030giImUagfZmz8yk+tdfqV66jJoNGxr029GGhRE6cQIhp55KyNixEnZEA4qiUPrWWxQ+/QwoCsEjRtD1hefR+/GQGkII/9bsDs99+/Zl7Nix3HfffWRnZ3PvvfcyZMgQ3nzzzbaqsVW0RYcpcXzOQ4eo/OEHKr77DvuOnQ22GXv2IHTSJEInTSJ42DA0BoOPqhT+zGOzkffQQ1R+sxCAyIsuIuHBB6QzuxABpC0+v5sdfoxGI7t376Zbt24A7Nq1i+HDh2OxWFqloLYi4ad9uIqLqVy8mMrvvse6YcPhDTodIWPGEDplCqGTJ2FMTvZdkaJDcOblkXPzLdi2bwedjvj77iPqz5dJx2YhAoxf3O3lcrkIDj48/k3fvn3xeDzk5+eTkJDQKkWJjsVjt1P1449ULPgKyx9/HO6wrNEQPGIE4WedRdj0aTLGjmiymvXrybn1NtwlJegiI+n63HOEjBnt67KEEJ1Eizo8v/vuu4wfP57BgwcTGhqKXq+n5ljzI4lOy3HgAGWffErFl1/iLi/3rjcPGkT4WTMJnzFD+u+IZiv7+BPyn3gCnE5MffqQ/NJLGJP9Y6R4IUTn0OzwM3HiRB5//HGqqqrQarWkp6djs9l48803mTp1KiNGjCAsTGY776wUp5OqJUso//gTLCtXetfrExKIvPBCIs45G2Namg8rFB2V4nCQ/+STlH/8CQBhZ55J0pNPoA2WkdaFEK2rxSM879mzh/Xr17Nhwwbvo7y8HK1WS69evdi5c+eJT9KOpM/PyXGVlFD2wYeUf/YZrqIidaVGQ8jECURdcimhp05Eo5fxkkTLuIqLybntdqzr14NGow5ceMP10r9HCOEffX7q9OrVi169enHJJZd412VmZrJu3To2btzYKsUJ33Pm5lLy1tuUf/45it0OgC4mhsgLLiDyoj9Jx2Vx0mrWriV37p24iorQhoaS9PR8wiZP9nVZQohOLODm9pKWn6ax79tHyetvUPHtt+ByAWAePJiYq64kbOpUudVYnDTF46HkjTcpeu458Hgw9uxB8gsvYOre3delCSH8iF+1/IjOybp1GyWvvUbVzz+rc4EAIePGEnPDDQSPHi2XIUSrcJeXc+jev1O9bBkAEefOIuHhh6V/jxCiXUj4EQDY92dS+OwzVP/8i3dd2BlTibnhBoIGDfJhZaKzsW7ZQs7tt+M6lIfGaCT+Hw8SeeGFEqyFEO1Gwk+Ac5WUUPzSS5R98qk65YRWS8Q5ZxNz3XWYevXydXmiE1EUhbL3P6DgqafA6cSQlkryc89h7tfP16UJIQKMhJ8A5bFaKX33XUpefwNP7ejcoVOm0OWuOzH16OHj6kRn466uJu/Bf1C1aBEAYdOmkfjE4+hkWAwhhA9I+AkwisdDxYKvKHrhBVwFBQCYBw6ky913EzJ6lI+rE52Rbdcucm67DeeBg2AwEH/33URdcblc5hJC+IyEnwBi272b/IcexrppEwCGrl2Ju+MOwmfOQKPV+rY40ekoikLZ/96n8OmnURwO9EmJJP/nPwQNGeLr0oQQAU7CTwDw2O0Uv/IKJW+8CS4X2pAQYm+6iagrLkcrt6yLNuAqKuLQ/Q9gWbECgNDJk0mc96TM7yaE8AsSfjo5yx+ryX/4YRwHDgAQevrpJPzjQQwyCa1oI1W//kreAw/iLitDYzIR//d7ibzkErnMJYTwGxJ+OilXWRmF85+m4ssvAdB36UL8Px4k/IwzfFyZ6Kw8VisF//63d24uU9++dH16PqaePX1cmRBCNCThpxOyrFzJoXv/rs7BpdEQdeklxN1xh9xZI9pMzYaN5N13n7eFMfrqq4m743a5rCqE8EsSfjoRxeGg8PnnKX3zLQCM3buT+PjjBJ8yzMeVic7KY7dT9MILlL79Dng86Lt0IXHek4SOH+/r0oQQ4pgk/HQS9sxMDt11N7bt2wGIvORi4u+9F21QkI8rE52VdetWDv39Phz79gEQce65xN9/H7qICB9XJoQQxyfhp4NTFIWKLxeQ/8QTKDU16CIiSHziccKmTvV1aaKT8jgcFL/0MiVvvAFuN7rYWBIfe5Sw007zdWlCCNEkEn46MI/FQt4/HqLy++8BCB49mqSn/o0hPt7HlYnOyrp1K3kPPIh9924Aws86i/gHH5Bb2IUQHYqEnw7KkZNDzk1z1A8hvZ64W28l5tpr0Oh0vi5NdELuagtFzz9P2fvvg6Kgi4oi4ZFHCJ8+zdelCSFEs0n46YAsf/xB7u134C4vRxcbS/ILL0inZtFmqn5dQv5jj+HKzwcg/JxziL/v7+ijo31cmRBCtIyEnw7EOyv2v/4FbjfmgQNJ/r8XZcBC0SachYUUPPEkVYsXA2BITibhkUcInSB3cgkhOjYJPx2Ex+Eg/7HHqPj8CwDCZ51D4mOPoTWbfVyZ6GwUj4fyTz+l8Jln8VRVgU5HzNVXETtnjtw9KIToFCT8dADu8nKyb5qDdcMG0GrpcuedRF9ztUwXIFqddft2Ch5/AuvGjQCYBw0i8bFHMffr5+PKhBCi9Uj48XPO/HwOXncdjr370IaF0fXZZwidONHXZYlOxlVWRtFzz1P+6aegKGiDg4m7/Xai/nyZdKIXQnQ6En78mH3fPg5edz2uvDz08fGkvvE6pl69fF2W6EQUl4uyTz6h6IUX8VRUAOrt613uvkv6kgkhOi0JP37KumkT2X+9EXdFBcb0dFLffANDUpKvyxKdSM3ateQ//gT2jAwATH36kPDgAwSPHOnjyoQQom1J+PFD1cuXk3Pb7ShWK+bBg0n576syiJxoNc78fAqfmu8dHFMbEUHcbbcSddFFaPTyK0EI0fnJbzo/U/n99+Tecy+4XIRMmEDy88+hDQnxdVmiE/DU1FDyzjuUvP4GitUKGg2RF11E3O23SbgWQgQUCT9+pPL778m9627weAg/6yyS5j2Jxmj0dVmig1NcLsq/+JKi/3sRd1ExAEHDhhH/4AMEDRjg4+qEEKL9SfjxE5WLFpF79z3g8RBx3nkkPvE4Gq3W12WJDkxRFKqXLKHw6Wdw7N8PqAMVxt1xO+EzZ8pQCUKIgCXhxw9ULv6R3DvvArebiNmzSXz8nxJ8xEmxbt5Mwfz5WNetB0AXGUnsTX8j8pJL0EprohAiwEn48bHKn34i98471eBz7iy1xUfGVREt5DhwgML/PEfVokUAaEwmoq+8kpjrr0MXFubj6oQQwj9I+PGhql9/JfeOueByEX7OOSQ++aQEH9EizsJCSv77GmWffAIuF2g0RJx3HnG33iLj9QghxBEk/PhIzdq15N5+hxp86jo3S/ARzeQqKqLkjTco+/gTFLsdgJBJp9Jl7p2Y+/T2cXVCCOGfJPz4gC1jN9k3zUFxOAg9/XSS/v0vGV9FNIuruJiS19+g7OOPvaEnaNgw4m67lZAxY3xcnRBC+Df5xG1nztxcsq+/Hk9VFUHDh9P1macl+Igmc5WUUPLGm5R99BGKzQZA0NChxN5yMyHjxskdXEII0QR+cUvR8uXLOeecc0hKSkKj0fDVV1812K4oCg899BCJiYkEBQUxdepU9uzZ45tiT4KrrEydq6uwEFOvnqS8/BJas9nXZYkOwFVSQsFT89k79QxK334bxWbDPGQwKa+/TtpHHxI6frwEHyGEaCK/CD8Wi4UhQ4bw0ksvNbr9qaee4oUXXuDVV19l9erVhISEMH36dGy1f/l2BB6rlZwb/4YjMxN9YiIpr7+OLiLC12UJP+cqLaXw6afV0PPWW4enPHn9Nbp9/DGhEydI6BFCiGbyi+stM2bMYMaMGY1uUxSF5557jgcffJBzzz0XgPfee4/4+Hi++uorLrnkkvYstUUUj4fcu+/Gunkz2ogIUt94Xe7AEcflyMmh9K23Kf/yS+/lLfPAgcTdcjMhp54qgUcIIU6CX4Sf48nMzCQ/P5+pU6d610VERDB69GhWrVrVIcJP0fMvUP3zL2gMBlJeeRlTjx6+Lkn4Kev27ZS++RaVixaBxwOooSd2zk2ETp4soUcIIVqB34ef/Px8AOLj4xusj4+P925rjN1ux157FwxAZWVl2xR4AhULv6Xkv/8FIPHxfxJ8yik+qUP4L0VRsKxcSembb2JZucq7PmTCBGKuu5bg0aMl9AghRCvy+/DTUvPmzePRRx/1aQ3WLVvIe+ABAGKuv46I2st2QoA64Wjl4sWUvPkm9h071ZU6HeEzZxJz7TWY+/b1bYFCCNFJ+X34SajtG1NQUEBiYqJ3fUFBAUOHDj3mcffddx9z5871vq6srCQlJaXN6jySMz+f7Dm1Y/lMmULc7be329cW/s1jtVL+xZeUvv02ztxcADRBQUT+6UJirrwSQ9euPq5QCCE6N78PP+np6SQkJPDLL794w05lZSWrV6/mb3/72zGPM5lMmEymdqqyIY/dTs6cm3EXFWPq1Yuk+fNl9GaBMy+Psk8+ofzjT3CXlwOgi4oi6orLibr0UvRRUb4tUAghAoRfhJ/q6mr27t3rfZ2ZmcmmTZuIjo4mNTWV22+/nccff5xevXqRnp7OP/7xD5KSkpg9e7bvij6Ogscfx7Z9O7rISJJfeRldaIivSxI+oigKNWvWUvbBB1T98gu43QAYUlKIueZqImbPRhsU5OMqhRAisPhF+Fm3bh1Tpkzxvq67XHXllVfyzjvvcM8992CxWLjhhhsoLy9nwoQJLFq0CLMfDhBY/uUCyj/7HDQakp55GmNysq9LEj7gsVioWLiQsg8+wL7ncLAPHj2aqMsuI2zq6dIaKIQQPqJRFEXxdRHtobKykoiICCoqKggPD2+Tr2HLyCDrootR7HZib72FuJtuapOvI/yXIyuLso8+ovzLBXiqqgDQBAcTce4soi+7DFOvXj6uUAghOpa2+Pz2i5afzsBdVUXOrbei2O2ETJxI7I03+rok0U4Ut5vqFSso++BDLCtWeNcb09KI+vNlRMyeja6NArcQQojmk/DTChRFIe+BB3EeOIg+MZGkp/6NRusXM4eINuQqKaHiq68p+/hjnNnZ6kqNhtBTTyXq8ssJGT9Ofg6EEMIPSfhpBWUffUTVjz+CwUDy88/JXTudmOJyYfn9d8o//4KqJUvA5QJAGx5O5AUXEHXpJRhTU31cpRBCiOOR8HOS7Hv2UPjvpwCIv+tOggYP9nFFoi04Dh6k/IsvqViwAFdhoXe9edAgIv90IRHnnCN3bQkhRAch4eckeOx2cu+629vPJ+ovf/F1SaIVeaxWqn78kfLPv6Bm7Vrvel1kJBHnziLi/Asw9+ntwwqFEEK0hISfk1D4zDPYMzLQRUeTNO9JmX+pE1AUBdu2bZR//gWV332Hp7pa3aDREDJhApEXnE/oaaehNRp9W6gQQogWk/DTQtUrVlD23v8ASJr3JPrYWB9XJE6Gq6SEyu++o/zzL7Dv3u1db0hOJuL884g87zwM9aZXEUII0XFJ+GkBV1kZh+67H4Coyy8ndNIkH1ckWsJdbaH6l5+p+PY7LCtXekdf1phMhE2bRuQF5xM8apTcsSWEEJ2MhJ8WKPjn47iLizH26EGXu+/ydTmiGRSHg+rffqNi4UKqlyxFsdm828wDBxJx/nlEnHUWuogIH1YphBCiLUn4aabKRYup/P570OlI+tc8tD6aPFU0neLxULN2HZXffkvljz/iqajwbjN260b4OWcTcdZZGLt1812RQggh2o2En2ZwlZSQ/+ijAMRcfx1Bgwb5uCJxLIqiYNuxg8pvv6Py++9xFRR4t+m7dCF85kzCzz4b84D+0lFdCCECjISfJlIUhfxHHsVdVoapTx+Zt8tP2ffvp/KHH6j89jscmZne9drwcMKnTyP8rLMJHjlCJhUVQogAJuGniaoWL6bqp59AryfpX/PQyK3OfkFRFOw7d1L5009U/fQTjr37vNs0JhOhp00h4uyzCZk4UW5PF0IIAUj4aRJ3eTn5/3wcgNgbbsDcr5+PKwpsiseDddNmqmoDjzMn5/BGg4GQsWOIOOssQk+fii40xHeFCiGE8EsSfpqgYP583CUlGHv0IObGv/q6nICkuFzUrF1bG3h+xlVU5N2mMZsJnTiRsGlnEDp5MrqwMB9WKoQQwt9J+DkByx9/UPHFlwAk/vMxuXTSjjx2O5aVK6n66Weqf/kFd727tLShoYROmULYGVMJnThR5tUSQgjRZBJ+jsNjs5H38MMARF12KcGnnOLjijo/V1kZluXLqVq6FMvyFXgsFu82XVQUYVNPJ+yMMwgeM0aCqBBCiBaR8HMcJa+9hvPAQfTx8cTNnevrcjolRVGwZ2RQvXQp1UuXYd28GRTFu10fH0/Y1KmETZtG8PBT0OjlR1YIIcTJkU+SY7BnZlLy+hsAxD9wP7rQUB9X1Hl4rFYsq/5QA8/y5bjy8xtsN/XtS+ikSYRNmYx58GCZXkIIIUSrkvDTCEVRKPjnP1GcTkJOnUjYGWf4uqQOz5GTS/WypVQvW0bNH6tRHA7vNo3ZTMjYsYROmkTopFNlAlEhhBBtSsJPI6p++AHLylVojEYSHnxQRgBuAY/DgXXDRiy/raB62TLse/Y22G5ISiJ08iRCJ08meNQotGazjyoVQggRaCT8HMFjsVDwr38DEPPXGzCmpvq4oo5BURQce/dS/fvvWFaupGbtOhSr9fAOWi1Bw4apgWfSJEy9ekmoFEII4RMSfo5Q/MYbuAoLMSQnE3Pddb4ux6+5iouxrFqF5feVWFauxFVY2GC7Ljb28OWsCePRRUb6plAhhBCiHgk/9Thycil98y0Autx7j8zYfgSPzUbN+vVYVq7E8vtK7Lt2NdiuMZkIHjGCkHHjCJkwHlPv3tK6I4QQwu9I+Kmn8OmnURwOgseMIWzqVF+X43OKy4Vt+3Ysa9ZQs+oPatavR7HbG+xj6teP0PHjCBk3jqDhwyUwCiGE8HsSfmpZ1qyhatEi0GqJv+++gGyxUFwubDt2ULNmDZY1a7CuW4+npqbBPvr4eLVlZ9w4QsaNRR8T46NqhRBCiJaR8AMobjcFT84DIPLiizD36e3jitqH4nJh27mLmjWrD4edeiMqA2gjIggeOYKQUaMIGTcOY48eARkMhRBCdB4SfoDyL77AvmsX2vBw4m691dfltBlv2Fm7lprVq6lZvx5PdXWDfbTh4QSPHEnIqJEEjx6t9tuRQQaFEEJ0IgEfftzV1RQ99zwAcTffjD4qyscVtR6PxYJ1yxZq1m/AumE9NZs2oxxxGUsbFkbwyJEEjxpJyKhRmPr0QaPT+ahiIYQQou0FfPgpfett3KWlGLt1I+rSS3xdzklxFRVRs2GjGnTWb8C2cye43Q320YaHE3zKKQSPHk3wqJGY+/aVsCOEECKgBHT4cRUVUfLOOwDEzb0DjcHg24KaQfF4cGRmYt24kZr1G6jZsB7ngYNH7adPSiR4+AiCh59C0CmnYOrZUy5jCSGECGgBHX6KXn4ZpaYG85DBfj9/l7uiAuuWrVg3bcK6eTPWLVvwVFY23EmjwdS7d23QGU7wKcMwJCX5pmAhhBDCTwVs+LFnZlL+6WcAdLnzTr+6g0lxu7Hv3Yd18yasmzZj3bwZx759R+2nMZsJGjiQoOHD1cAzdCi68PBmfz2P4qHCXkGNqwa7247T7cTutuNwO9BqtOi1+gaPYH0woYZQgg3BaDXSiiSE8F81zhqqHFXEh8T7uhThRwI2/BQ99zy43YROmkTIqFE+q0NRFJy5h7Bt24Zt+zasW7dh27r1qFvOAQxpqQQNGULQ0KEEDRmCuXfvJl2qc3qc5FTlkFWRRVZlFgcqD5BbnUuprZQSawnl9nLcivuE5zmSVqMlxBBCmCGMMGMYMUExxAbFEhMUQ4xZXY4NiiU+OJ6EkATMepm8VAjRfv634388tfYpAFZcvIJIc6RvCxJ+IyDDj3XzZqoWLwaNhri5c9v1azsLC7Ft245t21as27Zh27oNd1nZUftpg4MxDx5cG3aGEDRkCPro6CZ9jWJrMZsKN7G5aDObizazo2QHdrf9hMeZdWYMOgMmnQmj1ohRZ8SjeHB5XOpDceH0OLG6rLg8LjyKhypHFVWOKrAAR38bDUSbo0kMSSQxJJGEkAQSQxLpGtqV5LBkksOSCTGENOn7E0KI41EUhSsXXcnGwo3edaHGUB9WJPxNwIUfRVEofOZZACJmz27TAQ1dZWVq0Klr0dm2DVdBwdE7GgyYe/fGPHAgQYMGYh44UJ31vIl3YSmKwo7SHSzLXsbS7KXsLN151D5B+iC6hXcjLTyNbhHdSAlLIdYcS3RQNNHmaKJMURh0TevwrSgKdrddDT7OKqod1VTYKyi1lVJsLabEVqI+W9XnPEseVpeVUlsppbZStpdsb/S80eZokkOTvWEoOTSZlLAU0sLTiA2K9atLk0II/1RqK2XSJ5MarFty0RL02oD7uBPHEXA/DTVr1lCzZg0ag4G4W25utfO6q6qw7djZoEXHmZNz9I5aLaYePTAPGoR54ACCBg3C1Lt30+fEKjsAmz6EnqezPzyWBXsW8H3m9xTWHJ5RXYOGnlE9GRI3xPtIC09rtf45Go0Gs96MWW8mjrgT7q8oCpWOSvIt+eRZ8jhUfYh8Sz6HLIfIrcolpzqHcnu5NxxtKd5y1DmC9EGkhKWQGpZKanhqg+e44DjpeySE4Lv93/H3FX/3vtZpdKy7fJ0EHwCHBX55DPqfC2njfF2Nz2kURVF8XUR7qKysJCIigi3nnY9+xw6irriChAfub/Z5FEXBVViEfddObDt3qoFn506c2dmN7m9MS2sQdMx9+6INafnlHdsr41lsyeTLqBg21PvvOUgfxLikcUxOmczErhOJCepYc25VOarIqcohpzqH7KpscqrU5+yqbPIseXgUzzGPNevMJIcle8NRSlgKKeEppISlkBiSKL/4hOjkiq3F3LbkNrYUHf7D6ZI+l/DAmAd8WJWfUBTI+B4+vuzwur9ng7n5N8f4St3nd0VFBeEtuKmnMQEXftb07EVYSAg9f/oRfdzxWy0UjwfnwYMNQo5t507cJSWN7q9PSiRo4KDDl68GDGjR3VeNqXHW8OnGV3h365sU69XLYVqNllO7nsrsXrOZ0HUCJl3nnFHd6XaSW53LwaqDHKw8qD5XHSS7Mpvc6tzjdtbWa/QkhSapYSg0hdTwVG9I6hrWtdP+mwkRCNweN59kfMK8NfMarP/vGf9lXJK0bpC/DRbfB5nLG64fcS2c/axvamqBtgg/AfkncdSllx4VfNzVFuy7d2PfnYFt1y7sGbuxZ2QcNas5AFotxvR0zP36qY/+/TD17dsmU2NYnBb+t+N/vL/zfSrsFaDXkehy8SeLg1nXriR+3bvw1vnqzlMehEl3w7KnYMmTMOV+mHRPq9fU3gw6A90iutEtottR25weJ3nVeWRXZauBqCqb7Ep1OacqB4fH4Q1LjYkNiqVraFeSQpPoGtrVu5wcmkxCSAJGnbGNvzshREuszF3J/HXz2Vu+17tOq9Gy+ILFJIQk+LAyP1BdBEsehw3vgeIBnQnGzoHkkfDxpbDuTRh0YUBf/gq8lp9Bgxnw/v9w5eVjz8jAtjsD+66MxvvnABqjEVOfPrVBpy/mfv0w9emDNiioTev1KB4W7lvIcxueo9haDECq08115eWcXW3BAJA+CTKXNTzwyHVTHugUAaglPIqHwppCNRhVHvQGpJyqHA5WHcTiPHo4gfo0aIgLjiM5NNkbjhJDEokPiSc+OJ74kHjCDGHSEVuIdrSjZAfPb3ielYdWNlj/p95/4u+j/h7Yf7C47LD6VVg2HxxV6roB58HURyEqTX39zS1qKIrpCTf+Dgb/H4JELnudBG/46duP0GN8y/ouXTD17YO5Tx9Mvftg6tMbU/fuaPTt20C2tWgr89bMY2vxVgBSwlK4OW4s0355ugVNdRp4pLyVK+z4FEWhwl5BbnUuudW5HKo+RE51DoeqD3lf29y2E54nSB/kDULxwfUe9QJSlClKApIQJ2lz0Wb+u/m/rMhdcdS2eRPncXb3s31QlZ9QFNj1Lfz4IJRlqesSh8KZ845u3bGWw0ujoTofJt4Jpz/UzsU2n1z2ag0uF5rgYEw9e6otOn0PB532ntH91c2v8vKml5kzdA5/HfJX/m/j//HfLf/1bg/WB3PD4Bu4ov8VGD9s4aSrU6TDX2M0Gg2R5kgizZEMiB1w1HZFUSi1lXqDUF1IyrfkU1BTQEFNARX2CqwuK1mV6uCRx2LUGokLjvMO/hhtjiYm6PBzjLn2ERRDuDFcgpJoVUf+nql7fdPQm7hxyI2+Lu+4Xtn0Ci9vfpmuoV3Jrc49anu/6H7MnzSftPA07zpFUXB51DHJXIo6Rpnb48atuL3jk7mUw+vcihuX24XNbaPGWYPD7cDhceB0O3EqThxuB06PE6fbqZ5LcTc41q248SgeFEVBQVGXUajfrqDRaKj7n/r/2v9pNOg0OnQaHRqtBh069Fq9uk6rw6AxoNepI+sbtAYMWnUcNoPOgElrwqw3Yyo/iPmP/2LOXY9JAX1YAoZJ92AYdDEGgwm9ojT8nRIUCWc9DZ9cDr8/r7YMJQxqy7fRLwVcy0/hpk3EDhjQ7q05R3p186u8tOkl7+sBxhi2Ow53pO5jiOKVfduIO/XvMPhieH4IoED8AChofJyco3SfDH/5+vBrb1+gBzpl36D2ZnVZKawppMBS4A1ERy6X2BrvHH8seo2eaHM00UHR3kAUbY4m3BiuPkzhRBgjCDeFe9eFGcPQaZs2JpQILEf+nhmdOJrVeau9r+cMndPsAKQoCg6PQw0JdQ+Pwzs1Tt2yw10bIDzOBvs7Pc4Gz3Xb6gKL0+2k2lnNtuJtlNmPPXKqQWsgzBCGU3F6B2J1e9x4OPadoYFMixat5vBD53agdzvVYBUS32CA27qhTIL0QQTrgwkxhBBqCCXUGEqYMYwIUwSRxkhCTaEE64O9+wTpg9rkd5Fc9joJbfGPdzIGvzsYhXr/9IoC9dK5RlHYklV7+3zqODi4EqK6HW7SbKoGnaCfOLxe+ga1C6fbSaG1kMKaQkqtpZTYStSHtcQ7vUipTV1fVXeNvgVCDaHecFQ/KNWFoxBDCMH6YIIM6i+zIH0QwYbgo5ZlWAD/VBc46sJFXbDwhop66+xuu/f1/b+deDiPGd1mNAgv9Y+vf26Hu3Yfj7MdvmPfqmuV0aBBq9E2eH3k+votOXXLdecAGv6er6WgoP5fOWq5rgWpsZakw/uqLU34YSuxVqNFp9Fh0Bow6oyYdWqQCtYHE2JUp0MKN4UTaYokyhzlnQopPjhe/UPPFH7U7yEJPyfB38LPkX+RHenmsnL+Wl55zO1NV9vn55FIaOQ/wqP2Ez7jcDu8QejIcFTpqKTSXqk+1z3sldS4Grkb8SQYtUZvQArWBxNsUMNRkD4Io86IXqv3Tn1S98vNoDVg0KlN8sfaZtQavc96rb7BX6Bajfaov0rrLgfUfcDotDrvB45Woz38AVH/QwGO+uCo0+j+Ckdd/qibzuV4y/Uve7g8LvVyiNLw2elxHm7JONGyu2ELSF3rR/1g4/K4WvV9bk1177n3Ue913c9B/fe//voKewW7Sncd97JxU4QYQhq0hIYZwwg3hhNhiiDcGE6oMdQb/kP0Id6fa7POjElv8n5Am3Qm//8D4NAmeE0dwVoBXFo9jsRBOGP74IjrjT26G/aoblj0emqcNVhdVixOCzaXjRpXDTXOGmpcNerrgq3YctZg0+qxpY3Bprixu+3eljvv5T+Ps8HPf1vToPFe6jPqjBgcBpZcuUT6/HQGpyafyutbXsfhcTTcoCiMsdmOCD4aGHU9BMfA0nrjWXSfDPuXNjz+yHVT7j/8XL/l50jSN8jnjDojCSEJzbpN1+lxUuWoosJecXRAql2uclRR41J/Cdb94qv7pVjjqsHqtOJS1A9Xh8eBw+5Qh1UQfqsuhNYPFHUho65PSN3yluItlNpKjzpHcmgyF/a+UL3U0Uhw8a4/Yl3dB1Ldckv7qC3ct7BJLVON6R/dn39O+CfR5mgijBFNnpqnU4jrA+Nugazf0BTuxOCyYcjdCLkbG+4XlghhCWpYarSrwwPqFYdvboaBF0KPKU368nWtkFan1ft7xeK0UOmopMxWRrm9nAp7BRX2Cu8USBanBYvTQo2zBpvbht1l94Z6l8d1VOuYguL9A6HGVYPb2vqBS8KPD3y3/zse+O2BxhO0RsMfQUH8NzJcDUAhsXDVDxBXOweZRttIv53aUHO8cX4m3QNZvx19azyogWnS3W3yvYq2ZdAa1D5C5qZNenssTrezwV+FRwYlm9t2VD+Nur8Ij+zDUb/lorFtdZ1Oj3rQyLp6j8YuHxypweWJRjqX1j3X7avT6tBr9Oi0aitT3XJdJ9RGl+utq/vr9LjPOgN6zRHP9bZ7w0VdmKlrGWmsBaV2uanTuby6+VWW5ixtdFtOdQ4uj4trB13b5J+T1qTTNOwbMrHrRM5MP5MtRVv4JOOT4x67o3QHSw4u4a9D/tqWJfonQxBMe1xd9rihdL/aD9T72AblB6AqT32AOubP6legprYP4pInIGsFXLkQzj32FYjGaDQaTDoTJp2JSCJb5Vtye9zUuGoot5dTWKN2EyiqKfJOeVRYWshOjp6z8mTIZa929s62d3hm/TNHbzhen5+6UHMyjuzzc6QpD5I9aA6FVXZ6xIUQGRzAY2UIv6QoijckHSvQiIaO6lt4BA0atlx59Fx6vrC9ZDv/XvPvBjOxH48/1e539i2B/80+4W5FI+9EO+leYkL9e6T7tvj8ltkg24lH8TB/7Xxv8BkaN7TB9jG2hmPK3FRe77LD8UJLUy158gTbn+AfX2/jgldWMvSxn/hifQ42Z9tf2xWiqTQataWmrsWkrrVGgs+x3TT0pgavxySOOe52XyixlvDwyoe59NtL2Vi4kSB9ELcMu4UbBze8C80fa/dbTbwjOGbNMyzYePQQAoFAwk87cHqc3P/b/by34z0A7hx+J/+b+T/mDJ2DBrVz8+v5RcwpK0ejKMwpK+fG+n1+prTsungDR56j++Sjtpv1h5uh7/xsM6Oe+JmHvt7Gtlzp/yFER3TjkBtrf89ouHnozbw+7XXv65bc5t6aHG4H725/l7MXnM2Xe75EQeGs7mexcPZCbhh8A3OGzfHb2v3egZUn3gf4r+5STIbAHCajQ1z2euSRR3j00UcbrOvTpw+7du1q8jl8ddnL6XFyz7J7+Pngz+g1eh4b/xjn9DhHvVb78yOw8gV1R50J3PajT9Cat6CfYJyfzGILU55eCoBRr8XhOjxexoCkcC4ZmcKsoV2JCAqgzoVCiFbl8rhYuG8hr2x+hTyL2idlQMwA/j7q7wztMtS3xXUWj0SceJ+odLhtU5uX0hoC9lb3Rx55hM8//5yff/7Zu06v1xMbG9vkc/gi/Lg8Lv6+4u8szlqMQWvguSnPcWryqWCvhi+ug90/qDuOuxUGng+vTW54glOuhFkvtEutoPapuOLNNVTanHz5t3Gs2l/CJ2uz+XF7AQ63GoRMei0zBiZw8chUxnSPlksOQogm8SgefjzwIy9tfMl7a3uX4C7cPPRmzu15bpM7cYsTKM+G5wY2bd/W6E/aDgJ6egu9Xk9CQseZqdftcfPAbw+wOGsxeq3+cPCpzIOPLoa8zaA3w+xX1ODT2DXa0C7tWrNGo+H960aj1A6HPrFXHBN7xVFmcbBgYy6frM0mo6CKrzYd4qtNh0iNDmb2sK7MHppE97jQdq1VCNExKIrCitwVvLjxRXaVqq31kaZIrht0HRf3uRiz3v8n1uxQFt7a9H2XPNEhwk9b6DDhZ8+ePSQlJWE2mxk7dizz5s0jNTX1mPvb7Xbs9sOXkSorW2PAwKZRFIVHVj3C95nfo9foeWbSM2rwKdqt9sCvzIXgWLj0Y0gZWXtUIy0oIe0bfuoc2ZoTFWLkmgnpXD2+G5tzKvhkbTYLNx/iYGkNL/yyhxd+2cOQlEhmD03inCFJxPr5nQNCiLbnUTwsy17Gm9veZHPRZkAdjPDKAVdyRb8rCDXKH0ytzmmDfb8ee3twLNQUH37dGv1JO6gOcdnrhx9+oLq6mj59+pCXl8ejjz5Kbm4u27ZtIywsrNFjGusnBLTLZa8XN77Ia1teQ6fRMX/SfM5IOwMKdsB7s8BSBLG94bJPITr98EGFu+Dl0Q1PdOHbaquQH6pxuPhpRwELNuayYk8xbo/6Y6TTapjYK5bzhnXljP7xBBs7TL4WQrQCp9vJd5nf8c62d9hXsQ8Ak87EZX0v45qB1xBpjvRtgZ1YxZIXiVj2oPe1ojOh0RnAUa1OXvrXFbB8foeb0zFg+/wcqby8nLS0NJ599lmuvbbxAboaa/lJSUlp8/Dzacan/POPfwLwyNhHuKD3Beolrvdmg7UUEgark40GHzEoXdFueGlkw3VXfQfdJrRZra2lqMrOt1vUS2Gbs8u964ONOqYPSGD2sK6M7xGDXifX9IXorCxOC5/v/pz/7fgfBTUFgDrn3MV9Luby/pcTG9T0Ppqi+ayWaoLmd218Y1xfuP5XMIa0b1GtJKD7/NQXGRlJ79692bt37zH3MZlMmEzte/llWfYynlitjslz45Ab1eCTvw3ePQdsFZB0ClzxJQRFHX1wYx2HfXTZq7niwkxcPT6dq8ens7+oWu0TtDGXg6U1LNiYy4KNuUSHGDmjXzxnDkpgfI9YjHoJQkJ0BsXWYj7a9REf7/qYSofavSAuKI7L+1/On3r/iTBj463zovU43R5WvHYb0xrbaAiGP73bYYNPW+mQ4ae6upp9+/ZxxRVX+LoUr4zSDO5efjcexcPsnrO5achNaq/7Dy5Ug0/yKLj8czAf4xbExu50CI1r26LbQPe4UOae0Zs7pvZiw8Fyvt6Uy7db8ii1OPhkXTafrMsmzKxnar94pg9IYHKfOMwBOs6EEB2VoiisK1jHpxmf8vPBn70Tr3YL78ZVA67inB7nYNTJKPHtwe1ReOjDZcyr+LzxHc56Frr0bd+iOoAOEX7uuusuzjnnHNLS0jh06BAPP/wwOp2OSy+91NelAVBuK+e2JbdhdVkZkziGh8Y+hMZaBu+fr86tEtcP/vzpsYPPsXTga+MajYbhaVEMT4viobP7syazlB+25bNoez5FVXZvi1CQQceUvnGcOTCR0/p2IdTUIX4khQhIlY5KFu5byGcZn3n78wAMjh3MVQOv4rSU09Bp5Y+Z9uLxKNz/xSb+vW924zsMuxyG+sfnpL/pEJ80OTk5XHrppZSUlBAXF8eECRP4448/iIvzfcuIy+PiruV3kVudS3JoMk9PehqD2wUfXQLFuyG8K1z+ReOXuuprrOWnk4yho9dpGdczlnE9Y3l01gA2HCxTg9C2fHLLrXy/NZ/vt+Zj1Gs5tVdsbYtQF+LC5K4xIfzB9pLtfJrxKT9k/oDVZQUgSB/EzPSZXNznYvrF9PNxhYFHURQeXbidHpvnN/5J3qU/zJjf7nV1FB2yw3NLtNUgh/PXzue9He8RpA/i/Znv0zu8O3z6F8j4Tm3puWYxdGnCL4ayA/D8YHU5OAZm/R/0ndlqdfojRVHYmlvhDUKZxRbvNo0GBidHclqfLpzWtwsDksLRajtHGBSiI6h0VPJT1k98vvtztpVs867vGdmTi/pcxNndz5b+PD7icnt4YME2LBs+5f+MLx7ekDhEvcFGq4eb/oDYXr4rshVJh2c/89OBn7zzdT0x4Ql6R/WGxQ+owUdnUsfxaUrwgYatPNMe7/TBB9RLY4OTIxmcHMk90/uQUVDFD1vz+WVXAdtyK9mcXc7m7HL+8/Nu4sJMTOkTx6TeXRjXI4aoEOlPIERrs7vtLM9Zznf7v2N5znKcHicABq2BM9LO4OI+FzOsyzAZ2d2HrA43t328kapdv/JR/eAz4DzY/pW6fN5/O03waSsSfloopyqHh39/GICrB1ytjuWz9XNY9X/qDuf/F9LGNf2E9S97BWBHQY1GQ9+EcPomhHPHGb0pqLSxNKOQX3YW8tveYoqq7Hy6LodP1+Wg0cDApAjG94xlYq9YhqdFSadpIVrI7XGzrmAd3+3/jp8P/EyVs8q7rWdkT87pcQ6ze84m2hx9nLOI9pBbbuWG99ZhzFvP+8anD2/QGmoHN1Rg+NUw6EKf1dhRSPhpAafbyT3L76HKWcWQuCHccsotkL8Vvr5Z3WHCXDWFN0u9v6RkuHfiw81cPDKVi0emYne5WZNZypJdRfy2t4jdBdVsza1ga24Fry7bh0mvZVR6NON7xjKhZyz9E+USmRDHoygKu0p38d3+7/gh8wcKrYXebfHB8czsPpOz0s+iT3QfH1Yp6luTWcrf3l9PXM1e3jU9RQj1JsL2ONW7ihMGwZn/8l2RHYiEnxZ4fsPzbC3eSrgxnKdOfQqDowY+uRxcVuhxOpz24IlPcqT6LT8Sfhow6XXeecYACitt/La3WH3sKaawys6KPcWs2KMO2x5m1jMiLYpR6TGMSo9iUNdIGVdIBDxFUdhZupOl2UtZnLWY/RX7vdvCjGFMS5vGWd3PYnj8cJlk1I+4PQr/Xb6PZ3/cTR9lPx+a/024Yjl6R2OYOp6PQT4/mkLCTzOtzlvNuzveBeCf4/9JUkgifH4NlGVBRCpc8Aa05FbPBuFH7nI6ni7hZs4/JZnzT0lGURT2FlazYk8xv+8t5o/9JVTZXCzJKGJJRhGgzkQ/NCWSUenRjOwWzSlpUXJLvQgIDreDNflrWJq9lKXZS70jL4M65cSk5Emc1f0sJnSdIOPy+KHccitzP9nE6sxSRmp28V7QMwR5LOoUSaWZaotPnXNfhJgeviu2g5FPgGaodFTy4O9qq85FvS/itNTTYMN7sP1L0OjgwreOnraiqep3IJTw02QajYZe8WH0ig/jmgnpuNweduZVsTqzhLVZpazLKqPE4mB1ZimrM0sB0Gqgd3wYQ5IjGZwSwZDkSPokhGGQ6TdEJ1BmK2NF7gqWZi/l99zfqXHVeLcF6YMYnzSeKalTOC3lNJlc1E95PAofrjnIvxftosrmYrpxCy/pn0PvsUHaeEgdCyvq9fkZeX0LuloENgk/zfCv1f8i35JPSlgKd464E4r3wPe1E8Od/o96M7S3QIB3eG4tep2WQckRDEqO4LqJ3VEUhX1FFtZmlbI2s5Q1WaXklFnZlV/FrvwqPlmXDaitQwOSwhmcHMnQlEiGpETSLSZY7moRHUJWRRZLs5eyJHsJm4o24VE83m1dgrowKWUSU1KmMCpxFCad/HHlz7blVvDAV9u88yTeFbuaOTUvofG4oNd0mP0yvDTq8AGJQ2H6Ez6ptSOT8NNEPx/4mYX7F6LVaHlywpMEa42w4K9qP5/uk2HcbSf3BeSyV5vQaDT07BJKzy6hXDoqFYCCSpt6G31OOVtyKticXU6lzcWGg+VsOFjuPTbcrGdQcgT9EsLplxhO38QwenYJxaSXO8uEb1XYK1ibv5bVeav5I+8PsiqzGmzvE9WHySmTmZIyhX4x/aQPTwdQXG3nxV/28L8/DuBRINIEH6UtpN/Bj9QdBl4I570KK1+EmhJ1nSkC/vSOfGa0gISfJqiwV/D4H48D6m3tQ7sMhWXzIXe9+sN37sugbcVfLtLy06biw81MG5DAtAEJgNrEnFViYUtOBZtqQ9H2Q5VU2lz8vreE3/eWeI/VaTX0iAuhb71A1C8hnPhwk7QSiTZT46xhfcF61uSvYXXeanaV7kLh8Pi0eo2ekQkjmZwymckpk0kKTfJhtaI5Km1O3li+nzd+y6TG4Qbg4gHBPOZ4GtPB39SdpjwAp94Njmo1/NSZ/RJEp/ug6o5Pwk8TPL3uaUpsJaRHpHPT0Jsgbwssq72dcOZ8iOh68l+kwWUvw8mfTzSZVquhe1wo3eNCmT1MfS8dLg+7C6rYllvBrvwqduZVsjNPDUS7C6rZXVDNN5sPec8RGWygd5cw0mND6B4XUnu+EFKjg6UvkWg2h9vB5qLNrM5bzZr8NWwt2opLcTXYp3tEd0YnjmZUwihGJ46W0ZY7mFKLg/+tOsA7KzMpq1E7Lg9JjuCfI+wM/uM2KD8AxlB1wMJ+Z6sHrXkNrGrfRcbcBP3O8VH1HZ+EnxNYeWglX+39Cg0aHh33KEaNDhbeBh4X9D0bBl/UOl+o3jV6afnxPaNey8CuEQzsengyWkVRyK+01QYhtc/QrrxK9hdbKK9xsiZL7VNUn16rITU6uGEoilWfY0ON0lokAHWOwJ0lO1mdv5rVeavZWLgRu9veYJ+uoV29YWdUwijign0/t6Fovn1F1bz5WyZfrM/B7lJ/7/eIC+GeM3owrewjNIv/BYobItPUWQLi+6sH2ioPt/p0HQ5TH/XRd9A5SPg5DqvLymOrHgPgkr6XMKzLMFj9GhzaAKZwOOuZ1pt8tP55DEGtc07RqjQaDYkRQSRGBHFa33jvepvTzd7CavYVVbO/yML+Ygv7i6rJLLZQ43Crr4st/LKr4fnCzHq6x4aQHB1MclQQyZFBdI0KIjkqmK6RQYTI7fidVmFNIVuLtrK5eDNbirawo2SHd8LQOjHmGEYljmJM4hhGJYwiOSzZR9WKk+V0e/h1VyGfrs3m14xC6mbUHNQ1gusmpnNWsgP919dB9h/qhgHnw9nPNpwQe9d3YC0Dc2RtPx/5I/lkyG/X43h9y+vkVucSHxzPbafcBpV58Isahjj9IQhLaL0vFhQFp96jjhFkjjjx/sJvmA26o1qJ4HBLUWaRhX21gUgNR9XklFmpsrnYnFPB5pyKRs8bFWyga1QQXSMPB6LkqMMBKSJILo92BDaXjZ2lO9lStEV9FG8h35J/1H5hxjBGxo/0Bp7uEd2lZbCD25lXyWfrcvh6Uy4lFod3/dR+XbhuYndGd4tEs+kDeO1+cFSpf1TPfFq9onDke582Vr3aMOZvEJnazt9J5yOzuh9DZkUm539zPi6Pi+cmP8fpaaers7Xv+Bq6joBrf2zZYIZCoLYWHSytYX+RhZyyGnLLreSWWckps5JbbqXC6jzhOYKNOuLCTHQJM9ElzKwuh6vLXeotRwUb5EO0nSiKQnZVNpuL1BadrcVbySjNOKq/jlajpWdkTwbHDWZw7GAGxw0mPSJd7srq4BRFYUdeJYu35bN4ewEZBYfnSYsLM3H+sK5cNDKFHnGhat/R7++C7NXqDqlj1f49UWk+qt5/yazu7URRFJ5Y/QQuj4uJNVZOy1wPdpcafACShkrwESfFbNDROz6M3vGNd1KtsjnJLbeSU6qGoSMDUonFQY3DzYGSGg6U1DR6jjoGnYa4UBNx4bWhKMxETIiRyGAjUSEG9TnYSFSwuhxu1ktYagJFUciz5LG7bDc7S3eytWgrW4u3Um4vP2rfGHOMGnRqw86A2AGEGELav2jRcsuegiVPqndeTbrb+9px6t9Z2fUalu8u5scd+eSUqZcvb9F9yQ+mz1kYczWhZ9zH5Px30C27EIx3gMMCa19X+3oaQmDy32HsHPlcaUfS8tOIH7N+5M5ld2LyeFiQm0eKyw06E9TvgDjlAZh0TxtXLUTjrA43BZU2CqvsFFbZKKy0e5eLquy1r23eu0iaQ6fVEBlkIDK4Lhgd+Xx4OcysJ9SkJ7T22aTXdsrgZHVZ2Vu2l91lu8koy2B32W52l+2mylF11L4GrYF+Mf0YHDuYIXFDGBQ3iKSQpE757xIwlj0FSw4PJFiZOJ7wvN+9r59xXsiL7vMBMBu0/Dt2EeeWvXP4+PRJkLns6PMOOB+mPd46dwx3Ym3R8iPh5wg2l41zvzqXQ5ZD/K2sgpvKG++PARp4pLxNahWitThcHoqra4ORNyzZKbXYKatxUlHjpKzGQXntc904Iy2l12oIMalBKMys9y7XPUK8QUlHqMlAqFlPiFGH2aDDbNDWPquPoLp1eh1abfsEB0VRyLfke0NORqkadA5WHWwwarL3+9XoSY9Mp3dUbwbFDmJQ7CD6RveVebI6CafbQ1axhZ6vpKCpN66SojTskuNBw98HLuO0vvFM6h2H+cmYhvsD9X+CFcD55wW4007F7VHwKODyePAotRvBO47TkZ/Q9T+yFdQT199HowGtRoNeq0Gv1aLXqctajfrQaOhwQVwue7WDt7e/zSHLIRJ0wVxdkX3sHac80H5FCdFCRr2WpMggkiKbdgehzemmwqoGoTKLk/IaB2XegKQul9fUrXdQbXdhsbuptqt9WlwehQqrs0l9lpr7fZj1WoLqgpJeh9mow6zXeoOTQafFqFOfDXpNw9c69UNAfa3BoNeCxkmZ8yDFjiwKbJnkWzM5VLOfGvfRrTkA4YZI0sJ7kh7Wi/TwnvSI7E1aaDeCjCZ0Gg3a2g8Yiw1qNA40aECjfhhpUD9w1GfQoPF+eNZ/Xbdf3QecwuEPNgWlwYdcY+vV/Q8f66n9YFU/YNWH26Pu7/YouBUFRVFwexru0+CY2v08HtTjjzhGqV1X/7yHvxaHz+lRcCt1NdWd8/DXOnweas9f97WOrt/T4Dz1lj2N1F9be13d9b9e3bLD7cbm8GB1urE63dicbjWI1LpFdwF3Gj73vj4yO/zHdSGfrcvh03U5je9/xM/Sc84LeP5NK7D4WD/yPqGpt6Cpe13v51brXdag1aqvdbXLOo229lmDTtvwYagNYep/m+p/l6baZ6Nei8mgxaTXYar979lU+0dPkEGL2ahDcViPUXHLSfipJ9+Sz1tb3wLgzvGPEuR+ufGmyu6T1Wu+QnQyda0u8eHmZh3n8ShYHHVByEm13U21zVVv2YnF4aaqdp3Fri5b7C5qHC5sTo/3Q0d9eHC4D7e0OFweHC4PlTbXcapotDI0+kq0piK0xiK0xuLa5yI0hgo0mqMbvhVFi8feBY89AbctEY89EY8tkSp3KLloWOndM7f2ITq7F93nM1q7k/Ha7Q2Cj6LAb56BvOiqP6mowg4ljWrFTKjG1uA8dfs/776gfQpvJqXewuFlpbE92pXHfvx+jS0h4aeeFze+iM1t45QupzD9wObGgw/A/qXq9BYSgIQA1FGyw8wGwswGoHnB6