{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Multi-fluid EOS\n", "\n", "Peering into the innards of teqp" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:18.617319Z", "iopub.status.busy": "2024-12-12T18:08:18.617163Z", "iopub.status.idle": "2024-12-12T18:08:18.851491Z", "shell.execute_reply": "2024-12-12T18:08:18.850958Z" } }, "outputs": [ { "data": { "text/plain": [ "'0.22.0'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import timeit, json\n", "import pandas\n", "import numpy as np\n", "import teqp\n", "teqp.__version__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ancillary Equations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ancillary equations are provided along with multiparameter equations of state. The give a good *approximation* to the phase equilibrium densities. There are routines in teqp to use the ancillary equations provided with the EOS. First a class containing the ancillary equations is obtained, then methods on that class are called" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:18.879118Z", "iopub.status.busy": "2024-12-12T18:08:18.878783Z", "iopub.status.idle": "2024-12-12T18:08:18.915879Z", "shell.execute_reply": "2024-12-12T18:08:18.915404Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Densities are: 27357.335621492966 42.04100696197727 mol/m^3\n" ] } ], "source": [ "model = teqp.build_multifluid_model([\"Methane\"], teqp.get_datapath())\n", "anc = model.build_ancillaries()\n", "T = 100.0 # [K]\n", "rhoL, rhoV = anc.rhoL(T), anc.rhoV(T)\n", "print('Densities are:', rhoL, rhoV, 'mol/m^3')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "But those densities do not correspond to the *true* phase equilibrium solution, so we need to polish the solution:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:18.917613Z", "iopub.status.busy": "2024-12-12T18:08:18.917277Z", "iopub.status.idle": "2024-12-12T18:08:18.920364Z", "shell.execute_reply": "2024-12-12T18:08:18.919963Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "VLE densities are: 27357.147019094475 42.04798227835163 mol/m^3\n" ] } ], "source": [ "Niter = 10\n", "rhoLtrue, rhoVtrue = model.pure_VLE_T(T, rhoL, rhoV, Niter)\n", "print('VLE densities are:', rhoLtrue, rhoVtrue, 'mol/m^3')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And looking the densities, they are slightly different after the phase equilibrium calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ammonia-Water\n", "\n", "Tillner-Roth and Friend provided a hard-coded model that is in a form not compatible with the other multi-fluid models. It is available via the high-level factory function" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:18.922040Z", "iopub.status.busy": "2024-12-12T18:08:18.921730Z", "iopub.status.idle": "2024-12-12T18:08:18.925948Z", "shell.execute_reply": "2024-12-12T18:08:18.925534Z" } }, "outputs": [ { "data": { "text/plain": [ "-0.09731055757504622" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "AW = teqp.AmmoniaWaterTillnerRoth()\n", "AW.get_Ar01(300, 300, np.array([0.9, 0.0]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Pure fluid loading" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:18.927475Z", "iopub.status.busy": "2024-12-12T18:08:18.927311Z", "iopub.status.idle": "2024-12-12T18:08:21.552172Z", "shell.execute_reply": "2024-12-12T18:08:21.551656Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "32.3 ms ± 70.7 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" ] } ], "source": [ "# By default teqp looks for fluids relative to the set of fluids in ROOT/dev/fluids\n", "# The name (case-sensitive) should match the .json file, without the json extension.