{ "cells": [ { "cell_type": "markdown", "id": "981687d8", "metadata": {}, "source": [ "# Fit Pure Fluid Parameters\n", "\n", "This example shows how to use the new fitting class of version 0.21 of teqp \n", "to fit the model parameters for the SAFT-VR-Mie model based on fitting\n", "pseudo-experimental data obtained from a reference equation\n", "of state.\n", "\n", "In version 0.23, the parameter optimization objects were moved into their own submodule called paramopt" ] }, { "cell_type": "code", "execution_count": 1, "id": "0bace5e5", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:11:01.430365Z", "iopub.status.busy": "2024-12-12T18:11:01.430041Z", "iopub.status.idle": "2024-12-12T18:11:01.932999Z", "shell.execute_reply": "2024-12-12T18:11:01.932457Z" } }, "outputs": [ { "data": { "text/plain": [ "'0.22.0'" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import teqp\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import CoolProp.CoolProp as CP\n", "import scipy.optimize\n", "display(teqp.__version__)\n", "\n", "nonpolar = {\n", " \"kind\": \"SAFT-VR-Mie\",\n", " \"model\": {\n", " \"coeffs\": [\n", " {\n", " \"name\": \"R32\",\n", " \"BibTeXKey\": \"Bell\",\n", " \"m\": 1.2476268271391935,\n", " \"sigma_m\": 3.6080717234117107e-10,\n", " \"epsilon_over_k\": 172.53065054286867,\n", " \"lambda_r\": 14.634722358167384,\n", " \"lambda_a\": 6\n", " }\n", " ]\n", " }\n", "}\n", "template = { \n", " 'kind': 'genericSAFT', \n", " 'model': {\n", " 'nonpolar': nonpolar\n", " }\n", "}\n", "\n", "# NOTE: '/' inside field names MUST be escaped as ~1; see https://datatracker.ietf.org/doc/html/rfc6901#section-3\n", "pointers = [\n", " '/model/nonpolar/model/coeffs/0/m',\n", " '/model/nonpolar/model/coeffs/0/sigma_m',\n", " '/model/nonpolar/model/coeffs/0/epsilon_over_k',\n", " '/model/nonpolar/model/coeffs/0/lambda_r',\n", " '/model/nonpolar/model/coeffs/0/lambda_a'\n", "]\n", "x0 = [1.5, 3e-10, 150, 19, 5.7]\n", "bounds = [(1,5), (2e-10,5e-10), (100,400), (12,50), (5.1, 6.0)]" ] }, { "cell_type": "code", "execution_count": 2, "id": "f5463428", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:11:01.934961Z", "iopub.status.busy": "2024-12-12T18:11:01.934590Z", "iopub.status.idle": "2024-12-12T18:11:02.145964Z", "shell.execute_reply": "2024-12-12T18:11:02.145468Z" } }, "outputs": [ { "ename": "AttributeError", "evalue": "module 'teqp' has no attribute 'paramopt'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[2], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m FLD \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mMethane\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m----> 2\u001b[0m ppo \u001b[38;5;241m=\u001b[39m \u001b[43mteqp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparamopt\u001b[49m\u001b[38;5;241m.\u001b[39mPureParameterOptimizer(template, pointers)\n\u001b[1;32m 4\u001b[0m Ts \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mlinspace(\u001b[38;5;241m100\u001b[39m, \u001b[38;5;241m170\u001b[39m, \u001b[38;5;241m10\u001b[39m)\n\u001b[1;32m 6\u001b[0m \u001b[38;5;66;03m# Generate some artificial pseudo-experimental data from \u001b[39;00m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# the reference EOS as implemented in CoolProp\u001b[39;00m\n", "\u001b[0;31mAttributeError\u001b[0m: module 'teqp' has no attribute 'paramopt'" ] } ], "source": [ "FLD = 'Methane'\n", "ppo = teqp.paramopt.PureParameterOptimizer(template, pointers)\n", "\n", "Ts = np.linspace(100, 170, 10)\n", "\n", "# Generate some artificial pseudo-experimental data from \n", "# the reference EOS as implemented in CoolProp\n", "for T in Ts:\n", " pt = teqp.paramopt.SatRhoLPWPoint()\n", " rhoL, rhoV = [CP.PropsSI('Dmolar','Q',Q,'T',T,FLD) for Q in [0,1]]\n", " p = CP.PropsSI('P','Q',0,'T',T,FLD)\n", " w = CP.PropsSI('speed_of_sound','Q',0,'T',T,FLD)\n", " pt.T = T\n", " # Measurands (here, pseudo-experimental values)\n", " pt.p_exp = p\n", " pt.rhoL_exp = rhoL\n", " pt.w_exp = w\n", " \n", " # Additional parameters\n", " pt.rhoL_guess = rhoL\n", " pt.rhoV_guess = rhoV\n", " pt.R = 8.31446261815324\n", " pt.M = CP.PropsSI('molemass',FLD)\n", " AS = CP.AbstractState('HEOS',FLD)\n", " AS.update(CP.DmolarT_INPUTS, 1e-10, T)\n", " pt.Ao20 = AS.tau()**2*AS.d2alpha0_dTau2() # -cv0/R\n", " \n", " # Weights (multiplied by 100 to put on a percentage basis)\n", " pt.weight_p = 1*100\n", " pt.weight_rho = 1*100\n", " pt.weight_w = 0.25*100\n", " ppo.add_one_contribution(pt)\n", "\n", "def cost_function(x):\n", "# return ppo.cost_function_threaded(x, 10) # This is an option if you have lots of threads\n", " return ppo.cost_function(x)\n", "\n", "r = scipy.optimize.differential_evolution(cost_function, bounds=bounds, disp=True, maxiter=10000, popsize=8)\n", "print(r)\n", "x = r.x\n", "model = teqp.make_model(ppo.build_JSON(x))\n", "\n", "Tc, rhoc = model.solve_pure_critical(400, 5000)\n", "print(Tc, rhoc)\n", "anc = teqp.build_ancillaries(model, Tc, rhoc, 0.5*Tc)\n", "\n", "def _get_SOS(model, T, rho, z, *, R, M, Ao20):\n", " \"\"\" Helper function to calculate speed of sound \"\"\"\n", " Ar0n = model.get_Ar02n(T, rho, z)\n", " Ar01 = Ar0n[1]; Ar02 = Ar0n[2]\n", " Ar11 = model.get_Ar11(T, rho, z)\n", " Ar20 = model.get_Ar20(T, rho, z)\n", "\n", " # M*w^2/(R*T) where w is the speed of sound\n", " # from the definition w = sqrt(dp/drho|s)\n", " Mw2RT = 1 + 2*Ar01 + Ar02 - (1 + Ar01 - Ar11)**2/(Ao20 + Ar20)\n", " if Mw2RT < 0:\n", " return 1e6\n", " w = (Mw2RT*R*T/M)**0.5\n", " return w\n", "\n", "TcREF = CP.PropsSI('Tcrit', FLD)\n", "Tsverify = np.linspace(100, TcREF*0.99999, 1000)\n", "RHOL, RHOV, PPP, WWW = [],[],[],[]\n", "z = np.array([1.0])\n", "for T in Tsverify:\n", " rhoL, rhoV = model.pure_VLE_T(T, anc.rhoL(T)*1.01, anc.rhoV(T)*0.9, 10)\n", " pL = rhoL*model.get_R(z)*T*(1+model.get_Ar01(T, rhoL, z))\n", " pV = rhoV*model.get_R(z)*T*(1+model.get_Ar01(T, rhoV, z))\n", " RHOL.append(rhoL)\n", " RHOV.append(rhoV)\n", " PPP.append(pL)\n", " AS = CP.AbstractState('HEOS',FLD)\n", " AS.update(CP.DmolarT_INPUTS, 1e-10, T)\n", " Ao20 = AS.d2alpha0_dTau2()*AS.tau()**2\n", " WWW.append(_get_SOS(model, T, rhoL, z, R=8.314462618,M=CP.PropsSI('molemass',FLD),Ao20=Ao20))\n", " \n", "# Plot the T-rho for VLE\n", "line, = plt.plot(np.array(RHOL), Tsverify)\n", "plt.plot(np.array(RHOV), Tsverify, color=line.get_color())\n", "for Q in [0, 1]:\n", " D = CP.PropsSI('Dmolar','T',Tsverify,'Q',Q,FLD)\n", " plt.plot(D, Tsverify, lw=2, color='k')\n", "plt.gca().set(xlabel=r'$\\rho$ / mol/m$^3$', ylabel='$T$ / K')\n", "\n", "# And a deviation plot, much closer to the critical point\n", "# than the fitting region\n", "fig, (ax1, ax2, ax3) = plt.subplots(3,1, figsize=(10,5), sharex=True)\n", "\n", "ax1.plot(Tsverify, (np.array(PPP)/CP.PropsSI('P','T',Tsverify,'Q',0,FLD)-1)*100)\n", "ax1.set(ylabel=r'$(p_{fit}/p_{\\rm pexp}-1)\\times 100$')\n", "\n", "ax2.plot(Tsverify, (np.array(RHOL)/CP.PropsSI('Dmolar','T',Tsverify,'Q',0,FLD)-1)*100)\n", "ax2.set(ylabel=r'$(\\rho_{fit}/\\rho_{\\rm pexp}-1)\\times 100$')\n", "\n", "ax3.plot(Tsverify, (np.array(WWW)/CP.PropsSI('speed_of_sound','T',Tsverify,'Q',0,FLD)-1)*100)\n", "ax3.set(ylabel=r'$(w_{fit}/w_{\\rm pexp}-1)\\times 100$', xlabel='$T$ / K')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 5 }