{ "cells": [ { "cell_type": "markdown", "id": "86d8297c", "metadata": {}, "source": [ "# Association - Dufal et al. model\n", "\n", "The following figures show the checks of the results from the model of Dufal against the models implemewnted in CoolProp or calculated values from the paper of Dufal; in the case of methanol, a different EOS is implemented than in REFPROP, but that cannot explain the large deviations.\n", "\n", "Note: There appears to be a typo in the methanol parameters as-published" ] }, { "cell_type": "code", "execution_count": 1, "id": "749d6839", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:45.288869Z", "iopub.status.busy": "2024-12-12T18:08:45.288717Z", "iopub.status.idle": "2024-12-12T18:08:45.640225Z", "shell.execute_reply": "2024-12-12T18:08:45.639667Z" } }, "outputs": [], "source": [ "import teqp, numpy as np, matplotlib.pyplot as plt, CoolProp.CoolProp as CP" ] }, { "cell_type": "code", "execution_count": 2, "id": "a162884e", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:45.642397Z", "iopub.status.busy": "2024-12-12T18:08:45.642034Z", "iopub.status.idle": "2024-12-12T18:08:45.649940Z", "shell.execute_reply": "2024-12-12T18:08:45.649531Z" } }, "outputs": [], "source": [ "Dufal_water = {\n", " \"nonpolar\": {\n", " \"kind\": \"SAFT-VR-Mie\",\n", " \"model\": {\n", " \"coeffs\": [\n", " {\n", " \"name\": \"Water\",\n", " \"BibTeXKey\": \"Dufal-2015\",\n", " \"m\": 1.0,\n", " \"sigma_Angstrom\": 3.0555,\n", " \"epsilon_over_k\": 418.00,\n", " \"lambda_r\": 35.823,\n", " \"lambda_a\": 6.0\n", " }\n", " ]\n", " }\n", " },\n", " \"association\": {\n", " \"kind\": \"Dufal\",\n", " \"model\": {\n", " \"sigma / m\": [3.0555e-10],\n", " \"epsilon / J/mol\": [3475.445374388054],\n", " \"lambda_r\": [35.823],\n", " \"epsilon_HB / J/mol\": [13303.140189045183],\n", " \"K_HB / m^3\": [496.66e-30],\n", " \"kmat\": [[0.0]],\n", " \"Delta_rule\": \"Dufal\",\n", " \"molecule_sites\": [[\"e\",\"e\",\"H\",\"H\"]]\n", " }\n", " }\n", "}\n", "\n", "Dufal_methanol = {\n", " \"nonpolar\": {\n", " \"kind\": \"SAFT-VR-Mie\",\n", " \"model\": {\n", " \"coeffs\": [\n", " {\n", " \"name\": \"Methanol\",\n", " \"BibTeXKey\": \"Dufal-2015\",\n", " \"m\": 1.7989,\n", " \"sigma_Angstrom\": 3.1425,\n", " \"epsilon_over_k\": 276.96,\n", " \"lambda_r\": 16.968,\n", " \"lambda_a\": 6.0\n", " }\n", " ]\n", " }\n", " },\n", " \"association\": {\n", " \"kind\": \"Dufal\",\n", " \"model\": {\n", " \"sigma / m\": [3.1425e-10],\n", " \"epsilon / J/mol\": [276.96*8.31446261815324],\n", " \"lambda_r\": [16.968],\n", " \"epsilon_HB / J/mol\": [2156.0*8.31446261815324],\n", " \"K_HB / m^3\": [222.18e-30],\n", " \"kmat\": [[0.0]],\n", " \"Delta_rule\": \"Dufal\",\n", " \"molecule_sites\": [[\"e\",\"H\",\"H\"]]\n", " }\n", " }\n", "}\n", "\n", "Dufal_ammonia = {\n", " \"nonpolar\": {\n", " \"kind\": \"SAFT-VR-Mie\",\n", " \"model\": {\n", " \"coeffs\": [\n", " {\n", " \"name\": \"Ammonia\",\n", " \"BibTeXKey\": \"Dufal-2015\",\n", " \"m\": 1.0,\n", " \"sigma_Angstrom\": 3.3309,\n", " \"epsilon_over_k\": 323.70,\n", " \"lambda_r\": 36.832,\n", " \"lambda_a\": 6.0\n", " }\n", " ]\n", " }\n", " },\n", " \"association\": {\n", " \"kind\": \"Dufal\",\n", " \"model\": {\n", " \"sigma / m\": [3.3309e-10],\n", " \"epsilon / J/mol\": [323.70*8.31446261815324],\n", " \"lambda_r\": [36.832],\n", " \"epsilon_HB / J/mol\": [1105.0*8.31446261815324],\n", " \"K_HB / m^3\": [560.73e-30],\n", " \"kmat\": [[0.0]],\n", " \"Delta_rule\": \"Dufal\",\n", " \"molecule_sites\": [[\"e\",\"H\",\"H\",\"H\"]]\n", " }\n", " }\n", "}\n", "\n", "# Tabulated values from Dufal for non-bonded fraction for water from the Mie kernel (Eq. 30):\n", "# Note the last \"liquid\" point in Dufal is actually for the vapor phase\n", "TL_Dufal = [252.10,270.00,290.00,300.00,310.00,314.14,330.00,348.85,350.00,370.00,388.70,390.00,400.00,410.00,416.67,430.00,450.00,450.00,470.00,476.76,490.00,500.00,503.19,510.00,530.00,550.00,556.52,570.00,579.71,590.00,600.00,610.00,620.00]\n", "XL_A_Dufal = [0.060,0.073,0.089,0.098,0.106,0.110,0.124,0.142,0.143,0.162,0.180,0.182,0.192,0.202,0.209,0.223,0.245,0.245,0.267,0.275,0.290,0.302,0.306,0.314,0.339,0.364,0.373,0.391,0.405,0.420,0.435,0.451,0.468]\n", "TV_Dufal = [300.00,314.14,348.85,350.00,370.00,388.70,390.00,400.00,410.00,416.67,430.00,450.00,450.00,470.00,476.76,490.00,500.00,510.00,530.00,550.00,570.00,590.00,600.00,610.00,620.00,638.60]\n", "XV_A_Dufal = [0.998,0.997,0.992,0.992,0.988,0.982,0.982,0.979,0.975,0.973,0.967,0.958,0.958,0.947,0.943,0.935,0.928,0.921,0.906,0.890,0.872,0.852,0.841,0.829,0.816,0.789]" ] }, { "cell_type": "code", "execution_count": 3, "id": "17d800f3", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:45.651564Z", "iopub.status.busy": "2024-12-12T18:08:45.651220Z", "iopub.status.idle": "2024-12-12T18:08:46.462063Z", "shell.execute_reply": "2024-12-12T18:08:46.461488Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAGxCAYAAABr1xxGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABu2klEQVR4nO3deXhU5f3+8feZSTLZyAJZwbCHNeyQCIKIokEtrq0WcSlV+3XXUhVsBX9iFYqK1pVqtbZ1X+qCRVAQoiwF2YQAsgaCkJAEyEq2mTm/P0IGwkxCmOzJ/bquXDjnnDl5jtM6N8/2MUzTNBERERFphSxN3QARERGRhqKgIyIiIq2Wgo6IiIi0Wgo6IiIi0mop6IiIiEirpaAjIiIirZaCjoiIiLRaPk3dgKbmdDo5dOgQ7dq1wzCMpm6OiIiI1IJpmhQUFNCxY0cslur7bdp80Dl06BBxcXFN3QwRERHxwoEDBzjnnHOqPd/mg067du2Ain9RISEhTdwaERERqY38/Hzi4uJc3+PVafNBp3K4KiQkREFHRESkhTnTtBNNRhYREZFWS0FHREREWi0FHREREWm1FHRERESk1VLQERERkVZLQUdERERaLQUdERERabUUdERERKTVUtARERGRVktBR0RERFqtZhV0vvvuOyZOnEjHjh0xDIPPPvvsjO9Zvnw5Q4cOxWaz0bNnT956660Gb2eLtWw2pMz1fC5lLiybTfaLL5H9yiseL8l+5RW+efB+Vn/ynsfzqz95j1UfvVNfrRUREamzZhV0ioqKGDRoEC+//HKtrk9LS+Pyyy9n3LhxbNq0iQceeIDbbruNxYsXN3BLWyiLFZY96R52UuZWHLdYwWoh54UX3cJO9iuvkPPCi1isFlZ9+I5b2Fn9yXus+vAd9mQfJSUlxeOvT0lJYdmyZTydlsG8fZker5m3L5OVn/7xjIFMRESkNppVUc9LL72USy+9tNbXz58/n27duvHss88C0LdvX1asWMFzzz1HcnKyx/eUlpZSWlrqep2fn1+3RrckYx+u+HPZkydfV4accX+CsQ8TObbiVM4LLwIQedddrpATcd+99L3rLgJPhBqAkddOcoWcUddNpiyiI8uWLau4/dixrl9dGXLGjRuH1TCYm1YRdKZ2jXFdM29fJnPTMvmkMpCd2mao0tbsF18Cq4XIu+5ye8zsV15h094dBI88l5HXTnI7v/qT9zCdTkb9avLZ/zsUEZEWpVkFnbO1evVqxo8fX+VYcnIyDzzwQLXvmT17No8//ngDt6wZOzXsfPc0OMpcIadSZXjIeeFFct98mW7jD9H+hmCsZa/Ci28w0urHgKGF5K95iJ/XTCfWCb9NjCO8/EvI8qN39DEOLfuGgzs70ymuK+mHsihPz2ByfH/iQ35mbNExuviV89amLUQcjePmrl149fBxXjhYyMM9OnNetycgrF2NgYytr1QJY5VcPU9XTqgSxipVhrKoscmUp6RUCWOVUlJScDqdrOvaB6thVAljlebty8RhmjzULbZun4eIiDQowzRNs6kb4YlhGHz66adcddVV1V7Tq1cvpkyZwiOPPOI6tnDhQi6//HKOHz9OQECA23s89ejExcWRl5dHSEhIvT5Ds/ZEZEXIsfrBjGyPl/w0YCBW32Lir8hqvHYZVvALBr8gcJTC8SOAAZgQ3R/OGXHifDCF6zdTsGwlQRclE3LZ1eQuWsqxDz8j9Nc30f6W21m7eBErPvkPI6+7sdqep3HjxlXb87S+S2/mpmXycLcYjz1Pn+Z+xMj2oVV7nVw3mgtOB4x7xP2ciIjUWX5+PqGhoWf8/m7RPTresNls2Gy2pm5G00qZezLkOMoqXp/2ZZ39yiuY5eU4DH/2LIyk/eRfE37tVRXXO8rY/t037Pj+W3x9DHDa6Z2YSM/BQ8BR7romZdkSLKYdP8NB0uB+UFoIZUUnfgqgrIisglyCHMUEOYsrfrHpgNK8ih+XE1n88NaKnxOCgeARQP6H8P6HhAFhlwBHn4PnniMRSOwL5T+u4vjGe+nrtDJwSAeCjr0JeT4MCC/m4LKFHNzRnU49+rHn0FFy9/zMLxOGk9DFylj/HIKjTObsTgPTZGq3WFfIebhbDCP3h2qITUSkmWvRQScmJobDhw9XOXb48GFCQkI89uYI7kNAla/B9WV96pycyjk6mS+8iN23I5F33VXRM/LVj4y67j5XT8nnH77DqPbnub6wU1JSWGYWYrVacTgclISNcxsmqgwNfoaB3WnnkbhQ7o0OOhmE1v4dNr1d0ctjOqDneIhLgtKCE9dUBKei75ZgsTiw+IEtLqbieGkhOMsB8LU48bU4CaQcSg7CzwcBaH/ih0M74NBX9AB6AKR+A6kVbfzdiZ+ylT5k+7TjF77t+HVQBzoeioSAcOg0vOLf34G1kHAt7F0Om9+H0VPh/Idg66sNPsQ2btw4L//HICLS+rXooDNy5EgWLlxY5dg333zDyJEjm6hFzdzpIQfcJihnbw2uEnKg6pydzft3sWnfLkZdN9n1xVz5Z+UX9unDQpXDQXBygvKpPSNTu8Ywb18mT6ZlUu4bzNSuPSvauult90AWlwSXPOF6pOxXXiHn2w0Yvr6Y5eVE3HcXkb8/ESjsZfzwyT/Z+MUHBPiB1VnG4HFj6ZeUWDGsVF4Mxcf47usvsJnFBBqlDOgZB8W5UHwMSnIr/tlZjp9pJ7L8GJHlx+B4Opw+2rf7m4qfSivmwZr5RIZ0JPQmf46vmcXxwsUEXvAL8lb+SOGHXxF5z+/oe9dDBH76QZ0mdz+dlqG5RCIi1WhWQaewsJDdu3e7XqelpbFp0ybat29P586deeSRRzh48CD/+te/ALjjjjt46aWXePjhh/ntb3/Lt99+y4cffsh///vfpnqE5s3pcJt4DJx87XSAw1kl5FSqfP3z3h1VQk6lyte7M7PZs2VHlbkvlX9WfmF7mvtS+efctEySfnyZ8za+UGMgY+zDHnueTu09Wf35J6z6z+eMuu5WV4D46sN3yGvX77SepyxXz9PRc07reTJNXty9l3/s3kOEo5Dg8jx+096HK9pRNQyt/weYTsCo6OkpPgrlx+HIbvwAv27A8eWwcDmhQGgykPMU/PlpRobE0n+YL4dWPMr6756kpNSXXyRfRO/EHuAXRMDxeJYuWwSmydgLLqgScsaOHcv6E6Hx1H+PUHUuEemaSyQibVOzmoy8fPlyj93wt9xyC2+99Ra/+c1v2LdvH8uXL6/ynt///vds27aNc845hxkzZvCb3/ym1r+ztpOZpHaWLVuGxWKp02qmpI0vcF77sBq/mLO3h7r1PMHJIaFDV05w63kCapyQfHqAqGzP6T1PbhOUK3ubKuc8jfsTjLoXCjIg/5Dr5+j8Z/CxleMb5CSgSwcoyMQ1/6gWyvClgGAKCCIgqjvRPQZCu1hoF8OHRX48d8TCr3sP4P6eXaq2c/+/3HvyTml3duFl0H1MtfOIcDiJvPeeWrdTRKQx1Pb7u1kFnaagoNMy1XWS7+7MbPZkH63TqiuPIcLT8CAnA9jJIbZ7ify/26HwMOQfYsc3H3Jo7VJCbOUEWYrpGBtGiF8ZlJeAvQRKa7ffkxODTFsE+/070i6yBwmd+0F4N9j3Pax/Cy74I1wwreqEaQ/Dlae2OeK+e9kVGYphsWjStIg0G1p1Ja1aTT0MkXfdxcU1vHfktZMoWbaMzh56nipfO51OHKbpFnLg5PBQ4qaXYVM9DLEt+Z5Vi39i1HUPM+zEENt/T/Q6VQaL779dzMbvviLUcpwgZwFDesTQIyqwoleoILOi96ggA0v5cTqWZtOxNBvyfoTd/6n68MufguWzAbNiqb7Vl8jz2uNbdilH3pqH4Swm4u6pZL/6apU27z5tk8hKp/aQiYg0R+rRUY+OeGvZ7IqyGc1giA1gXloGb+zcQc+SQ3QsPsiNAfmc58yBY/vgWFpFGKoFp92grMAKMX3xT7oUIuKhQ0/WrtzE95/8x9XWU9tY0j7mjEOWWh0mIvVJQ1e1pKAjDakxhtjGjh1bu7lE3z4J380Fiw847dB5FIR3OdEbdKJXqCTPrR2nKvMJ5XAe5NqDOFJiIzrxMvpecSspm/ezLOW7Gtu5tnMvrQ4TkXqjoFNLCjrSnNVmcvfGbn3rZS5R9iuvcOTlv+IXYsE3oITwy5II7hUJR/ZAzi4oqmGHbKsfRbZo0o/7EdR5MJ2HXMjGA4V8vSGNc8dd5jGMnd5O7TQtImdDQaeWFHSkpTvTPjqJm15m9OlziaDGCcmnzysCoDiXLR+/woHvPqVDQClhPkWcE2UjyH6kYsJ0dQLanxj+iud7azRvlIRzQfxQfpMwgnk/H6316jCPWyOISJuloFNLCjrS6p1hLlH2lxvJWbCpxlVXrh2xT5kk7Xr9q0mMHD+motfnyG5+WPQu7c2jRHCMUAqqbZYdK+kBMdAhnu5xCdChJ/y8rmKjSE+rwzYH1jgMqGXwIm2Lgk4tKehIW3emeUQ4nOzu2KFKyKl0evipnJNTuQHjReePZEzfWDiyC3J2n/hzF4VZOwh2FJ+hZSeKuXYfB6PuIeer9WS//JaWwYsIoKBTawo6Ime26qN3zhggyqPOqd3qsH2ZzN2bQVz5UToX7efOwDzGk3WiR2gX5Kaf2GXandMSzPGD5Vh6JBF46S0cXbaFw69+QMS993nsdTq1jZ6Oi0jLpaBTSwo6InVXXajxbnXYU/DdX06uDovqB45yOLIbTztJm/hgdBwAMQMgZiCpP2Wy7KuVDP/lLVoGL9KKacNAEWk0lQGhpg0YPYWaU2ucARUTkr/7i+fVYSPvhqztkLmZY3+dgS20FP8wOxYfOxzaWPEDJAAJvSF3/UZ2rZ6BsziQyydcRp+LRpOyac8Zi6SKSOuiHh316Ig0ivpYHXbqTtMV5TTKiL7rBtpfNBAyt1T8HE6F/IOeG+EfRq5/HNtzfQnrewF9L5xEytaDLFue4gpqqgYv0jJo6KqWFHREmgkvdpr2uAwe+OGD10lb9E+iA48T4VtA1xhfgsoOVwyFnaYUP4pD4wnrewF0HMw/zHP44xF/HureUfv9iDRjGroSkZalpnDgoWYY4PqzSu2wT95j1X8+Z9R1d7vm6Mz/8B3O++V0zh09qKLXJ+NHDqz9khiysFGGLW8r/G8rAFOAG3yD+WFzPD+cM5QRfUbzhhnH3GwfHu4ey8j9oVVqmbmc2vMkIs2Ggo6ItAwOp1vPDZwMOzicHldXVf658sN3MC2+jLz2RlLy41hGED4Wg/bObC7s054+IcVwaBNkbsFWXsjo3I2QuxFS3+BW4AZbGAEHh0LHIZDwy4pQY5qe9/vZ+or2+xFpJjR0paErkVajXpbBO+yQ/RMc2si/133DgIKf6Fe4Bz/Tfdirwon9fgZeD5fOJfsf79ZYyNVTWBORs6c5OrWkoCPSdtR2GTycnJPjZxjgKGV2aB6TzfQTK7w2QdY2MB2n/QYDovtTnB/MkSU7CLji/+hw7yNuIac2gUwbG4rUTHN0REROU5tl8IDH/X7+kJbJ4W4DmDri1oo3VVaDN6wVgScgHIqPweFUAoBzzgOOzKHsoWfwzfLlnNsn0O5XF4FpYlgsrPrwHYBqNzYUkfqhHh316IjIKc5UZb3GavCj7oNOwyB9NaSvxjz0I4Zx2i8I7ABx57Ivz5+Vq3fTY+LvOPeXN2pjQ5GzpB4dEREvOEzTLeTAyc0NEze9DKfv91P5Z2X4ufQvZL/yCkc/OUxAtJPA9scJGRyFn3kIjh+BHf+lK9C1G5Rvvpf0tX+CohAuvexq+v1iIin/W6+NDUXqiXp01KMjImejLvv93HsnkVecW9Hjs7+i14eS3Kr3MKwQO5CfLZ1Z8bOTuNHXc974iVVCztrOvbSpobR56tEREWkIdd3vx/Ah8q774bz7Wf3xO+z4/O/EBRcS63+MHhEObOVH4dBGzmEjvwbMFQvIXBGJH+fwywGXkZA4iPWHS06WzahmeE1EKijoiIjUp1rs9wMnJh5/9B6jrvuda2PDlz58hwuuupRh/aNO9PqsxMj+iRiyiSEbtmyE1NlMjRnI+e2H8tyR3rxUNp57evV0n1tUi54n7eAsbYGCjohIPappM8DKsFPTxobLP3yHMr/JjLx2HikpKaxd9iXdjUN0MffTL+AogcUHIWMTwzM28Q5gT7WysV0vfMOG8HKfC7m2Y3zFL7NYtYOzCJqjozk6ItLo6rKxYfKogYyMsUPad7Dvezi2r+oNLD4VK7+6joH8Q/Dju56rwXvq6RFpQbRhYC0p6IhIc1PbjQ3n7cvkne0/MjZvI0nHNnJp4WZCig5VvVnlPj+GBUwnjJ0G4/5I9osvgdWiUhXSYmkysohIC1WbjQ1dc3L6DmJq12Tm7cuk194Mnoy0c2v5dti3AtK+h4ITwcesmBvEyr/CgbUElPiT9ck6MJ1E3n0y0Jw6mVqkNVCPjnp0RKSFqdWmhl1jKoqOLnoE1rx6skfnNPYSC/bQAfhP+D+OrEgn6+V/qVSFtAi1/f62NGKbRESkHtS0qeHD3WJwVP799bunK0LOuD/BY8fggj9WHO95McRfAr6B+Pg78S/9ET6/iw5H5hA/2U5kt3TY+TVWyln14Tus/uS9Kr+ncjK1YdFXiDR/6tFRj46ItEbVTTw+9fh5D8DPa8mZPomgyGL825dXLVlh8SUvoCtb0soIGTmJgZMfZvWnH6pUhTQLmqMjItKWOR2eV1dVvnY6wMeP7IWbydkUTI5vOBajlOjfXEhoT1/Yuwxy0wkt2sXoKGDPHEoee4b2RWFcNT6ZHheOImXzPpWqkGZPPTrq0RGRNur0XZyrvL7zTji6F/Z8C3uXU7r1K2xWR9UbtO/OQf/efH/Ih3PGTGb0RZdWu2JMpL6pR0dERKp1xlIVla879GD1gWBW78ylU/Bx4vxzSOjiS0jxPji6l07s5deA/fuF7P4+jkK6M2HkZM4dO5an0zJUk0uanIKOiEhbdDalKj58h1HX3egqVfH6h+8w5tp7SBwYU9Hjs2cpPkf30pN99GQfrP4W0v7K6OjzmWkdBOYYpp4SaFSTSxqThq40dCUi4pGnUhWejqcsX86W5f+hj5FGL3M3cWRgcPKr5ZBfJNndLmLQ8F/yV6MXsw8cU00uqTMNXYmISJ2YTqdbyIGTdblMp7NiTs7y5Ywbd62rVMX7y/7LFX386WPshd3f0rEsm4473ocd73ObJYDL4sYQH341FF2imlzS4NSjox4dERGv1KpUxagk2Pc9/172b8bnrCS2LOfkDQwLxCWBb0DFEJhqcslZUK2rWlLQERHxzrJly2q1j07lnBw/oE/BDh53/MjIw99B5hb3m7pqcj0C46arJpdUS0NXIiLSoGraJ6cy/JxelmLevhiuTuvNw0PuY2pYOexcBDu+qqjG7iw/WaZi7XzIS8fX7kvGK4sBqoQd1eSS2lKPjnp0REQaRK1rcgEsfQK+f8ZjTS6nEUDebgNj2K8Ju/dpsv/2mtvSeGl7VOtKRESaVK1rcqXMrQg5lTW5xp5YZdVpGARFYjGLCe9xnLDcN7E/GonPqieIveMyIu/4PwBWfeRej6vS6k/eY9VH7zTYM0rzp6ErERFpEDVtBugKP54mHo+bDhZLxfELHoHOI2Hrf7Cv+hc+NifhPY9D7t/h2S+g35WEFIew+L9rAKpdBi9tl4KOiIg0ndrU5Oo+luxFW8n5LJqgjg5COhYS0tPEUpQFP7xOAtBrQChbUmaxpWgPA278I6s//cDjHkDS9miOjuboiIg0ax5rcr30Ah1vTya0axn89F8ozXNdn19uY2d+BLbEGxlw4yMsW75cVdZbIc3RERGRFq+6mlwR99zHob99TXbGAHhoF0x6HwZeT6nDSohvKcM7HGTAnr/AXwfSI+1f/LTsfVKWL69y78r9fiwWfRW2Zhq6EhGR5qs2Nbl8bND7Ulan5rJ21wG6h+QTH3SY+PB8rLnpdM5N5/+Ao8v/y/60ZLpcMZ2U1J9VZb2N0NCVhq5ERFq80+tvrf7kPdZ+9C8mXNKf3sFZsPNrsBe7rk8nlpLeV9Prqmk8nVmsKustkIauRESkTfBUfHTktZNI/NXNfLn4J1ZbL4WHdsO1b7CLbjgx6EwGvXa8As/0YmLKVNat+4zn9v5