teqp package¶
Submodules¶
teqp.teqp module¶
TEQP: Templated Equation of State Package
- class teqp.teqp.AbstractModel¶
Bases:
pybind11_object
- build_Psi_Hessian_autodiff(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- build_Psir_Hessian_autodiff(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]] ¶
- build_Psir_gradient_autodiff(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- build_d2PsirdTdrhoi_autodiff(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- dpsatdT_pure(self: teqp.teqp.AbstractModel, T: float, rhoL: float, rhoV: float) float ¶
- eigen_problem(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]], alignment_v0: numpy.ndarray[numpy.float64[m, 1]] | None = None) teqp::EigenData ¶
- extrapolate_from_critical(self: teqp.teqp.AbstractModel, Tc: float, rhoc: float, T: float, molefrac: numpy.ndarray[numpy.float64[m, 1]] | None = None) numpy.ndarray[numpy.float64[2, 1]] ¶
- find_VLLE_T_binary(self: teqp.teqp.AbstractModel, traces: list[json], options: teqp.teqp.VLLEFinderOptions | None = None) list[json] ¶
- find_VLLE_p_binary(self: teqp.teqp.AbstractModel, traces: list[json], options: teqp.teqp.VLLEFinderOptions | None = None) list[json] ¶
- get_ATrhoXi(self: teqp.teqp.AbstractModel, T: float, NT: int, rhomolar: float, Nrho: int, molefrac: numpy.ndarray[numpy.float64[m, 1]], i: int, NXi: int) float ¶
- get_ATrhoXiXj(self: teqp.teqp.AbstractModel, T: float, NT: int, rhomolar: float, Nrho: int, molefrac: numpy.ndarray[numpy.float64[m, 1]], i: int, NXi: int, j: int, NXj: int) float ¶
- get_ATrhoXiXjXk(self: teqp.teqp.AbstractModel, T: float, NT: int, rhomolar: float, Nrho: int, molefrac: numpy.ndarray[numpy.float64[m, 1]], i: int, NXi: int, j: int, NXj: int, k: int, NXk: int) float ¶
- get_Ar00(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar01(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar01n(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_Ar02(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar02n(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_Ar03(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar03n(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_Ar04(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar04n(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_Ar05n(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_Ar06n(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_Ar10(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar10n(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_Ar11(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar12(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar13(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar14(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar20(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar20n(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_Ar21(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar22(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar23(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar24(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Ar30n(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_Ar40n(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_Arxy(self: teqp.teqp.AbstractModel, NT: int, ND: int, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_AtaudeltaXi(self: teqp.teqp.AbstractModel, tau: float, Ntau: int, delta: float, Ndelta: int, molefrac: numpy.ndarray[numpy.float64[m, 1]], i: int, NXi: int) float ¶