\n", "%timeit model = teqp.build_multifluid_model([\"Methane\"], teqp.get_datapath())" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:21.553883Z", "iopub.status.busy": "2024-12-12T18:08:21.553719Z", "iopub.status.idle": "2024-12-12T18:08:24.188690Z", "shell.execute_reply": "2024-12-12T18:08:24.188136Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "32.4 ms ± 127 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" ] } ], "source": [ "# And if you provide valid aliases, alias lookup will be used to resolve the name\n", "# But beware, this is rather a lot slower than the above because all fluid files need to be read\n", "# in to build the alias map\n", "%timeit model = teqp.build_multifluid_model([\"n-C1H4\"], teqp.get_datapath())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, how to make it faster? Only do it once and cache" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:24.190556Z", "iopub.status.busy": "2024-12-12T18:08:24.190218Z", "iopub.status.idle": "2024-12-12T18:08:26.755277Z", "shell.execute_reply": "2024-12-12T18:08:26.754836Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "31.2 ms ± 228 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" ] }, { "data": { "text/plain": [ "['1,2-DICHLOROETHANE',\n", " '1,2-dichloroethane',\n", " '1-BUTENE',\n", " '1-Butene',\n", " '100-41-4',\n", " '10024-97-2',\n", " '102687-65-0',\n", " '106-42-3',\n", " '106-97-8',\n", " '106-98-9']" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Here is the set of possible aliases to absolute paths of files\n", "# Building this map takes a little while (somewhat faster in C++) due to all the file reads\n", "# If you know your files will not change, good idea to build this alias map yourself.\n", "%timeit aliasmap = teqp.build_alias_map(teqp.get_datapath())\n", "aliasmap = teqp.build_alias_map(teqp.get_datapath())\n", "list(aliasmap.keys())[0:10] # the first 10 aliases in the dict" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:26.757015Z", "iopub.status.busy": "2024-12-12T18:08:26.756704Z", "iopub.status.idle": "2024-12-12T18:08:31.174198Z", "shell.execute_reply": "2024-12-12T18:08:31.173636Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "533 μs ± 3.64 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n" ] } ], "source": [ "# Then load the absolute paths from the alias map, \n", "# which will guarantee that you hit exactly what you were looking for,\n", "# resolving aliases as needed\n", "identifiers = [aliasmap[n] for n in [\"n-C1H4\"]]\n", "%timeit model = teqp.build_multifluid_model(identifiers, teqp.get_datapath())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "At some point soon teqp will support in-memory loading of JSON data for the pure components, without requiring reads from the operating system" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:31.176061Z", "iopub.status.busy": "2024-12-12T18:08:31.175745Z", "iopub.status.idle": "2024-12-12T18:08:31.179199Z", "shell.execute_reply": "2024-12-12T18:08:31.178658Z" } }, "outputs": [], "source": [ "# And you can also load the JSON that teqp is loading for the pure fluids\n", "pureJSON = teqp.collect_component_json(['Neon','Hydrogen'], teqp.get_datapath())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Mixture model loading" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:31.180907Z", "iopub.status.busy": "2024-12-12T18:08:31.180617Z", "iopub.status.idle": "2024-12-12T18:08:31.184749Z", "shell.execute_reply": "2024-12-12T18:08:31.184216Z" } }, "outputs": [], "source": [ "# Load the default JSON for the binary interaction parameters\n", "BIP = json.load(open(teqp.get_datapath()+'/dev/mixtures/mixture_binary_pairs.json'))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:31.186466Z", "iopub.status.busy": "2024-12-12T18:08:31.186102Z", "iopub.status.idle": "2024-12-12T18:08:31.192102Z", "shell.execute_reply": "2024-12-12T18:08:31.191595Z" } }, "outputs": [ { "data": { "text/plain": [ "{'BibTeX': 'Kunz-JCED-2012',\n", " 'CAS1': '74-82-8',\n", " 'CAS2': '74-84-0',\n", " 'F': 1.0,\n", " 'Name1': 'Methane',\n", " 'Name2': 'Ethane',\n", " 'betaT': 0.996336508,\n", " 'betaV': 0.997547866,\n", " 'function': 'Methane-Ethane',\n", " 'gammaT': 1.049707697,\n", " 'gammaV': 1.006617867}" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# You can obtain interaction parameters either by pairs of names, where name is the name that teqp uses, the [\"INFO\"][\"NAME\"] field\n", "params, swap_needed = teqp.get_BIPdep(BIP, ['Methane','Ethane'])\n", "params" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:31.193757Z", "iopub.status.busy": "2024-12-12T18:08:31.193304Z", "iopub.status.idle": "2024-12-12T18:08:31.199346Z", "shell.execute_reply": "2024-12-12T18:08:31.198843Z" } }, "outputs": [ { "data": { "text/plain": [ "{'BibTeX': 