VjcHuVwGHJ5sDrUZbvLjdXhqV3vxupwU2GvosiWQ5E9mxJ7LqWOHCpch6h05eHGccyvoVfCMHmSMXi6onMloXN1ReeMx6Po8XgUXCi4DQoefW1LhOdwK4en3nJda4Q/02rU/lya2r/W1WV1Xd0lEV3tX/Pa2u1ajfre6mrXaWvXHT7myOPr7aOp/VraY3xd73Izvm69Frajjqm/T+1+dfsc/tq1rRb1lt//4wC/7Cxs9N8sPTaE1Oggzq/6kAll24/artHARN02vuz9O/t7XEHvvIV0z/qI0Kr9jZ6vbv91YzdSMfJ2dFoN+rqWEl1t3fX2BbVVUOHo1iZN7eUuTW17Td12RQG34sHjUS/buTwenB4Ft1v9OXW5a197FFy1r90K6nP9dbXLDpcHZ+0xLrcHp1vB4fZ413u3165X9/Hgcis43Yr69d2Kdx9XbU2uejV4/3uq13JX96woSptELunzU2tnyU4u/vZiFBQ+nPkhg16ayPFTrvT5EaI9OT1OcqtyyarM4kDlATIrMsmqzCKrIosSW8kxj9Nr9aSEpdAtvJv6iFCf08LTiDZHt1r/B6X2Ek3dpae6S1YNLkvV/lI/ch/q7VfXP6T+h1/d9QjN4UXvZbTD6xt+CIIaOnQdtJ9He6qocRJm1h+7b9kjkZyw1cMYpo7V0yTy+dEc0uenjSiKwjPrn0FBYUb6DAbFDVJ74W//4vBO3SerLT51ptzf3mUK0akpikKJrYTc6lwOVR/yPtct51TlHDVeTn2xQbENwk16RDpp4Wl0De2KXtv2v+o0Gk294CFBoyOJCD7BgKFT7m9wt1ejd285qiC2N4y6AaryYcXTh7fJ54ffkfADrDq0itV5qzFoDdw67FZwO9UpLOpMebDBuA5MuV9ucxeimRRFodRWqoYZS23Aqcr1Lh+qPnTUfFZHCtIHkRae5m256RbRjfRwNeSEGkPb6TsRAWfSPWoT3dJ5kDwSiurPVaOBPjNh1PVqyKlLwHpTo+MCyeeHfwj4y14excMl317CztKdXN7vcu4ddS+sf0edvDQkDm7dBCb5pSrEiSiKQrm9nEPVh8ipzjmq9eaQ5dBR81cdSYOG+JB4kkKSSA5LJik0iaSQJJJCk0gLT6NLcBcZBVm0r8JdsO1z2PoZlGUdXh8UBaf8BUZcK6MytzG57NUGfjzwIztLdxJiCOH6wdeD06YmdIAJcyX4CIHa36a4ppiCmgKKrEUU1hRSUFNAYU0hhTWFFNUUUVBT0KRwExccR3JobbAJTaJraFfvc0JwAgadzFkmfKzsAGxfAFs/h4Kth9cbgtVWnkF/gh6nyeSiHVhAhx+Xx8VLG18C4MoBVxJtjobV/4XKXAhLghHX+LhCIdqWoihUOiq9QaYuxNSFmrpHqa2Upt5zERcU1yDQ1D13De1KQkiCDAAo/I/LAQdXwd6fYM9PDS9rafXQc6oaePrMAKNMS9IZBHT4WbhvIVmVWUSaIrmi3xXgqIHltZ3UJt0Nhta5ZVeI9uZRPFTYKyi1lVJiLaHEVkJRTZE3zHjDjrXohP1s6ui1eroEdSEuOI4uwV2ID46nS7D6um45ISQBk87Uxt+dEK2gIvdw2Nm/FBzVh7dptJA6DgZdCP3PheBon5Up2kbAhh+n28l/t/wXgGsHXqt2lvz9ebAUQmQaDL3cxxUK0ZDD7WgQZuqWS22l6mtrqXd9ma0Mt9L0qSoiTZFHBZm6gBMXpIadKHOU9LcRHZetEnLWqndp7fkZCo8YtyckDnqeAb2mQvcpEng6uYANP1/v+5rc6lxizDFc3PdidZbd355TN07+u1zLFW3Oo3ioclRRZis7Ksw0FmyqnE0dQ+SwCFME0eZoos3R3hBzZKtNl+Au0lojOp/KQ+qlrIN/qM8F29VZ1L006p1bvc5QHwlDQCvhPlAEZPhxup28vuV1AK4ddC1B+iBY9TJYSyEqHQZd5OMKRUdjd9spt5VTbi+nwl5BhaPCu1x/fbn98HKlo7JZrTOgXnqKNkcTY44hOkh9jjHHqOuCYrxBJyYohihTlHQeFoHB41H76RxcBdmr1efyg0fvF9UNUseqfXh6nCatOwEsIMPPwv0LOWQ5RGxQLH/q/Sdw2WHlC+rGCbeDLiD/WQRqJ/gqRxWVjsrDQeaI0HLkcoW94oR3OR1PqCG0YXCpF2zqh5loczThxnAZqVcENo8bSvZC/lbI26w+H9oItvKG+2m0kDBIDTupYyBlDIQn+qRk4X8C7lPe5XF5W32uHnA1Zr1ZHdenKk+9w2vIpb4tUJwUj+LB4rRQ6aikylGlBhl75eHXTvW1d5ujssG+Na6WT6Cn0+iIMEUQYYog0hTpfT7Rstz9JMQxOGqgcAfkb4G8LWrQKdgOjf2xYQhWL2OljoXU0eqyKaz9axYdQsCFn5+yfiKnOodoczR/6vMncLsO9/UZd4s6KqfwCUVRsLqsVDur1YdDfbY4LVQ71OcqZxXVjuoGgaV+iKl2VDf5luzjCdYHNx5azIeXI4z1tpkjCDOESauMEC3hdqoDCBbvgeLdasjJ3wole47op1PLEAzxA9WWncTBkDBYXZbLvKKJAi78vLvjXQCu6H+F2tdny2dQlglB0TD8Sh9X1zG5PC5qXDXUOGuwOC1qWKkNL95lZzUWx+Hl+q+94cZlwdPYL7oWMOlMhBnDCDOGEW4Mb7B85Osjn0ONoe0yF5QQAUVRoKbkcMAp2QPFe9XnsizwHGPetpC4w+GmLuhEdwetrl3LF51LwP2Gz6rMIjI8kov7XKx2kvvtWXXDmJsCYvAqRVGwuW3UOGuwuqxYnBbvs8VpocZVc/Q6Z03DcOOqXVe7vqnjxDSVTqMjxBBCqCGUEGPtsyGEMEMYwYbgowJLmDGMcFPDdXL3khA+oChq35vybDXQ1A84xXuO7pdTnyEYYnpATC+IHwCJQ9TAE5bQTsWLQBJw4Qfgkr6XEGYMg4xF6vVkYxiMus7XZXkpioLdbcfqsmJz2bC6rFjdVqxOKza3+rouvNS41Ger8/DykdvqXtc9WuOyUGMMWgPBhmBCDaHewBJqDPUGmfrrvK/rhZtQQyihxlDMOrNcPhLCHykKWIqh4qB6N1V5NlRkN1y2Vx7nBBqISIHYnmrIie0FMT3V57AkudVctJuACz8mnYk/9/uz+mLV/6nPI65SJ6lrApfHhd1tx+ayYXPbsLvsWN1W7C51ndWtBpa67XUB5qjX9ZbrB5O6dW0VUOoz68wEG4IJMYQQrK99NgQfcznEEEKIPoQgQ1CDY+qW5bZqITo4ezVUF0BVvjpOzlEhJ7vxzsZHCo6FyNTacNPrcNiJ6QGGoLb/PoQ4gYALP72jevPlni+xVRzEXrkVW0w0dkMN9mX3qGGmNtg0CDhuuzfkuI51XbqNGLVGzHozQfog78OsNxOsDybYEOxdF6xXl4+3LlgfTJBBfTbrzTJarxCBoO5SVFUBVOc38lz7qC5oOMXDMWkgLBEiU9RWnMjU2uVUdTkiGYzBbf1dCXFSAi78bC3eyg7LDvVFRLj6fPCnFp3LrDNj0psw68yY9WZMOpM3nATp1Gez3oxZZ/aur3vdWKAJ0gcRpAsiyBDk3Uc63gohjuJ2qYOy1pSol6FqSmofpeoUPXVhpu7ZZWv6uQ0haj+bsMR6waZeyAlPlhHwRYcXcJ+s09KmERFkwLj1C8weN6ahl2OOTsekM2HSmRqEk7p1Qfqgo7YZdUZpORFCnDxFAVvF4fBSUz/MlIClpOHrmmJ1/+YyR0BoAoTFq8EmNF4NOd7n2m0yNo4IAAEXfh4b/xjha5+HkhJ1xM9JT/i6JCFER+dyqJeWbBXqw1re8PVR245Y36LL6Rq1r2JILATH1D6i1f42YYlqkKkLNKHx0tdGiHoCLvzgqIF1b6nLY2/ybS1CCN9yu8BRpXb0dVSDvUp9OKrVdfaqhtu9oeWIEHMS05t4GUNrw0uMGmDqAk1ITL1wU29bUKSMdSNECwVe+NnxtXqtPDIV+p7t62qEEE3lcYPDAs6aw89Oa711NeC0NAwy3kBTt66y3nJ164SW+kwR6uWloAgwR6rL3ucINbDULdffFhwDBnPr1iKEOKbACz/r31GfR14nfzUJ0RoURZ2ewGUFp+3Ezw3CS11oqTk6xDhqw03dcisPptmAzqi2vJhCwRR+eNkYqvaBMYWpy+bwY4cZU7j8ThGigwi88FO