{ "cells": [ { "cell_type": "markdown", "id": "940cc903", "metadata": {}, "source": [ "# Model Potentials\n", "\n", "These EOS for model potentials are useful for understanding theory, and capture some (but perhaps not all) of the physics of \"real\" fluids." ] }, { "cell_type": "markdown", "id": "527851a2-27ae-4317-97ff-040cd590a016", "metadata": {}, "source": [ "The unit systems for all model potentials covered here are reduced quantities defined by (nicely summarized in [the appendix to the dissertation of Karsten Meier](https://www.hsu-hh.de/thermodynamik/wp-content/uploads/sites/741/2017/10/Dissertation-K.-Meier.pdf)):\n", "\n", "Time: $ t^* = t\\frac{\\sqrt{\\epsilon/m}}{\\sigma}$\n", "\n", "Velocity: $v^* = v\\frac{m}{\\epsilon}$\n", "\n", "Temperature: $T^* = \\frac{kT}{\\epsilon}$\n", "\n", "Particle density: $\\rho^* = \\rho\\sigma^3$\n", "\n", "Pressure: $p^* = \\frac{p\\sigma^3}{\\epsilon}$\n", "\n", "Second density virial coefficient: $B^* = \\frac{B}{\\sigma^3}$\n", "\n", "Within the implementation for the model potentials, the value of $R$ is set to 1, which has the desired cancellation in reduced units. For instance the pressure in reduced units is obtained from:\n", "\n", "$$ p^* = \\rho^*T^*(1+\\Lambda^{\\rm r}_{01}(T^*,\\rho^*))$$\n", "\n", "In the case of chains, it is always the segment (or monomer) density that is an input to the routines." ] }, { "cell_type": "code", "execution_count": 1, "id": "f5463428", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:10:21.152378Z", "iopub.status.busy": "2024-12-12T18:10:21.152224Z", "iopub.status.idle": "2024-12-12T18:10:21.168111Z", "shell.execute_reply": "2024-12-12T18:10:21.167705Z" } }, "outputs": [ { "data": { "text/plain": [ "'0.22.0'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import teqp\n", "teqp.__version__" ] }, { "cell_type": "markdown", "id": "bf22ac3d", "metadata": {}, "source": [ "## Square-well\n", "\n", "The potential is defined by\n", "\n", "$$\n", "V(r) = \\left\\lbrace \\begin{array}{cc}\n", " \\infty & r < \\sigma \\\\\n", " -\\varepsilon & \\sigma < r < \\lambda\\sigma \\\\\n", " 0 & r > \\lambda \\sigma\n", " \\end{array}\\right. \n", "$$\n", "\n", "from which an EOS can be developed by correlating results from molecular simulation. The EOS is from:\n", "\n", " Rodolfo Espíndola-Heredia, Fernando del Río and Anatol Malijevsky\n", " Optimized equation of the state of the\n", " square-well fluid of variable range based on\n", " a fourth-order free-energy expansion\n", " J. Chem. Phys. 130, 024509 (2009); https://doi.org/10.1063/1.3054361\n", " " ] }, { "cell_type": "code", "execution_count": 2, "id": "435a84a9", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:10:21.169743Z", "iopub.status.busy": "2024-12-12T18:10:21.169438Z", "iopub.status.idle": "2024-12-12T18:10:21.171918Z", "shell.execute_reply": "2024-12-12T18:10:21.171533Z" } }, "outputs": [], "source": [ "model = teqp.make_model({ \n", " \"kind\": \"SW_EspindolaHeredia2009\", \n", " \"model\": {\n", " \"lambda\": 1.3\n", " }\n", "})" ] }, { "cell_type": "markdown", "id": "f0caf9ea", "metadata": {}, "source": [ "## EXP-6" ] }, { "cell_type": "code", "execution_count": 3, "id": "dc38b705", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:10:21.173432Z", "iopub.status.busy": "2024-12-12T18:10:21.173279Z", "iopub.status.idle": "2024-12-12T18:10:21.175830Z", "shell.execute_reply": "2024-12-12T18:10:21.175418Z" } }, "outputs": [], "source": [ "model = teqp.make_model({ \n", " \"kind\": \"EXP6_Kataoka1992\", \n", " \"model\": {\n", " \"alpha\": 