'Kunz-JCED-2012',\n", " 'CAS1': '74-82-8',\n", " 'CAS2': '74-84-0',\n", " 'F': 1.0,\n", " 'Name1': 'Methane',\n", " 'Name2': 'Ethane',\n", " 'betaT': 0.996336508,\n", " 'betaV': 0.997547866,\n", " 'function': 'Methane-Ethane',\n", " 'gammaT': 1.049707697,\n", " 'gammaV': 1.006617867}" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Or also by CAS#\n", "params, swap_needed = teqp.get_BIPdep(BIP, ['74-82-8','74-84-0'])\n", "params" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:31.200866Z", "iopub.status.busy": "2024-12-12T18:08:31.200578Z", "iopub.status.idle": "2024-12-12T18:08:31.344282Z", "shell.execute_reply": "2024-12-12T18:08:31.343760Z" }, "tags": [ "raises-exception" ] }, "outputs": [ { "ename": "ValueError", "evalue": "Can't match the binary pair for: 74-82-8/Ethane", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[13], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# But mixing is not allowed\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m params, swap_needed \u001b[38;5;241m=\u001b[39m \u001b[43mteqp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_BIPdep\u001b[49m\u001b[43m(\u001b[49m\u001b[43mBIP\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m74-82-8\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mEthane\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3\u001b[0m params\n", "\u001b[0;31mValueError\u001b[0m: Can't match the binary pair for: 74-82-8/Ethane" ] } ], "source": [ "# But mixing is not allowed\n", "params, swap_needed = teqp.get_BIPdep(BIP, ['74-82-8','Ethane'])\n", "params" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Estimation of interaction parameters\n", "\n", "Estimation of interaction parameters can be used when no mixture model is present. The ``flags`` keyword argument allows the user to control how estimation is applied. The ``flags`` keyword argument should be a dictionary, with keys of ``\"estimate\"`` to provide the desired estimation scheme as-needed. For now, the only allowed estimation scheme is ``Lorentz-Berthelot``. \n", "\n", "If it is desired to force the estimation, the ``\"force-estimate\"`` to force the use of the provided estimation scheme for all binaries, even when a proper mixture model is available. The value associated with ``\"force-estimate\"`` is ignored." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:31.346152Z", "iopub.status.busy": "2024-12-12T18:08:31.345854Z", "iopub.status.idle": "2024-12-12T18:08:31.353670Z", "shell.execute_reply": "2024-12-12T18:08:31.353204Z" } }, "outputs": [ { "data": { "text/plain": [ "{'F': 0.0, 'betaT': 1.0, 'betaV': 1.0, 'gammaT': 1.0, 'gammaV': 1.0}" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "params, swap_needed = teqp.get_BIPdep(BIP, ['74-82-8','74-84-0'], flags={'force-estimate':'yes', 'estimate': 'Lorentz-Berthelot'})\n", "params" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:31.355354Z", "iopub.status.busy": "2024-12-12T18:08:31.354954Z", "iopub.status.idle": "2024-12-12T18:08:31.360973Z", "shell.execute_reply": "2024-12-12T18:08:31.360466Z" } }, "outputs": [ { "data": { "text/plain": [ "{'BibTeX': 'Kunz-JCED-2012',\n", " 'CAS1': '74-82-8',\n", " 'CAS2': '74-84-0',\n", " 'F': 1.0,\n", " 'Name1': 'Methane',\n", " 'Name2': 'Ethane',\n", " 'betaT': 0.996336508,\n", " 'betaV': 0.997547866,\n", " 'function': 'Methane-Ethane',\n", " 'gammaT': 1.049707697,\n", " 'gammaV': 1.006617867}" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# And without the force, the forcing is ignored\n", "params, swap_needed = teqp.get_BIPdep(BIP, ['74-82-8','74-84-0'], flags={'estimate': 'Lorentz-Berthelot'})\n", "params" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:31.362627Z", "iopub.status.busy": "2024-12-12T18:08:31.362316Z", "iopub.status.idle": "2024-12-12T18:08:31.402206Z", "shell.execute_reply": "2024-12-12T18:08:31.401702Z" } }, "outputs": [], "source": [ "# And the same flags can be passed to the multifluid model constructor\n", "model = teqp.build_multifluid_model(\n", " ['74-82-8','74-84-0'], \n", " teqp.get_datapath(), \n", " flags={'force-estimate':'yes', 'estimate': 'Lorentz-Berthelot'})" ] } ], "metadata": { "celltoolbar": "Edit Metadata", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 4 }