4HYLNMOwKX1ciROtQFHDZ1XDgctQ+28HtOOK5/vZj7Oe0qncGHfP5GKGmlaYlaRqNOhq7IVjtx1K3bAxW71TyhpZQdQBTU1jjQca7PVTm9BMiwARe+AEYeIF6bV2I5qhr4XA7wONU+4t4al+fKFQ0NXwcc7/j7O9x+vpfpiF9kHoJ51jPhuAjAktwI+tCjthWb53eDDICuBDiJARm+BnpP1NZdHoej3onS4OHu5F1tQ+3U3146p5d6oe8d/kY4cO7fOTxR65zNfP4el9fcfv6X7NptAa1JUNnPOLZpI7P0uhz7X6GIDVcHPP5OKFGH6SeR4KJEMLPBV74SRgMycPb5twej/oB6XHXPtd+0CueE6yrXa+4G56jsXX1z3FUiDjR6xMEjyad44jX7hMc3w7TdPiUVq+GhsYChu7IEHKc0NHksHKC/XRGmR9JCCFOIPDCj9MG7846RiCpHzQaW3eCkCKaTquv99DVWzaooUFnqF2uDRd1y1pDbdhobF9DM4431AaX2td1y42ds8H59Q2Pl1YOIYTocAIv/JTshuo9PvjCmsMf8hqduqzRHnudRnc4GBxzXb0AodNz7EBxrHWN7XOS5ziqjkb20WglNAghhPCZwAs/Zz8HYWHqpYEGYUJXb11LQ4ruGOfVyYe9EEII4Sc6VPh56aWXmD9/Pvn5+QwZMoQXX3yRUaNGNe8kgy6E8PC2KVAIIYQQfq/D9Iz85JNPmDt3Lg8//DAbNmxgyJAhTJ8+ncLCQl+XJoQQQogOpMOEn2effZbrr7+eq6++mv79+/Pqq68SHBzMW2+95evShBBCCNGBdIjLXg6Hg/Xr13Pfffd512m1WqZOncqqVasaPcZut2O3Hx4Ov6KiAoDKysq2LVYIIYQQrabuc1tRWm/olA4RfoqLi3G73cTHxzdYHx8fz65duxo9Zt68eTz66KNHrU9JSWmTGoUQQgjRdkpKSoiIiGiVc3WI8NMS9913H3PnzvW+Li8vJy0tjYMHD7baP55omcrKSlJSUsjOziZcOp/7lLwX/kXeD/8h74X/qKioIDU1lejo1puWqkOEn9jYWHQ6HQUFBQ3WFxQUkJCQ0OgxJpMJk+noyQojIiLkB9lPhIeHy3vhJ+S98C/yfvgPeS/8h7YVR6/vEB2ejUYjw4cP55dffvGu83g8/PLLL4wdO9aHlQkhhBCio+kQLT8Ac+fO5corr2TEiBGMGjWK5557DovFwtVXX+3r0oQQQgjRgXSY8HPxxRdTVFTEQw89RH5+PkOHDmXRokVHdYI+FpPJxMMPP9zopTDRvuS98B/yXvgXeT/8h7wX/qMt3guN0pr3jgkhhBBC+LkO0edHCCGEEKK1SPgRQgghRECR8COEEEKIgCLhRwghhBABpVOFn5deeolu3bphNpsZPXo0a9asOe7+n332GX379sVsNjNo0CC+//77dqq082vOe/H6668zceJEoqKiiIqKYurUqSd870TTNfe/izoff/wxGo2G2bNnt22BAaS570V5eTlz5swhMTERk8lE79695fdUK2ru+/Hcc8/Rp08fgoKCSElJ4Y477sBms7VTtZ3T8uXLOeecc0hKSkKj0fDVV1+d8JilS5dyyimnYDKZ6NmzJ++8807zv7DSSXz88ceK0WhU3nrrLWX79u3K9ddfr0RGRioFBQWN7v/7778rOp1Oeeqpp5QdO3YoDz74oGIwGJStW7e2c+WdT3Pfi8suu0x56aWXlI0bNyo7d+5UrrrqKiUiIkLJyclp58o7n+a+F3UyMzOVrl27KhMnTlTOPffc9im2k2vue2G325URI0YoM2fOVH777TclMzNTWbp0qbJp06Z2rrxzau778cEHHygmk0n54IMPlMzMTGXx4sVKYmKicscdd7Rz5Z3L999/rzzwwAPKl19+qQDKggULjrv//v37leDgYGXu3LnKjh07lBdffFHR6XTKokWLmvV1O034GTVqlDJnzhzva7fbrSQlJSnz5s1rdP+LLrpIOeussxqsGz16tPLXv/61TesMBM19L47kcrmUsLAw5d13322rEgNGS94Ll8uljBs3TnnjjTeUK6+8UsJPK2nue/HKK68o3bt3VxwOR3uVGFCa+37MmTNHOe200xqsmzt3rjJ+/Pg2rTOQNCX83HPPPcqAAQMarLv44ouV6dOnN+trdYrLXg6Hg/Xr1zN16lTvOq1Wy9SpU1m1alWjx6xatarB/gDTp08/5v6iaVryXhyppqYGp9PZqpPYBaKWvhePPfYYXbp04dprr22PMgNCS96Lb775hrH/397dhkTRtXEA/3ero2KZ0OZLoYWGvZi2YRmWYGEFRYkQKambFiaifqyUTBQsk5AQowyljAqyF3oRN6Iy/ZBSoK0gZYmKpeVqotVSYrV77g/30/Lsrd2427prO/8fzIfOnDNzjVfrXJw5s0ZGIisrCz4+Pli5ciWKi4uh1+ttFbbDsiQf69evR2trq/HRWE9PD+7du4ft27fbJGb6h7Xu3X/MNzz/l+HhYej1+gnf9uzj44NXr15NOkar1U7aX6vVTluccmBJLv4tJycHCxYsmPAfnMxjSS6ePHmC8+fPo62tzQYRyocluejp6cHjx4+RlJSEe/fuoaurC5mZmfj+/TsKCgpsEbbDsiQfiYmJGB4eRlRUFIQQ+PHjBzIyMnDkyBFbhEz/86t79+fPnzE2NgZ3d/cpHcchZn7IcZSUlKCmpga3b9+Gm5ubvcORFZ1OB5VKhaqqKigUCnuHI3sGgwHe3t6orKxEeHg4EhISkJeXh3Pnztk7NFlqbGxEcXExzp49i+fPn+PWrVtQq9UoKiqyd2hkAYeY+VEoFHBycsLg4KBJ++DgIHx9fScd4+vra1Z/mhpLcvFTaWkpSkpK8OjRI4SFhU1nmLJgbi66u7vR29uLnTt3GtsMBgMAwNnZGa9fv0ZQUND0Bu2gLPlc+Pn5wcXFBU5OTsa25cuXQ6vV4tu3b5AkaVpjdmSW5CM/Px8qlQppaWkAgNDQUHz58gXp6enIy8vDX39xLsEWfnXv9vT0nPKsD+AgMz+SJCE8PBz19fXGNoPBgPr6ekRGRk46JjIy0qQ/ADx8+PCX/WlqLMkFAJw8eRJFRUW4f/8+1qxZY4tQHZ65uVi2bBna29vR1tZm3GJjY7Fp0ya0tbXB39/fluE7FEs+Fxs2bEBXV5exAAWAzs5O+Pn5sfD5TZbk4+vXrxMKnJ+FqeCfyLQZq927zVuLPXPV1NQIV1dXcfHiRfHy5UuRnp4uvLy8hFarFUIIoVKpRG5urrF/U1OTcHZ2FqWlpaKjo0MUFBTwVXcrMTcXJSUlQpIkcfPmTTEwMGDcdDqdvS7BYZibi3/j217WY24u3r59K+bMmSOys7PF69evRV1dnfD29hbHjh2z1yU4FHPzUVBQIObMmSOuXr0qenp6xIMHD0RQUJCIj4+31yU4BJ1OJzQajdBoNAKAOHXqlNBoNOLNmzdCCCFyc3OFSqUy9v/5qvuhQ4dER0eHOHPmjLxfdRdCiNOnT4uAgAAhSZKIiIgQT58+Ne6Ljo4WKSkpJv2vX78ugoODhSRJIiQkRKjVahtH7LjMycWiRYsEgAlbQUGB7QN3QOZ+Lv4fix/rMjcXzc3NYt26dcLV1VUEBgaK48ePix8/ftg4asdlTj6+f/8uCgsLRVBQkHBzcxP+/v4iMzNTjI6O2j5wB9LQ0DDp7/+fP/uUlBQRHR09YYxSqRSSJInAwEBRXV1t9nlnCcH5OiIiIpIPh1jzQ0RERDRVLH6IiIhIVlj8EBERkayw+CEiIiJZYfFDREREssLih4iIiGSFxQ8RERHJCosfIiIikhUWP0RERCQrLH6IaEbbt28fjh49atHY1NRUxMXFTWhvbGzErFmz8PHjx98Ljoj+SM72DoCI6Ff0ej3q6uqgVqvtHQoRORDO/BCRzX348AG+vr4oLi42tjU3N0OSJNTX15u0ubi4oKOjA/PmzcP4+LjJceLi4qBSqWwWNxE5BhY/RGRz8+fPx4ULF1BYWIiWlhbodDqoVCpkZ2cjJibG2K+2thY7d+5EfHw89Ho9amtrjfuGhoagVquxf/9+e1wCEf3BWPwQkV1s374dBw4cQFJSEjIyMuDh4YETJ06Y9Ll79y5iY2Ph7u6OxMREVFdXG/dduXIFAQEB2Lhx43+ep66uDrNnzzbZtm3bZtKnr68PGzduxIoVKxAWFoYbN25Y7TqJaOaZJYQQ9g6CiORpbGwMK1euRF9fH1pbWxEaGmrc19HRgbVr12J4eBhubm7QaDRYu3Yt3rx5g4ULFyIsLAy7d+9Gfn7+L4+fmpqKd+/eoaKiwqT92bNnSE5OxujoKLy8vDAwMIDBwUEolUpotVqEh4ejs7MTHh4e03btRGQ/XPBMRHbT3d2N9+/fw2AwoLe316T4qa2txZYtW+Dm5gYAWL16NVatWoVLly5h69atePHixZQWQnt4eGDJkiUmbf39/Sb/9vPzg5+fHwDA19cXCoUCIyMjLH6IHBSLHyKyi2/fviE5ORkJCQlYunQp0tLS0N7eDm9vbwD/PPJKT083GZOWloaysjK8e/cOmzdvhr+/v9Xjam1thV6vn5ZjE9HMwDU/RGQXeXl5+PTpE8rLy5GTk4Pg4GDj4uWhoSG0tLRgx44dJmMSExPR39+PqqqqaVnoPDIygr1796KystLqxyaimYMzP0Rkc42NjSgrK0NDQwM8PT0BAJcvX8aqVatQUVEBSZIQEREBhUJhMm7u3LnYtWsX1Gr1pF9e+DvGx8cRFxeH3NxcrF+/3qrHJqKZhQueiWjGiY2NRVRUFA4fPjxhX0xMDEJCQlBeXm618wkhkJiYiKVLl6KwsNBqxyWimYmPvYhoxomKisKePXtM2kZHR3H79m00NjYiKyvLqudramrCtWvXcOfOHSiVSiiVSrS3t1v1HEQ0c3Dmh4j+CIsXL8bo6Cjy8/Nx8OBBe4dDRH8wFj9EREQkK3zsRURERLLC4oeIiIhkhcUPERERyQqLHyIiIpIVFj9EREQkKyx+iIiISFZY/BAREZGssPghIiIiWWHxQ0RERLLC4oeIiIhkhcUPERERycrfiMmUcPS0U9oAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "kij_library = {\n", " ('H2','Ne'): 0.18,\n", " ('He','H2'): 0.17\n", "}\n", "lij_library = {\n", " ('H2','Ne'): 0.0,\n", " ('He','H2'): -0.16\n", "}\n", "\n", "def get_model(names, c_factor=0):\n", " param_library = {\n", " 'H2': {\n", " \"Ls\": [156.21],\n", " \"Ms\": [-0.0062072],\n", " \"Ns\": [5.047],\n", " \"As\": [3.0696],\n", " \"Bs\": [12.682],\n", " \"cs / m^3/mol\": [c_factor*-3.8139e-6],\n", " \"Tcrit / K\": [33.19],\n", " \"pcrit / Pa\": [12.964e5]\n", " },\n", " 'Ne': {\n", " \"Ls\": [0.40453],\n", " \"Ms\": [0.95861],\n", " \"Ns\": [0.8396],\n", " \"As\": [0.4673],\n", " \"Bs\": [2.4634],\n", " \"cs / m^3/mol\": [c_factor*-2.4665e-6],\n", " \"Tcrit / K\": [44.492],\n", " \"pcrit / Pa\": [26.79e5]\n", " },\n", " 'He': {\n", " \"Ls\": [0.48558],\n", " \"Ms\": [1.7173],\n", " \"Ns\": [0.30271],\n", " \"As\": [1.4912],\n", " \"Bs\": [3.2634],\n", " \"cs / m^3/mol\": [c_factor*-3.1791e-6],\n", " \"Tcrit / K\": [5.1953],\n", " \"pcrit / Pa\": [2.276e5]\n", " }\n", " }\n", " params = [param_library[name] for name in names]\n", " model = {k: [param[k][0] for param in params] for k in ['Ls','Ms','Ns','As','Bs','cs / m^3/mol','Tcrit / K','pcrit / Pa']}\n", "\n", " if len(names) == 1:\n", " model['kmat'] = [[0]]\n", " model['lmat'] = [[0]]\n", " else:\n", " kij = kij_library[names]\n", " model['kmat'] = [[0,kij],[kij,0]]\n", " lij = lij_library[names]\n", " model['lmat'] = [[0,lij],[lij,0]]\n", " \n", " j = {\n", " \"kind\": \"QCPRAasen\",\n", " \"model\": model\n", " }\n", " return teqp.make_model(j), j\n", "\n", "model = get_model(('H2','Ne'))[0]\n", "modelH2 = get_model(('H2',))[0]\n", "modelNe = get_model(('Ne',))[0]\n", "\n", "def get_traces(T, ipures):\n", " traces = []\n", " for ipure in ipures:\n", " rhovecL0 = np.array([0.0, 0.0])\n", " rhovecV0 = np.array([0.0, 0.0])\n", " if ipure == 1: \n", " rhoL, rhoV = modelNe.superanc_rhoLV(T)\n", " else:\n", " rhoL, rhoV = modelH2.superanc_rhoLV(T)\n", " rhovecL0[ipure] = rhoL\n", " rhovecV0[ipure] = rhoV\n", "\n", " opt = teqp.TVLEOptions(); \n", "# opt.polish=True; \n", "# opt.integration_order=5; opt.rel_err=1e-10; \n", "# opt.calc_criticality = True; \n", " opt.crit_termination=1e-10\n", " trace = model.trace_VLE_isotherm_binary(T, rhovecL0, rhovecV0, opt)\n", " traces.append(trace)\n", " return traces\n", "\n", "for T in [24.59, 28.0, 34.66, 39.57, 42.50]:\n", " if T < 26.0:\n", " traces = get_traces(T, [0, 1])\n", " else:\n", " traces = get_traces(T, [1])\n", "\n", " for trace in traces:\n", " df = pandas.DataFrame(trace)\n", " \n", " # Plot the VLE solution\n", " line, = plt.plot(df['xL_0 / mole frac.'], df['pL / Pa']/1e5)\n", " plt.plot(df['xV_0 / mole frac.'], df['pL / Pa']/1e5, color=line.get_color())\n", "\n", " # Plot the VLLE solution if found\n", " for soln in model.find_VLLE_T_binary(traces):\n", " for rhovec in soln['polished']:\n", " rhovec = np.array(rhovec)\n", " rhotot = sum(rhovec)\n", " x = rhovec/rhotot\n", " p = rhotot*model.get_R(x)*T*(1+model.get_Ar01(T, rhotot, x))\n", " plt.plot(x[0], p/1e5, 'X', color=line.get_color())\n", " # print(T, rhovec, x[0], p/1e5, 'bar')\n", "\n", "plt.gca().set(xlabel='x/y H$_2$', ylabel='$P$ / bar', xlim=(0,1), ylim=(0,30));" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 5 }