- get_AtaudeltaXiXj(self: teqp.teqp.AbstractModel, tau: float, Ntau: int, delta: float, Ndelta: int, molefrac: numpy.ndarray[numpy.float64[m, 1]], i: int, NXi: int, j: int, NXj: int) float ¶
- get_AtaudeltaXiXjXk(self: teqp.teqp.AbstractModel, tau: float, Ntau: int, delta: float, Ndelta: int, molefrac: numpy.ndarray[numpy.float64[m, 1]], i: int, NXi: int, j: int, NXj: int, k: int, NXk: int) float ¶
- get_B12vir(self: teqp.teqp.AbstractModel, T: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_B2vir(self: teqp.teqp.AbstractModel, T: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_Bnvir(self: teqp.teqp.AbstractModel, Nderiv: int, T: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) dict[int, float] ¶
- get_R(self: teqp.teqp.AbstractModel, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_chempotVLE_autodiff(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_criticality_conditions(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[2, 1]] ¶
- get_dchempotdT_autodiff(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_deriv_mat2(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[3, 3]] ¶
- get_dmBnvirdTm(self: teqp.teqp.AbstractModel, Nderiv: int, NTderiv: int, T: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_dp_dT_crit(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_dpsat_dTsat_isopleth(self: teqp.teqp.AbstractModel, T: float, rhovecL: numpy.ndarray[numpy.float64[m, 1]], rhovecV: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_drhovec_dT_crit(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_drhovecdT_psat(self: teqp.teqp.AbstractModel, T: float, rhovecL: numpy.ndarray[numpy.float64[m, 1]], rhovecV: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]]] ¶
- get_drhovecdp_Tsat(self: teqp.teqp.AbstractModel, T: float, rhovecL: numpy.ndarray[numpy.float64[m, 1]], rhovecV: numpy.ndarray[numpy.float64[m, 1]]) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]]] ¶
- get_fugacity_coefficients(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_minimum_eigenvalue_Psi_Hessian(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_neff(self: teqp.teqp.AbstractModel, T: float, rho: float, molefrac: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_partial_molar_volumes(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_pr(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- get_pure_critical_conditions_Jacobian(self: teqp.teqp.AbstractModel, T: float, rho: float, alternative_pure_index: int | None = None, alternative_length: int | None = None) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]]] ¶
- get_splus(self: teqp.teqp.AbstractModel, T: float, rhovec: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- mix_VLE_Tp(self: teqp.teqp.AbstractModel, T: float, p_given: float, rhovecL0: numpy.ndarray[numpy.float64[m, 1]], rhovecV0: numpy.ndarray[numpy.float64[m, 1]], options: teqp.teqp.MixVLETpFlags | None = None) teqp.teqp.MixVLEReturn ¶
- mix_VLE_Tx(self: teqp.teqp.AbstractModel, T: float, rhovecL0: numpy.ndarray[numpy.float64[m, 1]], rhovecV0: numpy.ndarray[numpy.float64[m, 1]], xspec: numpy.ndarray[numpy.float64[m, 1]], atol: float, reltol: float, axtol: float, relxtol: float, maxiter: int) tuple[teqp.teqp.VLE_return_code, numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]]] ¶