12\n", " }\n", "})" ] }, { "cell_type": "markdown", "id": "b87cbd05", "metadata": {}, "source": [ "## Lennard-Jones Fluid\n", "\n", "The Lennard-Jones potential is given by\n", "$$\n", "V(r) = 4\\varepsilon\\left((\\sigma/r)^{12}-(\\sigma/r)^{6}\\right)\n", "$$\n", "\n", "and EOS are available from many authors. teqp includes the EOS from Thol, Kolafa-Nezbeda, and Johnson." ] }, { "cell_type": "code", "execution_count": 4, "id": "739e3e2b", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:10:21.177386Z", "iopub.status.busy": "2024-12-12T18:10:21.177083Z", "iopub.status.idle": "2024-12-12T18:10:21.181673Z", "shell.execute_reply": "2024-12-12T18:10:21.181238Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "LJ126_TholJPCRD2016 (1.303512554910004, 0.3103860327864474) (1.32, 0.31)\n", "LJ126_KolafaNezbeda1994 (1.3396478193468155, 0.31080389777229156) (1.3396, 0.3108)\n", "LJ126_Johnson1993 (1.3130000571792173, 0.3099999768607838) (1.313, 0.31)\n" ] } ], "source": [ "for kind, crit in [\n", " [\"LJ126_TholJPCRD2016\", (1.32, 0.31)], # Note the true critical point was not used\n", " [\"LJ126_KolafaNezbeda1994\", (1.3396, 0.3108)],\n", " [\"LJ126_Johnson1993\", (1.313, 0.310)]]:\n", " \n", " j = { \"kind\": kind, \"model\": {} }\n", " model = teqp.make_model(j)\n", " print(kind, model.solve_pure_critical(1.3, 0.3), crit)" ] }, { "cell_type": "markdown", "id": "36a5a52f", "metadata": {}, "source": [ "## Mie Fluid\n", "The Mie potential is given by\n", "$$\n", "u(r) = C\\epsilon \\left((\\sigma/r)^{\\lambda_r}-(\\sigma/r)^{\\lambda_a}\\right)\n", "$$\n", "with \n", "$$\n", "C = \\frac{\\lambda_r}{\\lambda_r-\\lambda_a}\\left(\\frac{\\lambda_r}{\\lambda_a}\\right)^{\\lambda_a/(\\lambda_r-\\lambda_a)}\n", "$$\n", "\n", "The SAFT-VR-Mie model can be used for this fluid, or two new models from 2023" ] }, { "cell_type": "code", "execution_count": 5, "id": "696d724c", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:10:21.183161Z", "iopub.status.busy": "2024-12-12T18:10:21.182917Z", "iopub.status.idle": "2024-12-12T18:10:21.200841Z", "shell.execute_reply": "2024-12-12T18:10:21.200311Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mie_Chaparro2023 (1.3302552193659323, 0.30398356369036467)\n", "Mie_Pohl2023 (1.3219460984743199, 0.3044747955342046)\n" ] } ], "source": [ "for kind, model in [\n", " [\"Mie_Chaparro2023\", {\"lambda_r\": 12, \"lambda_a\": 6}],\n", " [\"Mie_Pohl2023\", {\"lambda_r\": 12}]]:\n", " \n", " j = { \"kind\": kind, \"model\": model }\n", " model = teqp.make_model(j)\n", " print(kind, model.solve_pure_critical(1.3, 0.3))" ] }, { "cell_type": "markdown", "id": "fad87158", "metadata": {}, "source": [ "## Two-Center Lennard-Jones Fluid" ] }, { "cell_type": "code", "execution_count": 6, "id": "ae5646de", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:10:21.202522Z", "iopub.status.busy": "2024-12-12T18:10:21.202218Z", "iopub.status.idle": "2024-12-12T18:10:21.206969Z", "shell.execute_reply": "2024-12-12T18:10:21.206474Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(2.828297206218807, 0.20050466666340064)\n", "(2.8325743035618367, 0.20031946554633046)\n" ] } ], "source": [ "model = teqp.make_model({ \n", " 'kind': '2CLJF-Dipole', \n", " 'model': {\n", " \"author\": \"2CLJF_Lisal\",\n", " 'L^*': 0.5,\n", " '(mu^*)^2': 0.1\n", " }\n", "})\n", "print(model.solve_pure_critical(1.3, 0.3))\n", "\n", "model = teqp.make_model({ \n", " 'kind': '2CLJF-Quadrupole', \n", " 'model': {\n", " \"author\": \"2CLJF_Lisal\",\n", " 'L^*': 0.5,\n", " '(Q^*)^2': 0.1\n", " }\n", "})\n", "print(model.solve_pure_critical(1.3, 0.3))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 5 }