- mix_VLLE_T(self: teqp.teqp.AbstractModel, T: float, rhovecVinit: numpy.ndarray[numpy.float64[m, 1]], rhovecL1init: numpy.ndarray[numpy.float64[m, 1]], rhovecL2init: numpy.ndarray[numpy.float64[m, 1]], atol: float, reltol: float, axtol: float, relxtol: float, maxiter: int) tuple[teqp::VLLE::VLLE_return_code, numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]]] ¶
- mixture_VLE_px(self: teqp.teqp.AbstractModel, p_spec: float, xmolar_spec: numpy.ndarray[numpy.float64[m, 1]], T0: float, rhovecL0: numpy.ndarray[numpy.float64[m, 1]], rhovecV0: numpy.ndarray[numpy.float64[m, 1]], options: teqp.teqp.MixVLEpxFlags | None = None) tuple[teqp.teqp.VLE_return_code, float, numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]]] ¶
- pure_VLE_T(self: teqp.teqp.AbstractModel, T: float, rhoL: float, rhoV: float, max_iter: int, molefrac: numpy.ndarray[numpy.float64[m, 1]] | None = None) numpy.ndarray[numpy.float64[2, 1]] ¶
- solve_pure_critical(self: teqp.teqp.AbstractModel, T: float, rho: float, flags: json | None = None) tuple[float, float] ¶
- trace_VLE_isobar_binary(self: teqp.teqp.AbstractModel, p: float, T0: float, rhovecL0: numpy.ndarray[numpy.float64[m, 1]], rhovecV0: numpy.ndarray[numpy.float64[m, 1]], options: teqp.teqp.PVLEOptions | None = None) json ¶
- trace_VLE_isotherm_binary(self: teqp.teqp.AbstractModel, T: float, rhovecL0: numpy.ndarray[numpy.float64[m, 1]], rhovecV0: numpy.ndarray[numpy.float64[m, 1]], options: teqp.teqp.TVLEOptions | None = None) json ¶
- trace_VLLE_binary(self: teqp.teqp.AbstractModel, T: float, rhovecV: numpy.ndarray[numpy.float64[m, 1]], rhovecL1: numpy.ndarray[numpy.float64[m, 1]], rhovecL2: numpy.ndarray[numpy.float64[m, 1]], options: teqp.teqp.VLLETracerOptions | None = None) json ¶
- trace_critical_arclength_binary(self: teqp.teqp.AbstractModel, T0: float, rhovec0: numpy.ndarray[numpy.float64[m, 1]], path: str | None = None, options: teqp.teqp.TCABOptions | None = None) json ¶
- class teqp.teqp.MixVLEReturn¶
Bases:
pybind11_object
- property T¶
- property initial_r¶
- property message¶
- property num_fev¶
- property num_iter¶
- property r¶
- property return_code¶
- property rhovecL¶
- property rhovecV¶
- property success¶
- class teqp.teqp.MixVLETpFlags¶
Bases:
pybind11_object
- property atol¶
- property axtol¶
- property maxiter¶
- property reltol¶
- property relxtol¶
- class teqp.teqp.MixVLEpxFlags¶
Bases:
pybind11_object
- property atol¶
- property axtol¶
- property maxiter¶
- property reltol¶
- property relxtol¶
- class teqp.teqp.MultiFluidVLEAncillaries¶
Bases:
pybind11_object
- property pL¶
- property pV¶
- property rhoL¶
- property rhoV¶
- class teqp.teqp.NRIterator¶
Bases:
pybind11_object
- calc_step(self: teqp.teqp.NRIterator, arg0: float, arg1: float) tuple[numpy.ndarray[numpy.float64[2, 1]], teqp.teqp.IterationMatrices] ¶
- get_T(self: teqp.teqp.NRIterator) float ¶
- get_molefrac(self: teqp.teqp.NRIterator) numpy.ndarray[numpy.float64[m, 1]] ¶
- get_rho(self: teqp.teqp.NRIterator) float ¶
- get_vals(self: teqp.teqp.NRIterator) numpy.ndarray[numpy.float64[2, 1]] ¶
- get_vars(self: teqp.teqp.NRIterator) list[str] ¶
- take_steps(self: teqp.teqp.NRIterator, arg0: int) teqp::iteration::StoppingConditionReason ¶
- class teqp.teqp.PVLEOptions¶
Bases:
pybind11_object
- property abs_err¶
- property calc_criticality¶
- property crit_termination¶
- property init_c¶
- property init_dt¶
- property integration_order¶
- property max_dt¶
- property max_steps¶
- property polish¶
- property polish_exception_on_fail¶
- property polish_reltol_rho¶
- property rel_err¶
- property terminate_unstable¶
- property verbosity¶
- class teqp.teqp.PureParameterOptimizer¶
Bases:
pybind11_object
- add_one_contribution(self: teqp.teqp.PureParameterOptimizer, arg0: teqp.teqp.SatRhoLPoint | teqp.teqp.SatRhoLPPoint | teqp.teqp.SatRhoLPWPoint | teqp.teqp.SOSPoint) None ¶
- build_JSON(self: teqp.teqp.PureParameterOptimizer, arg0: numpy.ndarray[numpy.float64[m, 1]]) json ¶
- property contributions¶
- cost_function(self: teqp.teqp.PureParameterOptimizer, arg0: numpy.ndarray[numpy.float64[m, 1]]) float ¶
- cost_function_threaded(self: teqp.teqp.PureParameterOptimizer, arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: int) float ¶
- class teqp.teqp.SAFTCoeffs¶
Bases:
pybind11_object
- property BibTeXKey¶
- property Qstar2¶
- property epsilon_over_k¶
- property m¶
- property mustar2¶
- property nQ¶
- property name¶
- property nmu¶
- property sigma_Angstrom¶
- class teqp.teqp.SOSPoint¶
Bases:
pybind11_object
- property Ao20¶
- property M¶
- property R¶
- property T¶
- property p_exp¶
- property rho_guess¶
- property w_exp¶
- property weight_w¶
- class teqp.teqp.SatRhoLPPoint¶
Bases:
pybind11_object
- property R¶
- property T¶
- property p_exp¶
- property rhoL_exp¶
- property rhoL_guess¶
- property rhoV_guess¶
- property weight_p¶
- property weight_rho¶
- class teqp.teqp.SatRhoLPWPoint¶
Bases:
pybind11_object
- property Ao20¶
- property M¶
- property R¶
- property T¶
- property p_exp¶
- property rhoL_exp¶
- property rhoL_guess¶
- property rhoV_guess¶
- property w_exp¶
- property weight_p¶
- property weight_rho¶
- property weight_w¶
- class teqp.teqp.SatRhoLPoint¶
Bases:
pybind11_object
- property T¶
- property rhoL_exp¶
- property rhoL_guess¶
- property rhoV_guess¶
- property weight¶
- class teqp.teqp.TCABOptions¶
Bases:
pybind11_object
- property T_tol¶
- property abs_err¶
- property calc_stability¶
- property init_c¶
- property init_dt¶
- property integration_order¶
- property max_dt¶
- property max_step_count¶
- property polish¶
- property polish_exception_on_fail¶
- property polish_reltol_T¶
- property polish_reltol_rho¶
- property pure_endpoint_polish¶
- property rel_err¶
- property skip_dircheck_count¶
- property small_T_count¶
- property stability_rel_drho¶
- property verbosity¶
- class teqp.teqp.TVLEOptions¶
Bases:
pybind11_object
- property abs_err¶
- property calc_criticality¶
- property crit_termination¶
- property init_c¶
- property init_dt¶
- property integration_order¶
- property max_dt¶
- property max_steps¶
- property p_termination¶
- property polish¶
- property polish_exception_on_fail¶
- property polish_reltol_rho¶
- property rel_err¶
- property terminate_unstable¶
- property verbosity¶
- class teqp.teqp.VLE_return_code¶
Bases:
pybind11_object
Members:
unset
xtol_satisfied
functol_satisfied
maxiter_met
maxfev_met
notfinite_step
- functol_satisfied = <VLE_return_code.functol_satisfied: 2>¶
- maxfev_met = <VLE_return_code.maxfev_met: 3>¶
- maxiter_met = <VLE_return_code.maxiter_met: 4>¶
- property name¶
- notfinite_step = <VLE_return_code.notfinite_step: 5>¶
- unset = <VLE_return_code.unset: 0>¶
- property value¶
- xtol_satisfied = <VLE_return_code.xtol_satisfied: 1>¶
- class teqp.teqp.VLLEFinderOptions¶
Bases:
pybind11_object
- property max_steps¶
- property rho_trivial_threshold¶
- class teqp.teqp.VLLETracerOptions¶
Bases:
pybind11_object
- property T_limit¶
- property abs_err¶
- property init_dT¶
- property max_dT¶
- property max_polish_steps¶
- property max_step_count¶
- property max_step_retries¶
- property polish¶
- property rel_err¶
- property terminate_composition¶
- property terminate_composition_tol¶
- property verbosity¶
- teqp.teqp.attach_model_specific_methods(arg0: object) None ¶
- teqp.teqp.build_alias_map(root: str) dict[str, str] ¶
- teqp.teqp.build_ancillaries(model: teqp.teqp.AbstractModel, Tc: float, rhoc: float, Tmin: float, flags: json | None = None) teqp.teqp.MultiFluidVLEAncillaries ¶
- teqp.teqp.collect_component_json(identifiers: list[str], root: str) list[json] ¶
- teqp.teqp.convert_CoolProp_idealgas(arg0: str, arg1: int) json ¶
- teqp.teqp.convert_FLD(component: str, name: str) json ¶
- teqp.teqp.convert_HMXBNC(path: str) tuple[json, json] ¶
- teqp.teqp.get_BIPdep(BIPcollection: json, identifiers: list[str], flags: json = None) tuple[json, bool] ¶
- teqp.teqp.get_departure_json(name: str, root: str) json ¶
Module contents¶
- teqp.AmmoniaWaterTillnerRoth()¶
- teqp.CPAfactory(spec)¶
- teqp.IdealHelmholtz(model)¶
- teqp.PCSAFTEOS(coeffs, kmat=None)¶
- teqp.build_LJ126_TholJPCRD2016()¶
- teqp.build_Psi_Hessian_autodiff(model, *args, **kwargs)¶
- teqp.build_Psir_Hessian_autodiff(model, *args, **kwargs)¶
- teqp.build_Psir_gradient_autodiff(model, *args, **kwargs)¶
- teqp.build_d2PsirdTdrhoi_autodiff(model, *args, **kwargs)¶
- teqp.build_multifluid_ecs_mutant(*args, **kwargs)¶
- teqp.build_multifluid_model(components, coolprop_root, BIPcollectionpath='', flags={}, departurepath='')¶
- teqp.build_multifluid_mutant(*args, **kwargs)¶
- teqp.canonical_PR(Tc_K, pc_Pa, acentric, kmat=None)¶
- teqp.canonical_SRK(Tc_K, pc_Pa, acentric, kmat=None)¶
- teqp.deprecated_caller(model, *args, **kwargs)¶
- teqp.eigen_problem(model, *args, **kwargs)¶
- teqp.extrapolate_from_critical(model, *args, **kwargs)¶
- teqp.find_VLLE_T_binary(model, *args, **kwargs)¶
- teqp.get_B2virget_B12vir(model, *args, **kwargs)¶
- teqp.get_chempotVLE_autodiff(model, *args, **kwargs)¶
- teqp.get_criticality_conditions(model, *args, **kwargs)¶
- teqp.get_datapath()¶
Get the absolute path to the folder containing the root of multi-fluid data
- teqp.get_dchempotdT_autodiff(model, *args, **kwargs)¶
- teqp.get_dpsat_dTsat_isopleth(model, *args, **kwargs)¶
- teqp.get_drhovec_dT_crit(model, *args, **kwargs)¶
- teqp.get_drhovecdT_psat(model, *args, **kwargs)¶
- teqp.get_drhovecdp_Tsat(model, *args, **kwargs)¶
- teqp.get_fugacity_coefficients(model, *args, **kwargs)¶
- teqp.get_minimum_eigenvalue_Psi_Hessian(model, *args, **kwargs)¶
- teqp.get_partial_molar_volumes(model, *args, **kwargs)¶
- teqp.get_pr(model, *args, **kwargs)¶
- teqp.get_pure_critical_conditions_Jacobian(model, *args, **kwargs)¶
- teqp.get_splus(model, *args, **kwargs)¶
- teqp.make_model(*args, **kwargs)¶
This function is in two parts; first the make_model function (renamed to _make_model in the Python interface) is used to make the model and then the model-specific methods are attached to the instance
- teqp.make_vdW1(a, b)¶
- teqp.mix_VLE_Tx(model, *args, **kwargs)¶
- teqp.mix_VLLE_T(model, *args, **kwargs)¶
- teqp.mixture_VLE_px(model, *args, **kwargs)¶
- teqp.pure_VLE_T(model, *args, **kwargs)¶
- teqp.solve_pure_critical(model, *args, **kwargs)¶
- teqp.tolist(a)¶
- teqp.trace_VLE_isobar_binary(model, *args, **kwargs)¶
- teqp.trace_VLE_isotherm_binary(model, *args, **kwargs)¶
- teqp.trace_critical_arclength_binary(model, *args, **kwargs)¶
- teqp.vdWEOS(Tc_K, pc_Pa)¶
- teqp.vdWEOS1(*args)¶