c5b6V+/1YDaMpHkvqiYauRESkRatN8VFswaQcjWQZVxFqKaa/cyvnBe0nqCidPvsW8i4Lydw5lx96XcWI829n3vFwj5sdSsujoSsNXYmItHqnFyCteP0tE4d3ZphlB2z5CIqPuq7/Mbg3WQNu4OILbgVbO1g2u6LSuqcioylzTyyTf6QRn0g0dCUiIoLnKutjx45l3LgLWbDuAClBl8MfdsD177C4w2jKDSuDCndw8erH4Nk+8OXv4XhOxQaGKXNPu/mJDQ8t1iZ4MqkNDV2JiEirVrlPzumrqypfO51O8PFjXsBw5iY8SUx5HlccXswD2Qtpn58G696seENIp4pQ4yiHC//keVdnaXY0dKWhKxGRNs+9ynomc/dm8EJAOtf9/BlsX1BRXb1SZfFRhZwmU9vvb/XoiIhIm+apmnrln/elGfw8YjZTL/0LbHwb1v8DctNPVljfmwIdepD97c/g4+uxmnr2K6+Aw0nkvfc02jPJSQo6IiLSptVUZb3yPMFRMGZqxbDV8qcAAzBh/wrYv4L2llCObHCS4zxOxD0Puu5x6s7O0jQ0dKWhKxERqY3T5+QsfhRWvwh+QVBWBIDTblDaLpGAW18m+8Nv3MpXSP3R0JWIiEh98TTxOPnP4B9ScbzPRDi2D8vhLQQUr4GXhhNwyEbsHZMJu/POpm17G6egIyIiciZOh+eJx5WvnQ64/t+wbwUFs39FcGwxwR1LIfdNeGU1u32HciQ8iaRf3eJ269WfvFex6eGvJjfCg7Q9CjoiIiJnUtNmgKeEn+yvtpDzXTh+YeGEd8sjrE85luzt9GQ7HdM/4ED2N8RNeQkCwoCq5SukYWjDQBERkXpw6sTjHv/bjmPMo+z6uD2FwZdBaGcCfezEZS3A/nRv+PbP/PDB6241uqT+qUdHRESkjk4NOZUTjyv/PPDCi0TcexeRv+zI8QWPElh6CL57mkEOKx3PH0+nCRc3ZdNbvWbXo/Pyyy/TtWtX/P39SUpKYu3atTVe//zzz9O7d28CAgKIi4vj97//PSUlJY3UWhEREcDh9Li6KvKuuyqWljsNSLiWwGlbWXAogaySIPysDjplL4bnB8DiP7Fy8X9ISUnxePvKMhZy9ppVj84HH3zA1KlTmT9/PklJSTz//PMkJyezY8cOoqKi3K5/9913mT59Om+++SajRo1i586d/OY3v8EwDObNm9cETyAiIm1RTZsBnhp+Vn/6ATvzwtlTFEEX/ywu7lVEcPF+WP0S51r8+MHZj9Wl9zPykmtc7zm1VpecPa/30SkvLyczM5Pjx48TGRlJ+/bt69yYpKQkRowYwUsvvQRU1B+Ji4vj3nvvZfr06W7X33PPPWzfvp2lS5e6jv3hD39gzZo1rFixola/U/voiIhIYzh14vHIayedeP02l106hL72NfBzxQiGHSuHO15Cp+ueJuXHvW4FSaVCg1QvLygo4NVXX2Xs2LGEhITQtWtX+vbtS2RkJF26dOH222/nhx9+8KrBZWVlrF+/nvHjx59snMXC+PHjWb16tcf3jBo1ivXr17uGt/bu3cvChQu57LLLqv09paWl5OfnV/kRERFpSKeHHICR105i1HU3svCrTawOmwI3fw6dR+GDg06HvsLx/ECCl/2RS8/tq5BTB7Ueupo3bx5PPvkkPXr0YOLEifzxj3+kY8eOBAQEcPToUVJTU/n++++55JJLSEpK4sUXXyQ+Pr7WDcnJycHhcBAdHV3leHR0ND/99JPH99xwww3k5OQwevRoTNPEbrdzxx138Mc//rHa3zN79mwef/zxWrdLRESkrkyn0+PqqsrXptMJ3S+o+Nm3grS37qQb6QwjFdbcCcXL+Xu3m8gP6+5WqgIq6nU5TJOHusU2wtO0LLUeupo0aRKPPvoo/fv3r/G60tJS/vGPf+Dn58dvf/vbWjfk0KFDdOrUiVWrVjFy5EjX8YcffpiUlBTWrFnj9p7ly5fz61//mj//+c8kJSWxe/du7r//fm6//XZmzJhRbftKS0tdr/Pz84mLi9PQlYiINAuVc3K6WDIZ41xFT/YD4DQs/CfyIgpH/Z7fDD7Pdb2noqRtQW2HrppNrauysjICAwP5+OOPueqqq1zHb7nlFnJzc/n888/d3jNmzBjOPfdcnn76adext99+m9/97ncUFhZisZx5ZE5zdEREpLk4deLx2LFjSUlJYeey97imw246HKmYGuLEYFfXCfS+dAbziju0yZADDTRHpyH5+fkxbNiwKhOLnU4nS5curdLDc6rjx4+7hRmr1QpAM8lvIiIitXJ6yAEYO3YsvcZN4sUjo1k//Dno8wssmPTe9xW8Ogrr0lltMuScDa+Xly9dupSlS5eSlZWF0+mscu7NN9/06p5Tp07llltuYfjw4SQmJvL8889TVFTElClTALj55pvp1KkTs2fPBmDixInMmzePIUOGuIauZsyYwcSJE12BR0REpCVwOp0eV1dVvs53OuEX70BmKl9+8iiXZS9nc2g/3lDIqZFXQefxxx9n1qxZDB8+nNjYWAzDqJfGXH/99WRnZzNz5kwyMzMZPHgwixYtck1QTk9Pr9KD8+ijj2IYBo8++igHDx4kMjKSiRMn8uSTT9ZLe0RERBpLTfvknBp+5pVEMLff/6NP8QF2+Hdi3r7Mkz06y2aDxepefBQqKrA7HTXX7WqFvJqjExsby9y5c7npppsaok2NSnN0RESkpTh94rHbROSUubDsSfdK69Udb8Fq+/3tVY9OWVkZo0aN8rpxIiIicnY8ra6q/HNuWmbF68oQs+zEyMbYh1tlyDkbXgWd2267jXfffbfaJdwiIiJSvxym6XHiceVrR+UAzalh57unwVHWZkMOeDl0df/99/Ovf/2LgQMHMnDgQHx9faucb0l1pjR0JSIirdITkRUhx+oHM7KbujX1rkGHrjZv3szgwYMBSE1NrXKuviYmi4iIiJdS5p4MOY6yitdjHyb7xZfAanGrsg6Q/cor4HDWWKC0JfIq6KhUvIiISDN1+pycytcA1mByXngRqFpVPfuVV8h54UUi7ru3KVrcoLzeRyc3N5c33niD7du3A9C/f39++9vfEhoaWm+NExERkbPgaeLxKXN2Isf9Ce67t0rYOTXkeOrpaem8mqOzbt06kpOTCQgIIDExEYAffviB4uJivv76a4YOHVrvDW0omqMjIiKtRi330akMN4avL2Z5eYsMOQ1a62rMmDH07NmT119/HR+fik4hu93Obbfdxt69e/nuu++8b3kjU9AREZG26KcBAzHLyzF8femzZXNTN+esNWitq3Xr1jFt2jRXyAHw8fHh4YcfZt26dd7cUkRERBpJ9iuvuEKOWV5eMRG5lfIq6ISEhJCenu52/MCBA7Rr167OjRIREZGGceqcnD5bNhNxYs5Oaw07Xk1Gvv7667n11lt55plnXDskr1y5koceeohJkybVawNFRESkfniaeFz5Z84LL7Jp306Ck5IYea37d/nqT97DdDoZ9avJjdrmuvIq6DzzzDMYhsHNN9+M3W4HwNfXlzvvvJM5c+bUawNFRESknjicHiceV74+lLaTVR++A1Al7Kz+5D1WffgOo65rWSEHvJyMXOn48ePs2bMHgB49ehAYGFhvDWssmowsIiJy0qmhZuS1k9xeNxcNuuqqNVHQERERqaoy3Fh9fHDY7c0u5EADlICYOnUqTzzxBEFBQUydOrXGa1tSrSsRERGpauS1k1jznw9w2O1YfXyaXcg5G7UOOhs3bqS8vNz1z9VRrSsREZGWbfUn77lCjsNuZ/Un77XYsFProHNqfSvVuhIREWmdqpujA7TIsOPVqqv09HTi4uI89t6kp6fTuXPnOjdMREREGpeniceVf7bUsONV0OnWrRsZGRlERUVVOX7kyBG6deuGw+Gol8aJiIhI4zGdTo8Tjytfm05nUzSrTrwKOqZpeuzNKSwsxN/fv86NEhERkcZX02aAlWFn2bJlWCwWxo4d63ZNSkoKTqeTcePGNVgbz9ZZBZ3K1VaGYTBjxowq++Y4HA7WrFnD4MGD67WBIiIi0nxYLBbXXN1Tw05KSgrLli1rViEHzjLoVK62Mk2TLVu24Ofn5zrn5+fHoEGDePDBB+u3hSIiItJsVIabU8POqSHHU09PU/Jqw8ApU6bwwgsvtIoCntowUERE5OxVhhur1YrD4Wj0kFPb72+vqpfHx8fz0UcfuR1/8803+ctf/uLNLUVERKQFGTt2rCvkWK3WZteTU8mroPPaa6/Rp08ft+P9+/dn/vz5dW6UiIiING8pKSmukONwOEhJSWnqJnnk1aqrzMxMYmNj3Y5HRkaSkZFR50aJiIhI83X6nJzK10Cz69nxKujExcWxcuVKunXrVuX4ypUr6dixY700TERERJofTxOPPU1Qbi68Cjq33347DzzwAOXl5Vx44YUALF26lIcffpg//OEP9dpAERERaT4q98k5PcxUvnY2s00FvVp1ZZom06dP54UXXqCsrAwAf39/pk2bxsyZM+u9kQ1Jq65ERERantp+f3sVdCoVFhayfft2AgICiI+Px2azeXurJqOgIyIi0vLU9vvbq6GrSsHBwYwYMaIutxARERFpMHUKOtu2bSM9Pd01fFXpiiuuqFOjREREROqDV0Fn7969XH311WzZsgXDMKgc/aos9Knq5SIiItIceLVh4P3330+3bt3IysoiMDCQrVu38t133zF8+HCWL19ez00UERGRluLptAzm7cv0eG7evkyeTmvc/fa8CjqrV69m1qxZREREYLFYsFgsjB49mtmzZ3PffffVdxtFRESkhbAaBnPTMt3Czrx9mcxNy8R6YvSnsXg1dOVwOFwFPSMiIjh06BC9e/emS5cu7Nixo14bKCIiIi3H1K4xAMxNy3S9rgw5D3eLcZ1vLF4FnYSEBH788Ue6detGUlISc+fOxc/Pj9dee43u3bvXdxtFRESkBTk17Dy/7zBlptkkIQe8HLp69NFHXROQZ82aRVpaGmPGjGHhwoW88MIL9dpAERERaXmmdo3BzzAoM038DKNJQg54EXTKy8uZO3cuCQkJAPTs2ZOffvqJnJwcsrKyXCUhREREpO2aty/TFXLKTLPaCcoN7ayDjq+vL5s3b3Y73r59e9fychEREWm7Tp2Tk37BIB7uFuNxgnJj8Gro6sYbb+SNN96o77aIiIhIC+dp4vHUrjFNFna8moxst9t58803WbJkCcOGDSMoKKjK+Xnz5tVL40RERKRlcVQz8bjytcP7Epte8SropKamMnToUAB27txZ5ZyGr0RERNquh7rFVnuuKSYk1zrobN68mYSEBCwWC8uWLWvINomIiIjUi1rP0RkyZAg5OTkAdO/enSNHjjRYo0RERETqQ62DTlhYGGlpaQDs27cPp9PZYI0SERERqQ+1Hrq69tprGTt2LLGxsRiGwfDhw7FarR6v3bt3b701UERERMRbtQ46r732Gtdccw27d+/mvvvu4/bbb3fVuxIRERFpjs5q1dWECRMAWL9+Pffff7+CjoiIiHhkmg5yc3+gtDQLmy2KsLARGIbnkaCG5NXy8n/84x/13Q4RERFpJbKyFrNz1yxKS09uDmizxdArfiZRUcmN2havdkYWERER8SQrazFbUu+uEnIASksPsyX1brKyFjdqexR0REREpF6YpoOdu2YBnnY/rji2c9cTmKaj0dqkoCMiIiL1omJOTk21rExKSzPIzf2h0dqkoCMiIiL1orQ0q16vqw9eB53vv/+eG2+8kZEjR3Lw4EEA/v3vf7NixYp6a5yIiIi0HDZbVL1eVx+8CjqffPIJycnJBAQEsHHjRkpLSwHIy8vjqaeeqtcGioiISMsQFjYCmy0GqK7At4HNFktY2IhGa5NXQefPf/4z8+fP5/XXX8fX19d1/LzzzmPDhg311jgRERFpOQzDSq/4mZWvTj8LQK/4GY26n45XQWfHjh2cf/75bsdDQ0PJzc2ta5tERESkhYqKSmZAwsvYbNFVjttsMQxIeLnR99HxasPAmJgYdu/eTdeuXascX7FiBd27d6+PdomIiEgLFRWVTGTk+Ja7M/Ltt9/O/fffz5tvvolhGBw6dIjVq1fz4IMPMmPGjPpuo4iIiLQwhmElPPzcpm6Gd0Fn+vTpOJ1OLrroIo4fP87555+PzWbjwQcf5N57763vNoqIiIh4xas5OoZh8Kc//YmjR4+SmprK//73P7Kzs3niiSfq3KCXX36Zrl274u/vT1JSEmvXrq3x+tzcXO6++25iY2Ox2Wz06tWLhQsX1rkdIiIi0vJ51aOTnp5OXFwcfn5+9OvXz+1c586dvWrMBx98wNSpU5k/fz5JSUk8//zzJCcns2PHDqKi3Nfcl5WVcfHFFxMVFcXHH39Mp06d2L9/P2FhYV79fhEREWldDNM0PRWkqJHVaiUjI8MtfBw5coSoqCgcDu9qWCQlJTFixAheeuklAJxOJ3Fxcdx7771Mnz7d7fr58+fz9NNP89NPP1VZ5n428vPzCQ0NJS8vj5CQEK/uISIiIo2rtt/fXg1dmaaJYbhvBlRYWIi/v783t6SsrIz169czfvz4k42zWBg/fjyrV6/2+J4vvviCkSNHcvfddxMdHU1CQgJPPfVUjUGrtLSU/Pz8Kj8iIiJydkynScmeXI5vyqJkTy6m86z7TRrFWQ1dTZ06FaiYozNjxgwCAwNd5xwOB2vWrGHw4MFeNSQnJweHw0F0dNV199HR0fz0008e37N3716+/fZbJk+ezMKFC9m9ezd33XUX5eXlPPbYYx7fM3v2bB5//HGv2igiIiJQnJpD7oI9OPLKXMesoX6ETexBQEJEE7bM3VkFnY0bNwIVPTpbtmzBz8/Pdc7Pz49Bgwbx4IMP1m8La+B0OomKiuK1117DarUybNgwDh48yNNPP11t0HnkkUdcgQ0qur7i4uIaq8kiIiItWnFqDkfe3u523JFXxpG3t9Phxr7NKuycVdBZtmwZAFOmTOGvf/1rvc5piYiIwGq1cvjw4SrHDx8+TExMjMf3xMbG4uvri9V6cgOivn37kpmZSVlZWZUgVslms2Gz2eqt3SIiIm2F6TTJXbCnxmtyF+zFv18HDEt19a4al1dzdP7xj3/U+8RdPz8/hg0bxtKlS13HnE4nS5cuZeTIkR7fc95557F7926cTqfr2M6dO4mNjfUYckRERMR7pWl5VYarPHHklVKaltdILTqzWvfoTJ06lSeeeIKgoKAqQz+ezJs3z6vGTJ06lVtuuYXhw4eTmJjI888/T1FREVOmTAHg5ptvplOnTsyePRuAO++8k5deeon777+fe++9l127dvHUU09x3333efX7RUREpHrOgppDztle1xhqHXQ2btxIeXm565+r42k1Vm1df/31ZGdnM3PmTDIzMxk8eDCLFi1yTVBOT0/HYjnZCRUXF8fixYv5/e9/z8CBA+nUqRP3338/06ZN87oNIiIi4pmlXe1GS2p7XWPwah+d1kT76IiIiNSO6TTJ/MvaGoevrKE2YqaNaPA5Og26j05xcTHHjx93vd6/fz/PP/88X3/9tTe3ExERkRbAsBiETexR4zVhE7s3m4nI4GXQufLKK/nXv/4FVNSaSkxM5Nlnn+XKK6/k1VdfrdcGioiISPMRkBBBhxv7Yg2tOjxlDbU1u6Xl4GWtqw0bNvDcc88B8PHHHxMTE8PGjRv55JNPmDlzJnfeeWe9NlJEREQaj9NpkrErl6L8UoJCbMTGh2E5pZcmICEC/34dKE3Lw1lQhqWdH7Zuoc2qJ6eSV0Hn+PHjtGvXDoCvv/6aa665BovFwrnnnsv+/fvrtYEiIiLSePZszOL7D3ZRlFvqOhYUZmPM9fH0GHKyxqVhMfDvEdYELTw7Xg1d9ezZk88++4wDBw6wePFiLrnkEgCysrI0oVdERKSF2rMxi0V/S60ScgCKcktZ9LdU9mzMaqKWec+roDNz5kwefPBBunbtSlJSkmtDv6+//pohQ4bUawNFRESk4TmdJt9/sKvGa1Z8uAtnMy3eWR2vhq5++ctfMnr0aDIyMhg0aJDr+EUXXcTVV19db40TERGRxpGxK9etJ+d0hcdKydiVS6fe4Y3UqrrzKugAxMTEuNWgSkxMrHODREREpPEV5dcccs72uubCq6ErERERaV2CQmpX8Lq21zUXCjoiIiJCbHwYQWE1h5jg8Iql5i2Jgo6IiEgb43A6+CHzBxbuXcgPmT/gcDqwWAzGXB9f4/tGXxdfZT+dlsDrOToiIiLS8izZv4Q5a+dw+Phh17HowGimJ05n/JDxTPi/BLd9dILDbYy+ruo+Oi1FrYt6Tp06tdY3nTdvntcNamwq6ikiIm3Fkv1LmLp8KiZVv/oNKnpp5l0wj/Fdxp9xZ+TmoLbf37Xu0dm4cWOV1xs2bMBut9O7d28Adu7cidVqZdiwYV42WURERBqKw+lgzto5biEHwMTEwOAva//CuLhxWC3WFrWEvCa1DjrLli1z/fO8efNo164d//znPwkPr/gXcezYMaZMmcKYMWPqv5UiIiJSJxuyNlQZrjqdiUnm8Uw2ZG1gRMyIRmxZw/JqMvKzzz7L7NmzXSEHIDw8nD//+c88++yz9dY4ERERqR/Zx7Pr9bqWwqvJyPn5+WRnu/+LyM7OpqCgoM6NEhEREe85nCZr046SVVBCVDt/Eru1JzIwslbvre11LYVXQefqq69mypQpPPvss67dkNesWcNDDz3ENddcU68NFBERkdpblJrB4wu2kZFX4joWG+rPjF/0JjowmqzjWR7n6RgYRAdGMzRqaGM2t8F5NXQ1f/58Lr30Um644Qa6dOlCly5duOGGG5gwYQKvvPJKfbdRREREamFRagZ3vr2hSsgByMwr4e53fiQ55v+Ak6usKlW+npY4DavF2jiNbSS1Xl7uSVFREXv27AGgR48eBAUF1VvDGouWl4uISGvgcJqM/su3biGnkgHEhPrz+CQnc3/4S5WJyTGBMUxLnMb4LuMbqbV1V+/Lyz0JCgpi4MCBdbmFiIiI1IO1aUerDTkAJpCRV0I7x7ksvnYxG7I2kH08m8jASIZGDW11PTmVvA4633//PX/729/Ys2cPH3/8MZ06deLf//433bp1Y/To0fXZRhERETmDrILqQ87p11kt1la1hLwmXs3R+eSTT0hOTiYgIICNGzdSWlqxTXReXh5PPfVUvTZQREREziyqnX+9XtdaeBV0/vznPzN//nxef/11fH19XcfPO+88NmzYUG+NExERkapM08GxY/8jM/MLjh37H6bpACCxW3tiQ/2prlCDQcXqq8Ru7Rutrc2BV0NXO3bs4Pzzz3c7HhoaSm5ubl3bJCIiIh5kZS1m565ZlJZmuo7ZbDH0ip9JVFQyj03sx51vb8CAKgvIK8PPYxP7YW1mNasamlc9OjExMezevdvt+IoVK+jevXudGyUiIiJVZWUtZkvq3VVCDkBp6WG2pN5NVtZiJiTE8uqNQ4kJrTo8FRPqz6s3DmVCQmxjNrlZ8KpH5/bbb+f+++/nzTffxDAMDh06xOrVq3nwwQeZMWNGfbdRRESkTTNNBzt3zQIPG/1VHDPYuesJIiPHMyEhlov7xbjtjNzWenIqeRV0pk+fjtPp5KKLLuL48eOcf/752Gw2HnzwQe699976bqOIiEiblpv7g1tPTlUmpaUZ5Ob+QHj4uVgtBiN7dGi09jVnXgUdwzD405/+xEMPPcTu3bspLCykX79+BAcH13f7RERE2hTTaVKaloezoAxLOz9s3UIpLc2q1Xtre11bUuugM3Xq1FrfdN68eV41RkREpC0rTs0hd8EeHHllrmPWUD+MZFut3m+zRTVU01qsWgedjRs3Vnm9YcMG7HY7vXv3BmDnzp1YrVaGDRtWvy0UERFpA4pTczjy9na34468MswP/fGbEEWZMxvP83QMbLYYwsLaxiaAZ6PWQWfZsmWuf543bx7t2rXjn//8J+Hh4QAcO3aMKVOmMGbMmPpvpYiISCtmOk1yF+yp9ryBhaifJvNzr+ehmsXjveJnYBits4xDXXhV1LNTp058/fXX9O/fv8rx1NRULrnkEg4dOlRvDWxoKuopIiJNrWRPLjmvbznjdcbkbNLynz1tH51YesXPICoquSGb2Ow0aFHP/Px8srOz3Y5nZ2dTUFDgzS1FRERaPafTJGNXLkX5pQSF2IiND8NiMXAWlJ35zUC4YzQdR115YhVWFjZbFGFhI9STUwOvgs7VV1/NlClTePbZZ0lMTARgzZo1PPTQQ1xzzTX12kAREZHWYM/GLL7/YBdFuaWuY0FhNsZcH0+nEL9a3cPSzg/DsBIefm5DNbPV8SrozJ8/nwcffJAbbriB8vLyihv5+HDrrbfy9NNP12sDRUREWro9G7NY9LdUt+NFuaUs+lsqE27vT2CoX5XVVqezhtqwdQttyGa2Sl7N0alUVFTEnj0Vk6d69OhBUFBQvTWssWiOjoiINCSn0+Rff1xVpSfndMHhNn45qRfH3v2p2ms63NiXgISIhmhii9Sgc3QqBQUFMXDgwLrcQkREpFXL2JVbY8gBKDxWSq7Nhw439vWwj46NsIndFXK85HXQWbp0KUuXLiUrKwun01nl3JtvvlnnhomIiLQ0DqeDDVkbyD6eTWRgJEOjhlKUXxFyDlmd+JvQ3um5nnZRfimdRsTg36+D287IRhutU1UfvAo6jz/+OLNmzWL48OHExsZiGPoARESkbVuyfwlz1s7h8PHDrmPRgdHcHDqN/wY62ObnoGu5hV8W+WHg/r0ZFFKx+7FhMfDvEdZYzW71vJ6M/NZbb3HTTTfVd3tERERanCX7lzB1+VTMUzbyM50+HEjvz8ycQvCrWFUV7DRw4P7lGxxesdRc6p9XQaesrIxRo0bVd1tERERaHIfTwZy1c1whxzTBXjCA0qzLMMsrqgeE+B3lyiOxxDg8D1uNvi4ei4anGoTnf+NncNttt/Huu+/Wd1tERERanA1ZG1zDVY6SjhTv/z9KDk7GLA/H8MnFv+O7OLvPZfS1gQSFVS3OGRxuY8L/JdBjiIpxNhSvenRKSkp47bXXWLJkCQMHDsTX17fKeVUvFxGR1sjhNFmbdpSsghKi2vmT2K092cezcdqDKctKpjxvGGABowy/Din4dfgOw1Kx35yjay43P3Wpx52RpeF4FXQ2b97M4MGDgYr6VqfSxGQREWmNFqVm8PiCbWTklbiOxYTY6HUOFO15EJz+APiEbMIW9RUW37wq748MjMRiMejUO7xR293WeRV0Tq1kLiIi0totSs3gzrc3cPoOu5n5pWRuA/DH4v8z/tFfYA1Mr3KNgUF0YDRDo4Y2VnPlFHXaMFBERKS1czhNHl+wzS3knKpdSAZ0fAXDMKtcV7mMfFriNKwWFd5sCl4HndzcXN544w22b98OQL9+/bj11lsJDVUdDhERaXlM0+GxKvjatKNVhqs8KciP5aGL/h+fpr/sto/OtMRpjO8yvqGbL9XwKuisW7eO5ORkAgICXNXLn3vuOZ566im+/vprhg5V95yIiLQcWVmL2blrFqWlma5jNlsMveJnsj0jvlb3OMeWyOJrr3DbGVk9OU3Lq6KeY8aMoWfPnrz++uv4+FRkJbvdzm233cbevXv57rvv6r2hDUVFPUVE2rasrMVsSb0bThucKigL5su9l7DswAU4avFN+d7t5zKyR4eGaaS4adCinuvWrasScgB8fHx4+OGHGT58uDe3FBERaXSm6WDnrlmcGnJK7X4sSR/LV/vGU2wPAMDPx6DM7jntGEBMaMVSc2l+vAo6ISEhpKen06dPnyrHDxw4QLt27eqlYSIiIg2tYk5OxXBVqcOX5QdG81XaeArKK77LOrc7wC97fUHHuGk89FkhwGmTjSs8NrEfVu2H0yx5FXSuv/56br31Vp555hlXKYiVK1fy0EMPMWnSpHptoIiISH0wnaZbVfDS0izKHL6k/HweC9PGk19WMQQSFZDNlT0XkhizAYth0r9rHq/eOMJ9H51Qfx6b2I8JCbFN9VhyBl4FnWeeeQbDMLj55pspL6/Y8dHPz48777yTOXPm1GsDRURE6qo4NYfcBXtw5JW5jtlDfFnQw5e/b5tJXmnFiuEI/yNM7LGIkbE/YLU4XdfabFFMSIjl4n4xbjsjqyenefNqMnKl48ePs3v3bgzDoEePHgQGBtZn2xqFJiOLiLRuxak5HHl7u+t1OSb/pZx/UUrWiYGo9v5Hmdh9MaM6rsHnlIADBjZbDOeNSsEwtHqqOWnQycgAb7zxBs899xy7du0CID4+ngceeIDbbrvN21uKiIjUK9NpkrtgDwB2TL6inLco5fCJgBOFwfXts0kY+hQ+FgeeZuD0ip+hkNOCeRV0Zs6cybx587j33nsZOXIkAKtXr+b3v/896enpzJo1q14bKSIiciZOp+lWMLMsLY+SvFIWnejByTgRZDpgcDM2foEvtqPtMKJnk5b/rId9dGYQFZXcVI8k9cCroavIyEheeOEFt4nH7733Hvfeey85OTn11sCGpqErEZGWb8/GLL7/YBdFuaWuY7YwP4q6+fNuWparB6c9Bjfix5X4YePk3Jr2v+5NwKAOHndGluapQYeuysvLPe6XM2zYMOx2uze3FBER8cqejVks+luq67Udk81+DtY4iylMq6gg3gGDyfhxBX744z552NLOD8OwEh5+bqO1WxqHxZs33XTTTbz66qtux1977TUmT55c50aJiIjUhtNp8v0HFXNFyzFZ72fntZASlgaWU2iBYCfcgz8fEsx12DyGHGuoDVs31WlsrWrdozN16lTXPxuGwd///ne+/vprzj23Iv2uWbOG9PR0br755vpvpYiItGkOp8NjDamMXbkcyy3hR5udtTY7x0/89b2d0yCpxIcBZVbifC3YgqpfAh42sTuGloi3WrUOOhs3bqzyetiwYQDs2VMxmz0iIoKIiAi2bt1apwa9/PLLPP3002RmZjJo0CBefPFFV+HQmrz//vtMmjSJK6+8ks8++6xObRARkeZjyf4lzFk7x60q+AODp7Hxh0jeCylxBZxQh0FSqQ8JZVasJ3pvMspNSs+NJXD7kSr76FhDbYRN7E5AQkSjPo80rloHnWXLljVkOwD44IMPmDp1KvPnzycpKYnnn3+e5ORkduzYQVRUVLXv27dvHw8++CBjxoxp8DaKiEjjWbJ/CVOXT8U8Zdm36fDnwP4E7t2Ui+koAwuEOQzOLfWh3ykB51T+fTsQc0UPt52R1ZPT+nk1R+dUK1eupLS09MwX1sK8efO4/fbbmTJlCv369WP+/PkEBgby5ptvVvseh8PB5MmTefzxx+nevfsZf0dpaSn5+flVfkREpPlxOB3MWTvHFXKc9kBKsy6hcPd0SnMuxnQE4ms7xlUEcGuBjQFlPh5DTnB4xVJzw2Lg3yOMwMFR+PcIU8hpI+ocdC699FIOHjxY54aUlZWxfv16xo8f7zpmsVgYP348q1evrvZ9s2bNIioqiltvvbVWv2f27NmEhoa6fuLi4urcdhERqRuH02T1niN8vukgq/ccweE02ZC1gcPHD+O0B1Ny+FKKdk+j7MiF4PTHYsvEv+O72LrN5dJL/LF4CDiVRl8Xj0Whps3yemfkSnWoIFFFTk4ODoeD6OjoKsejo6P56aefPL5nxYoVvPHGG2zatKnWv+eRRx6pMrE6Pz9fYUdEpAktSs1wK5YZG+rPRcOyKMmcSHluIpi+AFhsB/GL+BafdtswjIrvH0fXXCb833C3fXSCw22Mvi6eHkOqn/ogrV+dg05TKSgo4KabbuL1118nIqL2E8lsNhs2m60BWyYiIrW1KDWDO9/ewOl/Zc7IK+Htb9sB5wFg8U/HFrEUa/AOjNM6ZyIDI+nRPYpugyLddkZWT47UOej87W9/c+uF8UZERARWq5XDhw9XOX748GFiYmLcrt+zZw/79u1j4sSJrmNOZ0UhNh8fH3bs2EGPHj3q3C4REWkYDqfJ4wu2uYWckwysAQewRXyNJWiXW8AxMIgOjGZo1FAALBaDTr3DG7LJ0gLVeY7ODTfcQFBQUJ0b4ufnx7Bhw1i6dKnrmNPpZOnSpa56Wqfq06cPW7ZsYdOmTa6fK664gnHjxrFp0yYNR4mINBOm6eDYsf+RmfkFx479D9N0ALA27WiV4SpPDJ88rMG7sJyWcowTc3KmJU7DalGZBqme1z06S5cuZenSpWRlZbl6UirVtEqqJlOnTuWWW25h+PDhJCYm8vzzz1NUVMSUKVMAuPnmm+nUqROzZ8/G39+fhISEKu8PCwsDcDsuIiJNIytrMTt3zXIrlnlOlxl8vN69t/509oIEJnV5lG+zX3fbR2da4jTGdxlfw7tFvAw6jz/+OLNmzWL48OHExsZinN6f6KXrr7+e7OxsZs6cSWZmJoMHD2bRokWuobH09HQsljp3QomISCPIylrMltS74ZTBqdzSEL7dNZxlX+Vz3O6o1X3GxY1n2vm/9LgzssiZeFW9PDY2lrlz53LTTTc1RJsalaqXi4jUjek03Tbiw3CyctX5rp6cnwti+Xr/ONZkDMduVvwdOzrwKMXOKPJLPBeDNoCYUH9WTLsQqyYVy2katHp5WVkZo0aN8rpxIiLSOhSn5pC7YM9ppRX8MJJzKSnJZPvRXizedyGpR/q5zvcM20Nyl2UMjtpCXtAbPPRZIUCVScmVseaxif0UcqROvOrRmTZtGsHBwcyYMaMh2tSo1KMjIuKd4tQcjry93e24A5OFodt5z2mSXlCxMMTAydDoH0nusoweYftc1/bv9xybckZ43EfnsYn9mJAQ2+DPIS1Tg/bolJSU8Nprr7FkyRIGDhyIr69vlfPz5s3z5rYiItJCmE6T3AV7qhwrxeQrynmPUg7mnQOAn6WUMef8j4s7Lycy8IjbfWy2KCYkxHJxvxjWph0lq6CEqHb+JHZrr54cqRdeBZ3NmzczePBgAFJTU6ucq6+JySIi0jw4nabbRnxlaXmu4apCTD6ljI8o4+iJAahQYFyXZYzrtphgv+Me7mpgs8UQFjYCAKvFYGSPDo30RNKWeBV0GqOSuYiINL09G7PcSisEhdkYe240GTj4D+UspIzKKBOFwST8+AV+2Is7ccjvOBUzbtxn4PSKn4FhaOWUNKwWWwJCREQa1p6NWSz6W9VeeycmmwuP886KXezyObmHWjcsTMaP8fjiUzmVOGs4fSKfJi3/Wbd9dHrFzyAqKrlRnkPaNq+DTm5uLm+88Qbbt1dMROvXrx+33noroaGh9dY4ERFpGk6nyfcf7HK9LjZMtvjZ2eTnIM9a0TtjAKPw4Vr8GI7VrYK4NdRGTP+r6WhcSW7uD5SWZmGzRREWNkI9OdJovAo669atIzk5mYCAABITEwF47rnneOqpp/j6668ZOnRovTZSREQahsPp8LgRX8auXIpySzlsdbLRz852Pwf2EznG3wkDyny4xOnDpYF+1d47bGJ3DIsBWAkPP7dxHkjkNF4tLx8zZgw9e/bk9ddfx8enIivZ7XZuu+029u7dy3fffVfvDW0oWl4uIm3Vkv1LmLN2jltphQeHTSN9Uyf+uWo/B08Znop0GAwt9aFvmRXfE703EyZ0JnD7kdP20bERNrE7AQkRjfcw0ubU9vvbq6ATEBDAxo0b6dOnT5Xj27ZtY/jw4Rw/7mmGffOkoCMibdGS/UuYunwq5imThJ32YOzHzqUsNxHTXvHfQ4sJvcqtDCm10slhcRXTrHTV74fQMT7MbWdkQ0vDpYE16D46ISEhpKenuwWdAwcO0K5dO29uKSIiDcDhNN32pwEnc9bOwcTENMFZ3JmyY6Ow5ydQ+bVg9SlitL09/fINgk3PoSU4vGKpuWEx8O8R1mjPJHI2vAo6119/PbfeeivPPPOMqxTEypUreeihh5g0aVK9NlBERLyzKDXD447DN15QTmbhEez5wyk7OhJnaSfXeWvAPnzDV+ETspUbOr/C7g9LPN0agNHXxWNRz400c14FnWeeeQbDMLj55pux2yuKsfn6+nLnnXcyZ86cem2giIicvUWpGdz59gZOn5uQkVfCs18dxul4BBxBFQeNcnxDNuEbvhprwCHXtY6uuUz4v+Fu++gEh9sYfV08PYZENcKTiNSNV3N0Kh0/fpw9eyq2AO/RoweBgYH11rDGojk6ItLaOJwmo//ybZWeHE8M36P4hf8P39B1GD7ucyvfTH6TETEjPO6MrJ4caWoNOkenUmBgIAMGDKjLLURExEum6fC4P83atKNnCDkmttiP8Q3dgGG4/13XwCA6MJqhURVbhVgsBp16hzfQU4g0LK+DztKlS1m6dClZWVk4nc4q59588806N0xERKqXlbWYnbtmedhxeCabf+55hncbOAr74he2HgOjysqrylVV0xKnYbVoUz9p+bwKOo8//jizZs1i+PDhxMbGqpCniEgjyspazJbUuzm1fpTTNPjfgUieWrmVbUftZ7yHvSCBO/rM4tP0l9320ZmWOI3xXcY3RNNFGp1Xc3RiY2OZO3cuN910U0O0qVFpjo6INFem03TbnwbDycpV57t6cgrKgvj+4EiWHziPIyUV1b8NnPj5+FBqd3q8rwHEhPqzYtqFgNPjzsgizV2DztEpKytzLSsXEZH6V5yaQ+6CPaftOOyHkZxLaWkm+/PPYWn6+azJHIbd6QtAkG8R53daxQVxK7F2eIaHPisEPNUNh8cm9sN6ojzDiJgRjfNQIk3Aqx6dadOmERwczIwZMxqiTY1KPToi0twUp+Zw5O3tbsfLMVkYup3/UM6evG6u453bHeCizt+RGLMBP2s5AP37PcemnBEe99F5bGI/JiTENvyDiDSgBu3RKSkp4bXXXmPJkiUMHDgQX1/fKufnzZvnzW1FRNo802mSu2BPlWM5OPmcMj6nnKN55wBgNewMj97EhZ2/o0foPk6fKmmzRTEhIZaL+8W47Yxs1dJwaUO8CjqbN29m8ODBAKSmplY5p4nJIiK142l/mrK0PBx5ZZiYbMbBJ5SRgh3Hifd0wOD8LksZ03UpobYCD3c1sNliCAurGI6yWgxG9ujQaM8k0tx4FXSWLVtW3+0QEWlT9mzMcttxOCjMxtDhEXxLGV9Qxl5OTiYehJVr8GMsPhQXn8MhWwEVM27cZ+D0ip+BYWhCsQicRdBJT0+nc+fOtb7xwYMH6dSp05kvFBFpY/ZszGLR3072hpuYHLQ6+bGsgD//kIv9RMe4DbgEX67Bj3hOBpd2WcPpE/k0afnPethHZwZRUcmN9SgizV6tg86IESO46qqruO222xgxwvMM/by8PD788EP++te/8rvf/Y777ruv3hoqItKSOJwOj8u2nU6T7z/YBUCxYbLVz8GPfnaOWk/2zHTDwlX4cTG+hOA+HcAaaiOm/9V0NK70uDOyiJxU66Czbds2nnzySS6++GL8/f0ZNmwYHTt2xN/fn2PHjrFt2za2bt3K0KFDmTt3LpdddllDtltEpNlasn8Jc9bOcduIb3ridPqWDGNvQTEbAuz85Odw9d74mtCnzMrAMh+GWiwkBflWc3cIm9gd48TS8PDwcxv4aURatrNeXl5cXMx///tfVqxYwf79+ykuLiYiIoIhQ4aQnJxMQkJCQ7W1QWh5uYjUpyX7lzB1+dQqZRUAcPpiL0gguvDX7Ms/eS7KbjCozIe+ZVZsp/TeTJjQmcDtR07bR8dG2MTuBCRENPhziDR3tf3+rlP18tZAQUdEvOFwmm7LtsFJ8ifJVXpynGUdKDuWhD1vGKYjCACLCb3LrQwptdLRYXHVlzrVVb8fQsf4MLedkQ0tDRcBGql6uYhIW7QoNcPjRnw3XlDO4eOHMU0L9oJ+lB9LwnE83nWN4ZOLX9gP/F/WFdiOV3//4PCKpeaGxcC/R1gDPolI66egIyJyFhalZnDn2xtOH5giM6+E55ZuxWK7hPLc4ZiOyr9hOrEG78AvbA3W4B0YhklcwgSyPvOr9neMvi4ei3puROqFgo6ISC05nCaPL9jmFnKgYjcbe2E/KOwPgGEtwDfsB3zD12Lxza1ybdfBHRga3cVtH53gcBujr4unx5CohnsIkTZGQUdExAPTdLgt3V6blltluMqdgSUgDb/2K/Fptw3DcJ521iA6MLpiqXmMlW6DIt12RlZPjkj9UtARETlNVtZidu6a5bYZ30+lfzrjey0+RfiGpGJgnLZncUWAmZY4DaulYq8bi8WgU+/wem27iFRVL0Hn8OHDbNu2zfWzdetWtm/fzuHDh8/8ZhGRZiQrazFbUu+msrSCacKu3O6sODiStZllQPX72wDYCxK4o88sPk1/2W0fnWmJ0xjfZXwDtl5ETlenoDN69Gh27dpFWFgYvXv3pk+fPnz00Ud8+eWXxMfHn/kGIiJNwHSaHpdtm6aDnbtmASbHSkJZdSiRFYeSyDp+cs6MxXDgND3vPmwAMaH+3DHiMu4YcYXHnZFFpHHVKeh07NgRp9PJ7NmzGTt2LAAfffQRiYmJ9dI4EZH6VpyaQ+6CPadtxOdH2MQeFMTsYmV6NCsOXklqTl9MLADYrCUkxmxkdKf/kVvSjvmbbwM8ldOExyb2w3pi1+IRMZ7L5YhI46nzhoFbtmxh5syZFBUV8cQTTzBp0iT27t1bX+1rcNowUKTtKE7N4cjb292O/4yTLyhjoa2E3FKL63h82G5Gd/ofw6M34e9zMhhl+T3HC98Hue2j89jEfkxIiG3YhxARoBE3DBwwYACffvop69atY+bMmRw+fJg1a9aQlJRU11uLiHjF6TTdVjMZQO6CPa5ryjH5DjtfUMZ6HBUHSy2E2vI4r+Mazuu4hpigbI/3n9A/iutGJbntjGzViimRZqfeVl0NHz6chQsXsnLlSv74xz9iGAZLliypr9uLiNTKno1ZbvvTBIXZOH9cJ/zyyjiAgwWUs5Byck8MPhnAufgwER86XvAkDjMLPO6WY2CzxZyoEm4wskeHRnkmEfHeWQWdzz77jKuuuqrGa8477zyWLl3KsmXL6tIuEZGztmdjFov+lup2/EheCfMX7WK7zcGWyt4bIAKDX+DLL/Aj5sR8HDPoAXYW/pGK+OM+C6dX/AwMQ5OKRVqKswo6119/PU8//TT33XdftdeYpolhGIwbN67OjRMROZ3D6fC4msnpNPn+g12u65yY7PdxkurnYLevA/uJUSULkIgPV+LLSHzwOa2gZmSHS7B1DfW4j06v+BlERSU3xmOKSD05q6Dzn//8h1//+tfs3buX559/vso5h8PBv//9b+bMmcNPP/1Un20UEQFgyf4lzFk7x21/mumJ0+lbMoyi3FJyLE62+jnY6men6OS8Yjo4DK4x/Ljc4ksEFg93B2uoDVu3UKIsyURGjnfbGVk9OSItz1kFncsvv5yUlBQmTpxIeno67777LhaLhTfeeIO5c+eSm5tbY2+PiIi3luxfwtTlUzFPmzuTdTyLB5Y8ysXOx1kd7CDT5+R5fyf0LbeSUOZDtMOgo6+FDkGeQw5A2MTuGCcmFBuGlfDwcxvmYUSk0Xi1vPzAgQNcdtllWCwWcnJyKC8v54EHHuCee+5pcUu0tbxcpHlxOE231UzgJPmT5Co9OaZpwVHYm/K8YdgL+lD59zaLCd3tFvqX+dCj3IL1tKGpK6/ujnXD4dP20bERNrE7AQkRjfGIIlIPGmx5eUFBAW+//TaHDx+msLAQwzD43//+x4ABA+rUYBGRRakZPL5gm9v+NDdeUO4KOY6SWMpzh2HPH4zpCHZdZ7Ed5KLirsQXWAkyPS/zDg630fHiLhgXd/G4M7KItD5nFXRmzJjByy+/THh4OE8++SQ33HADd999N+PHj+fLL79kxAjtAioi3lmUmsGdb29wW9SdmVfCc0tTsQaOpjxvGM7SkxvyGdYCfEI34Ru6Hqt/JpdEP03WZ9X/Z230dfGu6uD+PcIa4ClEpLk5q6Dz8ccf8/zzzzN58mSs1opJeW+99RYzZsxg3LhxvPvuu1xxxRUN0lARab0cTpPHF2zzuHONCdgL+2MvTKg4YNjxCd5WEW6Cd2EYTte1XQd3YGh0F7d9dILDbYy+Lp4eQ6IQkbblrILOtm3bMAz37t0nnniCzp07c9111/HMM89wzz331FsDRaR1MU2H22qmtWm5VYar3BlYbAfxDV+Lb8hmDGvxaWcNogOjK5aax1jpNijSbWdki4amRNqkswo6nkJOpdtvv51OnTrx61//WkFHRDzKylrscX+aH4v+dMb3WvyO4Re+BgPjtG38Kv67NC1xmqs6uMVi0Kl3eL22XURapnorAQFw2WWXsXz58vq8pYi0EllZi9mSejeVuw2XOnzZmDWQVYcS2XrECdTc42IvSOCOPrP4NP1lt310piVOY3yX8Q3YehFpqepcvbyl0/JykfpjOk2Pq5lM08HKVedTUpLJrtzurDqUxA+ZQyhx+Lve62PYsZue/+5lADGh/qyYdiHg9Lgzsoi0LY1WvVxEBKA4NYfcBXtO25/Gj7CJPdgbvIOPtg1m1aFEsotP7lUTEZDDqNgfGNVxLekFnXj1x9sATxWm4LGJ/U5UB7cyIkYrPEWkdhR0RKTOilNzOPL29irHjmOyPK+QhW+vYxMO4DIAbNYShkdv4ryOa4gP34vFqIg1kYFHeOoXDl74PqjKxOSYUH8em9iPCQmxiIicLQUdEak1p9N0W81kALkL9lScx2QDDr6inBTKqYwrBiZ92+9gVMe1DI3ajM2nzOP9J/SP4rpRSW47I1u1YkpEvKSgIyK1smdjltv+NEFhNs4f14mMvGIWU85iyjl8ysBTHBYuxZdLsFKc9DFljmzwuFuOgc0Wc6JwpsHIHh0a/oFEpE1Q0BGRM9qzMYtFf0utcqzQMPmhuJC/L9nGz9aT4SUYuAhfLsWX/lhdy7/NgN+zs/CPVMy6cZ+F0yt+hqqDi0i9U9AREQAcTofH1UxOp8n3H+wCoBSTnX4Otvk6SPdxumYKW4EkfEjGl9H4YPOwVDyywyXYuoZ63EenV/wMoqKSG+MxRaSNUdAREZbsX8KctXPc9qeZnjidHkVD2Fh0nO2Bdvb4OnGckmE62S30LbNyh78fMTUs8baG2rB1CyXKkkxk5Hi3nZHVkyMiDUVBR6SNW7J/CVOXT8U8ZTjJNA0OZQdz53vf41NYSnHQyes7OAz6lVnpU24lzGkBIN00iQ6qfsu/sIndXdXBDcNKePi5DfU4IiJVKOiItBEOp+m2mgmczFk7BxMT0wRnaSzleYOx5w/GtIcCUA4EO6FvmQ99y61EOQzXvJtKGeUmxrg4rBsOn7aPjo2wid0JSIhARKQpNLug8/LLL/P000+TmZnJoEGDePHFF0lMTPR47euvv86//vUvUlMrJkkOGzaMp556qtrrRdqqRakZPL5gW5X9aWJD/bnxgnIycssoz78Ae94QnGXRJ99kKca3XSq+IZu4d/992GuouRkcbqPjxV0wLu7icWdkEZGm0qyCzgcffMDUqVOZP38+SUlJPP/88yQnJ7Njxw6ioqLcrl++fDmTJk1i1KhR+Pv785e//IVLLrmErVu30qlTpyZ4ApGm46kquGFYWZSawZ1vb3Bb1J2RV8IzXxZiOqadPGjY8Qn+CZ+QjfgE78Cw2AFof2EZWZ/5Vfu7R18X76oO7t8jrJ6fTETEe82q1lVSUhIjRozgpZdeAsDpdBIXF8e9997L9OnTz/h+h8NBeHg4L730EjfffHOtfqdqXUlrUF1V8B49ZnDNP3yr9OS4c2IN3Itv6CZ82qViWN2vfTP5TdpndHHbRyc43Mbo6+LpMcT9LyIiIg2pxdW6KisrY/369TzyyCOuYxaLhfHjx7N69epa3eP48eOUl5fTvn37aq8pLS2ltPTkf6jz8/O9b7RIM3B6VfBKpaWHeS/lZTLy7qjh3U4Cur6MT8BBj2cNDKIDoyuWmsdY6TYo0m1nZIuGpkSkGWs2QScnJweHw0F0dHSV49HR0fz000+1use0adPo2LEj48ePr/aa2bNn8/jjj9eprSKNraaq4Dt3zeLUkFNi9+PH7AR+ODyEzdkJZ7izhfIj4/A5520MjCorryonHE9LnOaqDm6xGHTqHV7fjyci0mCaTdCpqzlz5vD++++zfPly/P39q73ukUceYerUqa7X+fn5xMXFNUYTRbxSU1Xwkk67KS3NpNThy5bs/qw9PIQt2f0pc1Y/n+Z09oIE7ugzi0/TX3bbR2da4jTGd6n+Lw4iIs1dswk6ERERWK1WDh8+XOX44cOHiYmJqfG9zzzzDHPmzGHJkiUMHDiwxmttNhs2m63O7RVpDJ6qggM48so49PY2Vo/M5Iu0W/gxO4FSx8n/XUcFZDMiZgPDozfx1w2/I7csDE+73BhUVAe/Y8Rl3DHiCo87I4uItGTNJuj4+fkxbNgwli5dylVXXQVUTEZeunQp99xzT7Xvmzt3Lk8++SSLFy9m+PDhjdRakfp1pqrglcowWYudb7GzgnKOrw4ChgEQ4X+E4TEbSYzZQOd2P2OcyDU39P2EV3+8DfBUYQoem9jvRHVwKyNiRjTkY4qINLpmE3QApk6dyi233MLw4cNJTEzk+eefp6ioiClTpgBw880306lTJ2bPng3AX/7yF2bOnMm7775L165dycysWHESHBxMcHBwkz2HyNmoqSq4X14Z5ZisOxFuvqecwlPeG4XBsG6rGBq1im4h+13h5iSDUZ2zGZAwmFlf/lRl9VVMqD+PTezHhITYBn0+EZGm1KyCzvXXX092djYzZ84kMzOTwYMHs2jRItcE5fT0dCwWi+v6V199lbKyMn75y19Wuc9jjz3G//t//68xmy7iFU9VwQGKcktZ9eVetgQ5WEgZBaeci8BgHL5chA/9sGIMGcjOwvepqSp4VFQnLunf0W1nZKtWTIlIK9es9tFpCtpHRxqDp8rgBhb+9cdVVXpySgyT3T4Odvo52OdzsoBmewwuwIeL8GUAViynzLeJuH0A+e3WeNhHJ1ZVwUWk1Wpx++iItFbVVQa/L3o6RbkWjhsmu3wd7PR1kO7jxHlKJ0tv08Jtho1EfLB6mEysquAiIjVT0BFpQJ4qgwNk5hUzd8dqjKDh/OzjxDwlw0Q4DHqVWeldbiXBaiExyFdVwUVEvKSgI1JHnqqCWy0GDqfDVRkcwFkehj0/gfKCBJzFnSnEAr5OAKLtBr3KrfQqt9LeeXIeWqYTVQUXEakDBR2ROqiuKvhjE/vRIeJnMnLtlOePxV6QgLOk6saU1oD9JOZ1JKEkmLBTws2pVBVcRKRuFHREvFRTVfA73t5Ah3YOigoeOuWME2vgPnzapeLTLhWLbz5FRwYStvO31f4OVQUXEakbBR2RMzBNh9skX6dp4fEF29xCzqmOFFgBB9agPSfCzTYsPoVVrknrsJme1wWQ8bWpquAiIg1AQUekBllZiz0s244hz/YnMvLOtDODk07951Pg/NltMjKcrAw+/oIkjAssqgouItIAFHSkTauuKjhUhJwtqXdTuQmf3Wlh57GerD88mLWZRUDgGe5u4fK4W3h//5O1qgyuquAiIvVPQUfarJqqgvv3D2fnrlmUO6xsPdKHDVkD2ZQ9gKLyoLP6HePixpPYrYPHfXRUGVxEpOEp6EibVFNV8ANvb2PtyCI+T0tmc3Z/Sh3+rvPtfAsYErWZIVGb+efWX5NXFu5xnk5lVfCKpebjGRc3TpXBRUSagIKOtGq1rQqej8lKylmOnR+wU7YaKquCh9uOMTT6R4ZFbSY+fA8WoyLa3ND3E1758dYTw1InuVcFB6tFlcFFRJqCgo60WmeqCp6Dk++xk0I5G3HgOOW9HS12BnVextDoH+kWku6hKjgMi97MM1e149lldlUFFxFpphR0pFWqrip4en4xzy7eSbqfk1QcVXpiemBhLL6MxYduTtjfew1lZnY1v8HAZovh2qTRXJ1oUVVwEZFmSkFHWrTqqoJ//8EuAExMsqwni2YesVadUdMPKxfgw/n4cg5VdyfuHvEQP2U/TMVglPvgVK/4GRiGFasBI3t0aMCnFBERbynoSItVXVXwe6KmsavAYKd/RbjJOyXcWEzoYrcw0erLBRZfovBcesEaaiOm/9X45gR53EenV/wMoqKSG+7hRESkXijoSLNVXbFMcK8KbpoWHMe7sj8zgYc25lLe7uQeNz4mdCu30KvcSne7FX/TINbXIDLIc8iBk1XBo6KSiYwc77YzsmFoxZSISEugoCPNUk3FMi/uF8WctXNwmhYcRT2wFyRgL+iH6Qh2XetnQo9yK/HlVrqVW/Cj6pyZjHKz1lXBDcNKePi5Dfi0IiLSUBR0pNmprlhm5olimVeOsLBv11jshX3BGXDyAmsRPsHb8W2Xyo07f01YWfU7DasquIhI26CgI03mbItlVh77/AcnMBQAw5qPT7ut+ISkYg1MwzCcAKzp+h+Sd/4W8BxaVBVcRKRtUNCRJlFdscwC/0fJyHPW/GajHN/w/+HTLhVrQDqG4R6LVBVcRERAQUcayNkUywRwmgapmYF8te9HYMAZbm4l6pw1FJQfUVVwERGpkYKO1LvaFMsEk+Pl/mw90pcfs/uzJacfheXB1d+0Cgs39LiPv/30mKqCi4hIjRR0pF7VVCzzyNvbybi0iAV7+/Bj9rXsOtYTh3lymXagz3ESIrazNac3RXbPoaeyWOYdIy6jd0w7VQUXEZEaKeiIV2pbLNOOyRYcrMLOSuykf+UErnGdjw3KZGDEVgZFbqVH2F58LE7WHx5Yq2KZ47uoKriIiNRMQUfO2pmKZZZhsh47y7CzAjv5p8QVKybx7XcyOHIrAyNTiQ7Mcbv/2RTLVFVwERGpiYKOeOSphpTVYq22WGZWXgn/+GoXWf4mKymn8JRzoRiciw/n4cMILOSM+OhEsUxPi8hVLFNEROqPgo64qa6G1LTh0zn4QcUGfeWYHPRxss/HyX4fB1k+VUNLBwwuwIex+DIIK9ZT9rMJUbFMERFpJAo6bdDZ1JCqdLgomz//5326Fv+KfUFODvo4sZ/WuRJlN7jA6sMFhi8JWLF42KxPxTJFRKQxKei0MbWpIeUqlOmwYS/qhb2gH46ieAocwewPsLveF+yEruVWutgtdLFbCTpRLHNAkE81+xGrWKaIiDQuBZ02pKYaUne+vYEHr7SSkVeKvWAk9sK+OIq6c+r/RAyjnG5lNle46eA0XPvWVFKxTBERaU4UdNoIh9M8Yw2pef8txGGfXuWcxS8La/B2fIJ/wifgAMkbHyW4LIzqakipWKaIiDQnCjptxNq0o1WGqzxx2AMAJ9bAffgEb8cneDsWW9Xl3yu7/ofknbdWew8VyxQRkeZEQacNKHc4+d9e9/1q3DmJ6fcKx82D1daQKo7L4pKx/Vj50R4VyxQRkWZPQacVMk2TtJwiVuzO4ftdOazec4TCUvuZ34iFm3r/7ow1pOK7xNBjSLSKZYqISLOnoNNKHCsqY+WeHFbsqgg3B3OLq5wPC/ClxO6gpNzp8f1nW0PKYjFULFNERJo9BZ0WqtTuYP3+Y65gk3ooD/OU0SY/q4VhXcIZHR/BmPgI+ncM5Zttmdz59gbA0zZ9qiElIiKtj2GapqeFOG1Gfn4+oaGh5OXlERIS0tTNqZZpmuw8XMj3u7JZsTuHNXuPUlzuqHJN7+h2jI6PYHR8BEnd2hPo555ja9pH59QaUiIiIs1Zbb+/1aPTTFXOs1mTdpQ1e4+was8RsgpKq1wTEWxjzIkem9E9I4gK8T/jfSckxHJxvxjVkBIRkTZBQaeZME2TXVmFrNl7hP+lHWVt2lGyTws2/r4WErt1YEzPCMb0iqB3dDsM4+wDitViqIaUiIi0CQo6TcTpNPkps4A1aUdYs/coa/cd5WhRWZVr/HwsDIkLI6lbe87t3oGhXcLx99U8GRERkdpS0GkkdoeTbRn5rNl7lDVpR1ibdpT8kqpLvv19KyYQJ3XrQFK39gyKC1OwERERqQMFnQZS7nCy+ec81qZVBJt1+4657WUT5GdleNf2JHZrz7nd2zOgUxh+PpYmarGIiEjro6DTAEzT5Lw537pNHm7n70Ni1/YkdW9PUrcO9O8Ygo9VwUZERKShKOg0AMMw6NcxhLIDuSeCTcVQVN/YEK1uEhERaUQKOg3k+esHE+Lvq7IIIiIiTUhBp4GEBfo1dRNERETaPE0QERERkVZLQUdERERaLQUdERERabUUdERERKTVUtARERGRVktBR0RERFotBR0RERFptRR0REREpNVS0BEREZFWS0FHREREWi0FHREREWm1FHRERESk1VLQERERkVarzVcvN00TgPz8/CZuiYiIiNRW5fd25fd4ddp80CkoKAAgLi6uiVsiIiIiZ6ugoIDQ0NBqzxvmmaJQK+d0Ojl06BDt2rXDMIymbk6zlJ+fT1xcHAcOHCAkJKSpmyPV0OfUMuhzahn0OTV/pmlSUFBAx44dsViqn4nT5nt0LBYL55xzTlM3o0UICQnR/+FbAH1OLYM+p5ZBn1PzVlNPTiVNRhYREZFWS0FHREREWi0FHTkjm83GY489hs1ma+qmSA30ObUM+pxaBn1OrUebn4wsIiIirZd6dERERKTVUtARERGRVktBR0RERFotBR0RERFptRR02qhXX32VgQMHujbDGjlyJF999ZXrfElJCXfffTcdOnQgODiYa6+9lsOHD1e5R3p6OpdffjmBgYFERUXx0EMPYbfbG/tR2ow5c+ZgGAYPPPCA65g+p+bh//2//4dhGFV++vTp4zqvz6l5OHjwIDfeeCMdOnQgICCAAQMGsG7dOtd50zSZOXMmsbGxBAQEMH78eHbt2lXlHkePHmXy5MmEhIQQFhbGrbfeSmFhYWM/ipwFBZ026pxzzmHOnDmsX7+edevWceGFF3LllVeydetWAH7/+9+zYMECPvroI1JSUjh06BDXXHON6/0Oh4PLL7+csrIyVq1axT//+U/eeustZs6c2VSP1Kr98MMP/O1vf2PgwIFVjutzaj769+9PRkaG62fFihWuc/qcmt6xY8c477zz8PX15auvvmLbtm08++yzhIeHu66ZO3cuL7zwAvPnz2fNmjUEBQWRnJxMSUmJ65rJkyezdetWvvnmG7788ku+++47fve73zXFI0ltmSInhIeHm3//+9/N3Nxc09fX1/zoo49c57Zv324C5urVq03TNM2FCxeaFovFzMzMdF3z6quvmiEhIWZpaWmjt701KygoMOPj481vvvnGHDt2rHn//febpmnqc2pGHnvsMXPQoEEez+lzah6mTZtmjh49utrzTqfTjImJMZ9++mnXsdzcXNNms5nvvfeeaZqmuW3bNhMwf/jhB9c1X331lWkYhnnw4MGGa7zUiXp0BIfDwfvvv09RUREjR45k/fr1lJeXM378eNc1ffr0oXPnzqxevRqA1atXM2DAAKKjo13XJCcnk5+f7+oVkvpx9913c/nll1f5PAB9Ts3Mrl276NixI927d2fy5Mmkp6cD+pyaiy+++ILhw4fzq1/9iqioKIYMGcLrr7/uOp+WlkZmZmaVzyk0NJSkpKQqn1NYWBjDhw93XTN+/HgsFgtr1qxpvIeRs6Kg04Zt2bKF4OBgbDYbd9xxB59++in9+vUjMzMTPz8/wsLCqlwfHR1NZmYmAJmZmVX+o1x5vvKc1I/333+fDRs2MHv2bLdz+pyaj6SkJN566y0WLVrEq6++SlpaGmPGjKGgoECfUzOxd+9eXn31VeLj41m8eDF33nkn9913H//85z+Bk/+ePX0Op35OUVFRVc77+PjQvn17fU7NWJuvXt6W9e7dm02bNpGXl8fHH3/MLbfcQkpKSlM3S044cOAA999/P9988w3+/v5N3RypwaWXXur654EDB5KUlESXLl348MMPCQgIaMKWSSWn08nw4cN56qmnABgyZAipqanMnz+fW265pYlbJw1JPTptmJ+fHz179mTYsGHMnj2bQYMG8de//pWYmBjKysrIzc2tcv3hw4eJiYkBICYmxm3VSOXrymukbtavX09WVhZDhw7Fx8cHHx8fUlJSeOGFF/Dx8SE6OlqfUzMVFhZGr1692L17t/7/1EzExsbSr1+/Ksf69u3rGmKs/Pfs6XM49XPKysqqct5ut3P06FF9Ts2Ygo64OJ1OSktLGTZsGL6+vixdutR1bseOHaSnpzNy5EgARo4cyZYtW6r8n/6bb74hJCTE7T8m4p2LLrqILVu2sGnTJtfP8OHDmTx5suuf9Tk1T4WFhezZs4fY2Fj9/6mZOO+889ixY0eVYzt37qRLly4AdOvWjZiYmCqfU35+PmvWrKnyOeXm5rJ+/XrXNd9++y1Op5OkpKRGeArxSlPPhpamMX36dDMlJcVMS0szN2/ebE6fPt00DMP8+uuvTdM0zTvuuMPs3Lmz+e2335rr1q0zR44caY4cOdL1frvdbiYkJJiXXHKJuWnTJnPRokVmZGSk+cgjjzTVI7UJp666Mk19Ts3FH/7wB3P58uVmWlqauXLlSnP8+PFmRESEmZWVZZqmPqfmYO3ataaPj4/55JNPmrt27TLfeecdMzAw0Hz77bdd18yZM8cMCwszP//8c3Pz5s3mlVdeaXbr1s0sLi52XTNhwgRzyJAh5po1a8wVK1aY8fHx5qRJk5rikaSWFHTaqN/+9rdmly5dTD8/PzMyMtK86KKLXCHHNE2zuLjYvOuuu8zw8HAzMDDQvPrqq82MjIwq99i3b5956aWXmgEBAWZERIT5hz/8wSwvL2/sR2lTTg86+pyah+uvv96MjY01/fz8zE6dOpnXX3+9uXv3btd5fU7Nw4IFC8yEhATTZrOZffr0MV977bUq551OpzljxgwzOjratNls5kUXXWTu2LGjyjVHjhwxJ02aZAYHB5shISHmlClTzIKCgsZ8DDlLhmmaZlP3KomIiIg0BM3RERERkVZLQUdERERaLQUdERERabUUdERERKTVUtARERGRVktBR0RERFotBR0RERFptRR0REREpNVS0BEREZFWS0FHREREWi0FHRFp1hYvXoxhGDX+fP311x7fO2XKFB599FGP537zm99w1VVXVTn28ccf4+/vz7PPPlvfjyEiTcSnqRsgIlKT888/n4yMDNfrhIQE7rrrLu666y7XscjISLf3ORwOvvzyS/773//W6vf8/e9/5+6772b+/PlMmTKl7g0XkWZBQUdEmrWAgAACAgIAOHjwIEeOHGHMmDHExMTU+L5Vq1bh6+vLiBEjzvg75s6dy2OPPcb777/P1VdfXS/tFpHmQUFHRFqMjRs3AjB06NAzXvvFF18wceJEDMOo8bpp06bxyiuv8OWXX3LRRRfVSztFpPlQ0BGRFmPDhg3ExcXRoUOHM177+eef89xzz9V4zVdffcXnn3/O0qVLufDCC+urmSLSjGgysoi0GBs2bKhVb8727ds5dOjQGXtoBg4cSNeuXXnssccoLCysr2aKSDOioCMiLUZtg84XX3zBxRdfjL+/f43XderUieXLl3Pw4EEmTJhAQUFBfTVVRJoJBR0RaRFycnI4cOBArYLO559/zpVXXlmr+3bp0oWUlBQyMzMVdkRaIQUdEWkRNmzYAJx5InJWVhbr1q3jF7/4Ra3vHRcXx/Lly8nKyiI5OZn8/Pw6tVVEmg8FHRFpETZu3Eh0dDQdO3as8boFCxaQmJhIRETEWd3/nHPOYfny5eTk5CjsiLQihmmaZlM3QkSkvlxxxRWMHj2ahx9+uKmbIiLNgHp0RKRVGT16NJMmTWrqZohIM6EeHREREWm11KMjIiIirZaCjoiIiLRaCjoiIiLSainoiIiISKuloCMiIiKtloKOiIiItFoKOiIiItJqKeiIiIhIq6WgIyIiIq3W/we4ygSk9bgL2QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHOCAYAAACcvdMVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzIElEQVR4nO3de3iU9Z3//+c9k8yEQDIh5yBHA4IhHAQBg4cYRNBS7ba0uBTRrW5bhYLIFtTValvXRdkubbFA++121SriD3VtPaKIQxQTBTnIsQgYDkKOQCYnMsnM3L8/JhkYIQiayZ2E16NXLnN/7k9m3rmb65oXn8N9G6ZpmoiIiIh0YjarCxARERGJNAUeERER6fQUeERERKTTU+ARERGRTk+BR0RERDo9BR4RERHp9BR4REREpNNT4BEREZFOT4FHREREOj0FHhEREen0FHhExHIrV67EMAxeeeWV084NGzYMwzBwu92nnevduzdjx4495/dZunQpTz/99DcpVUQ6KAUeEbHcVVddBcC6devC2quqqti+fTtRUVF8+OGHYecOHTrEoUOHQj97LhR4RC5cCjwiYrkePXrQr1+/0wJPYWEhpmnygx/84LRzzcfnE3giwefz0dDQYGkNIvLVFHhEpF246qqr2Lx5MydOnAi1ffjhhwwePJgbb7yRjz76iEAgEHbOMAyuvPJKnnrqKcaNG0dqaipOp5OsrCyWLVsW9vp9+/Zlx44d5OfnYxgGhmFw7bXXhs5XVlYyZ84cevXqhdPppH///jzxxBNh77l//34Mw+A3v/kNv/vd78jMzMTpdLJz587IXRgRaRVRVhcgIgLBwPPss8/y8ccfh4LIhx9+yNixYxk7diwej4ft27czdOjQ0LlBgwaRlJTEsmXLGDx4MDfffDNRUVG89tprzJgxg0AgwMyZMwH43e9+x6xZs+jWrRsPPvggAGlpaQDU1dWRm5vL4cOH+elPf0rv3r0pKCjggQceoLi4mN/97ndhtT711FPU19fzk5/8BKfTSWJiYttcJBH5+kwRkXZgx44dJmA++uijpmmaZmNjo9m1a1fzmWeeMU3TNNPS0swlS5aYpmmaVVVVpt1uN3/84x+bpmmadXV1p73exIkTzYsvvjisbfDgwWZubu5pfR999FGza9eu5meffRbWfv/995t2u908ePCgaZqmWVRUZAJmfHy8WVZW9s1+YRFpU5rSEpF24dJLLyUpKSm0NufTTz+ltrY2tAtr7NixoYXLhYWF+P3+0PqdLl26hF7H4/FQUVFBbm4un3/+OR6P5yvf+8UXX+Tqq6+me/fuVFRUhL7Gjx+P3+/n/fffD+s/efJkUlJSWuX3FpG2oSktEWkXDMNg7NixvP/++wQCAT788ENSU1Pp378/EAw8f/jDHwBCwac58Hz44Yc88sgjFBYWUldXF/a6Ho8Hl8t11vfes2cPW7dubTHElJWVhR3369fv/H9BEbGUAo+ItBtXXXUVr732Gtu2bQut32k2duxY5s2bx+HDh1m3bh09evTg4osvZt++fVx33XUMGjSIRYsW0atXLxwOB2+++Sa//e1vwxYdtyQQCHD99dczf/78M56/5JJLwo5PHVESkY5BgUdE2o1T78fz4YcfMmfOnNC5kSNH4nQ6Wbt2LR9//DHf+ta3AHjttdfwer28+uqr9O7dO9T/TDcqNAzjjO+bmZlJTU0N48ePb8XfRkTaE63hEZF24/LLLycmJobly5dz+PDhsBEep9PJiBEjWLJkCbW1taFwZLfbATBNM9TX4/Hw1FNPnfb6Xbt2pbKy8rT2KVOmUFhYyNtvv33aucrKSnw+3zf91UTEYhrhEZF2w+FwMGrUKD744AOcTicjR44MOz927Fj++7//Gzg5GjRhwgQcDgc33XQTP/3pT6mpqeHPf/4zqampFBcXh/38yJEjWbZsGf/xH/9B//79SU1NZdy4ccybN49XX32Vb3/72/zLv/wLI0eOpLa2lm3btvHSSy+xf/9+kpOT2+YiiEhEaIRHRNqV5iDTPIV1qiuvvBKAuLg4hg0bBsDAgQN56aWXMAyDn//85/zxj3/kJz/5Cffcc89pr/3www/zrW99i4ULFzJ16lR+/etfAxAbG0t+fj7z5s1j7dq13HPPPTz++OPs2bOHX/3qV1+56FlE2j/DPHUcWERERKQT0giPiIiIdHoKPCIiItLpKfCIiIhIp6fAIyIiIp2eAo+IiIh0ego8IiIi0unpxoNNAoEAR44cIS4ursXbz4uIiEj7Ypom1dXV9OjRA5ut5XEcBZ4mR44coVevXlaXISIiIl/DoUOH6NmzZ4vnFXiaxMXFAcELFh8fb3E1IiIici6qqqro1atX6HO8JQo8TZqnseLj4xV4REREOpivWo6iRcsiIiLS6SnwiIiISKenwCMiIiKdngKPiIiIdHoKPCIiItLpKfCIiIhIp6fAIyIiIp2eAo+IiIh0errxoIiISAtM009l5Qa83jKczlQSEkZhGHary5KvQYGnDf1XUTF2w2Bu3/TTzi3aX4LfNJnXL8OCykRE5MvKyt7msz2/xustCbU5nelcMuBhUlMnWliZfB2WT2n98pe/xDCMsK9BgwaFztfX1zNz5kySkpLo1q0bkydPprS0NOw1Dh48yKRJk4iNjSU1NZV58+bh8/na+lf5SnbDYGFRCYv2l4S1L9pfwsKiEux6SruISLtQVvY227bPDAs7AF5vKdu2z6Ss7G2LKpOvq12M8AwePJh33303dBwVdbKse++9lzfeeIMXX3wRl8vFz372M773ve/x4YcfAuD3+5k0aRLp6ekUFBRQXFzMbbfdRnR0NP/5n//Z5r/L2TSP7CwsKgkdN4ed+f3SzzjyIyIibcs0/Xy259eA+aV2MAwTMPhsz6OkpIzX9FYH0i4CT1RUFOnpp3/Yezwe/vKXv/D8888zbtw4AJ566ikuvfRSPvroI6644greeecddu7cybvvvktaWhrDhw/n0Ucf5b777uOXv/wlDofjjO/p9Xrxer2h46qqqsj8cl8yt286Ub4TjHplCm9HxfG7rEeYn9lbYUdEpJ0Irtk5ObKz39OL14sm0N1ZybRLXwZMvN5iKis30L37FdYVKufF8iktgD179tCjRw8uvvhipk2bxsGDBwHYuHEjjY2NjB8/PtR30KBB9O7dm8LCQgAKCwsZMmQIaWlpoT4TJ06kqqqKHTt2tPieCxYswOVyhb569eoVod/udLNTHOR4PuW6o4VgcyjsiIi0I15vWdjxCV8Mm8uG8VHxKBr9US32k/bN8sAzZswYnn76aVatWsWyZcsoKiri6quvprq6mpKSEhwOBwkJCWE/k5aWRklJMH2XlJSEhZ3m883nWvLAAw/g8XhCX4cOHWrdX+wsnvl8HwBVUd1ogNPW9IiIiHWcztSw44GJe+nuPE6dL5ZPKwa32E/aN8untG688cbQ90OHDmXMmDH06dOHlStX0qVLl4i9r9PpxOl0Ruz1W7Jofwn5+4u4HUiMT2J+v/SwNT0iImKthIRROJ3peL2lgInNMMnp8QlvFl1P4ZHRXJ72KU5nBgkJo6wuVc6D5SM8X5aQkMAll1zC3r17SU9Pp6GhgcrKyrA+paWloTU/6enpp+3aaj4+07ogK81yF7KwqIQfJTXlzJgE5vZND4WeWe5CawsUEREMw84lAx5uPgIgJ2MDANsqsqj2diVl2y3U7zhuUYXydbS7wFNTU8O+ffvIyMhg5MiRREdHs2bNmtD53bt3c/DgQXJycgDIyclh27ZtlJWdnEtdvXo18fHxZGVltXn9Z2NiMKpoF4OO7A42dEkAYOSB3Ywq2oWJtqWLiLQHqakTGZK9BIctBYAe3UroE3cIv2ln98Z76bp/OEef28WJ7RUWVyrnyvIprZ///OfcdNNN9OnThyNHjvDII49gt9uZOnUqLpeLO++8k7lz55KYmEh8fDyzZs0iJyeHK64IroyfMGECWVlZTJ8+nYULF1JSUsJDDz3EzJkzLZmyOps/5F1Bvs3LfvcKBgHEJJCfn4/b7ebneXnk5mq1v4hIe5GSPAFfYTw1tm34nB6+5YtjGbC2Jp1pTX0qX/ucmKwkDJv+wdreWR54vvjiC6ZOncrRo0dJSUnhqquu4qOPPiIlJZiqf/vb32Kz2Zg8eTJer5eJEyeydOnS0M/b7XZef/117r77bnJycujatSu33347v/71r636lc4qNzeX/UXPw374ZOc+3Dvc5OXlkZuba3VpIiJyCm+Rh4DHRyyXAvAtAvw/athFgAP46YMdv8eLt8hDTGaCtcXKV7I88LzwwgtnPR8TE8OSJUtYsmRJi3369OnDm2++2dqlRUzftATYDydMB3a7XWFHRKQdClQ3hB13x8ZooijExzs08mPsZ+wn7VO7W8NzISg58BkADUYMfr+f/Px8iysSEZEvs8WdfuPaCUQDsJpGzKY7MZ+pn7Q/lo/wXGjy8/NJKzlAOnDdpO8RVZuJ2+0G0EiPiEg74uznwu5y4PecHMG5iii6AEcw2Y6fIV27EN0n3roi5ZxphKeNFLy4nOeWPonb7SY9oen+QjEucnNz6Z+ahNvt1kiPiEg7YtgMEm7KDGvrgsE1TaM875iNrC87wbMPFbJvs+663N4p8LQRw2bj4I5t9E9NIsHZtJrf6aLw5RWU5r9N/9QkAoGAtUWKiEiYLtnJJN16KXbXyWmr5mmtd2jki8YAtZVeVv1pu0JPO6cprTaSM3kqAAUrl1M/9AgxwLaPPqbg9ULGTpkWOi8iIu1Ll+xkHIMSef2hAszaRupNk9hYqLXB/qgAmb7g4uV1K/fQb1gKNm1Rb5c0wtOGciZPZeyUaVDvAeCTd9Yo7IiIdAAl+zx8UdnA4UaTSh9c2hgMOTsd/lCfmuNeivdUWlShfBUFnjaW871/xmnzAdBoOBV2REQ6gNoqb9hxVkNwgmRvtJ+Gpt1aZ+on7YcCTxv7+MWnMZpGO080QOHLK6wtSEREvlLX+PA796f5DRL8Bj4jGHpa6ifthwJPGyp8eQVb/v588MAWxejvT6dg5XKFHhGRdi5jQAJdE06GGQMjNK21q2laq2t3JxkDEqwoT86BAk8bWTNvDgUrlzPmWzcEG5xx5Hz/h4ydMo2ClctZM2+OpfWJiEjLbDaDq28ZENZ2aUMw8OyPClBrBHiv5/O8d2jNmX5c2gEFnjYSMGBA8TH6VDRtW3QGb1TVv/Q4A4qPEdCifhGRdi3zslRu+Gk2UXHBNTtJARupPoOAAX/v+QFbun3A3LVzeffAuxZXKmdimKZpfnW3zq+qqgqXy4XH4yE+PjJ3zSxfupQTK/+L3tceg/QhlAd+SMXiJ0mePYuUGTMi8p4iItJ6/AE/E1+6AXtJN2Ib4/nC24fyqjHYYz8nts//w8AgLTaNVZNXYbfZrS73gnCun9+6D08bSpkxg6r6rVC1grptn1GxRmFHRKQj2VS2idITJeAKHgca90HVGPx1FxNodGGL9lBSV8Kmsk2MSh9lbbESRlNabSw+NwcAfwMY0dEKOyIiHUh5XXnYsS3agz32cwB8VUNb7CfWU+BpYzXuVQAE/FGYjY2UL11qcUUiInKuUmJTTmuLiv8UgMZTAs+Z+om1FHjaUPnSpZwo/AAA1/duIXn2LCoWP6nQIyLSQYxIHUFabBoGJ3eaRMVtBwIE6nsRaEgiLTadEakjrCtSzkiBpy24F1A+P7hAuevoYcE2ZxwpM2aQfPNlCj0iIh2E3Wbn/tH3A4RCjy2qFnvXvQA0eobi+eJGVu/Ug0TbGwWetmCzw773Sb75MmIvvTjY5oyD/IWkxL5B8s2XgV9PShcR6QjG9xnPomsXER+dFGqLjt8KQMOxXCpKB3L3c5tYtb3YqhLlDLRLqy3kzicFwP0YfHFpsO3QetjzDuQ9SErufCurExGR85TX6zoeOmBS17gLI6qaQKMLMCEQgwkYwK9e28n1WenY9fT0dkGBp600hxr3Y8H/NoUdFHZERDqc9UXHKPE0AJlnPG8CxZ561hcdIycz6Yx9pG1pSqst5c6H5oVutiiFHRGRDqqsur5V+0nkKfC0pfyFBHM/EPA1HYuISEeTGhfTqv0k8hR42kr+wuB0VkxC8HjE7cFjhR4RkQ5ndL9EMlwxnG11ToYrhtH9EtusJjk7BZ42sO5vvwiGm7wHgzu2AMbcFTx2PxY8LyIiHYbdZvDITVkALYQekx/0X87Rinfasiw5CwWeNmA3AzzR9w4W9bkNvDXBRkdXFvW5jSf63oHd1JZ0EZGO5obsDJbdOoKUbl8+E9ynlRC9j23bZ1JW9rYF1cmXaZdWG8j57mMU7i9h0b4vmOv3ArC0tI6FxceZf+195PRNt7hCERH5OiYOTiW2cgHbSrri8cbjclax5uA1bCobziell9En/jCf7XmUlJTxGIaenm4lBZ42MrdvOk6vJ3S84HAN8zN7MVdhR0Skw6qs3EBjQzGDTlmqU90Qx6ay4WwouYzv9X8Nr7eYysoNdO9+hXWFiqa02tLM9K4AeI1oDLtDYUdEpIPzek9/hMSQ5B04bA2Un0jmYHXPFvtJ21LgaUNPFx0AoM7ehQbTZNH+EosrEhGRb8LpTD2tLSaqgezknQB8UjocAEe0np5uNQWeNuB2u5m99iNeOHAQgO6x8czvl87CohJmr/0It9ttcYUiIvJ1JCSMwulM58t7tS5P2wLAJyXDsdclUv//4MT2irYvUEIUeNrAK0YXVpoxTAo0reFxdGVu33SmGPWsNGN4xehibYEiIvK1GIadSwY83HwUah+asoMoWyNlJ1Kp3fEvBDw+jj63S6HHQgo8baBXnz5MMepJ+vTDYIOjK/n5+SSuXcUUo55effpYW6CIiHxtqakTGZK9BKczLdTWJcrL0O57AVh//JJQe+Vrn2MGzDavUbRLq03M65cB/TLYWfYO7ISiI+W4j7jJy8sjN1er9kVEOrrU1InEVV3OoZdfxuf0EOV1Men4xWzCixsf/4qJgYHf48Vb5CEmM8Hqki84CjxtKCuzN+yEBqKw2+3k5uZaXZKIiLQSs8ZP7PFLQ8dXYRKNl4MEKCLAxQTvwxOobrCqxAuaprTa0N5dWwFoNJz4/X7y8/MtrkhERFqLLc4RdtwVg1FN4wpr8bXYT9qGAk8byc/P58DeXQBkDx9FXl4ebrdboUdEpJNw9nNhd4WHmWubAk8+jQDYXA6c/VxtXptoSiviCl5czuflx9hbdpQ7eveAg4CjG7m5uRzasTW0JV3TWyIiHZthM0i4KZOjz+0KtV1FNHbq2UeAg6af455GTnxaTuZlp9+/RyJLIzwRZthsHNyxjf6pSfROTwo2OmIpfHkFpflv0z81iUBADw8VEekMumQnk3TrpZhdguMJ8RiMaFq7s7yxgf2VDaz603b2bdadl9uaRngiLGfyVAAKVi6nrNFPKnDws70UrF3P2CnTQudFRKRzcGYlsea5fxBT4yPGgJ52Gxti/Gy0+chq+thdt3IP/YalYLMZX/Fq0lo0wtMGciZPZeyUaRzb/xkAez/dprAjItJJFe+ppLaygaM+k8ONJhleO5hQEmVSZQRH9GuOeyneU2ltoRcYBZ42kjN5Kg578GZTfiNaYUdEpJOqrfKGHXc1DXr6gx+3nzkCLfaTyFLgaSOFL6/AbgS3JTb4gsciItL5dI13ntZ2SUNwHc+eaP9Z+0nkKPC0gcKXV1CwcjmJyYkAZI7No2DlcoUeEZFOKGNAAl0TwsNM/8bgx+1he4Baw6RrdycZAxIsqO7CpcATYWvmzaFg5XLGTplGXFwsAIOuuYGxU6ZRsHI5a+bNsbZAERFpVTabwdW3DAhrc5k20nwGpgF7o3281/N53ju0xqIKL0wKPBEWMGBA8TH6lx6HxrpgY3Qs/UuPM6D4GAEt0BcR6XQyL0vlhp9mExV38kGhAxqD01qFCQfY0u0D5q6dy7sH3rWqxAuOYZqmHtsKVFVV4XK58Hg8xMfHt+prly9dSsXiJ7nkh9XYA9Uc6z6b0mUvkTx7FikzZrTqe4mISPvgD/iZ+NIN2Eu6EdsYz3Fs7C//Phg+ug14FJu9gbTYNFZNXoXdZre63A7rXD+/dR+eNhAKNV/8Ozjg2LMvkDz7XoUdEZFObFPZJkpPlEDTkyRMEwxPLmZDCr6agUS7tlJSV8Kmsk2MSh9lbbEXAE1ptZGUGTOwRTUNptmiFXZERDq58rrysGPDgOi47QD4aga32E8iQ4GnjZQveRKj6Wr7T/gpX7rU2oJERCSiUmJTTmuLitsJgK9mIGbA3mI/aX0KPG2gfOlSji37Q+g48a4ZVCx+UqFHRKQTG5E6grTYNAxO7k6xxXyBEVUFgRj8dZmkxaYzInWEhVVeOBR4Iqx83lQqFj9J0k/vaGoxSJkxm+TZs4KhZ57uuCwi0hnZbXbuH30/QCj0GIZJVLfgKE9jdRaeL25k9U49SLQtKPBEmgnJ2VUkD6gMHkfHgmGQMriG5Owq0B45EZFOa3yf8Sy6dhHx0UmhttC0lmck5aUDufu5TazaXmxViRcMbUtvEslt6eQvBPdjwe9jk2DMXcHjvAchd37rvpeIiLQr/oDJlU+8S3njLoyoagKNcQROXAzNoz5AuiuGdfeNw66np5+3c/381ghPW8idDyN/FPy+7qjCjojIBWR90TFKPA346zLxVQ0ncCITTlnXYwLFnnrWFx2zrMYLgQJPWxnyg5Pf2x0KOyIiF4iy6vpW7SdfjwJPW9n016ZvDPA3BKe5RESk00uNi2nVfvL16E7LbSF/IWx9Ifh9z1Ew4PqTa3o00iMi0qmN7pdIhiuGEk99i/tUMlwxjO6X2KZ1XWg0whNh6/72i2C4yfpOsCE6Jhhy8h4E92PB8yIi0mnZbQaP3JQFnLpy51QmUwYs52jFO21Z1gVHgSfC7GaAJ/rewTsJTc9JieoCwKI+t/FE3zuwmwELqxMRkbZwQ3YGy24dQUq3088ZmFzc7RO2bZ9JWdnbbV/cBUJTWhGW893HKNxfwtp1S5kAEB3Dov0lLCwqYf6195HTN93qEkVEpA1MHJxKbOUCtpV0xeONx+WsYsU/JvNFzUVsrchibI9P+GzPo6SkjMcw9PT01qYRnjYwt286NyQ4AHj5aH0w7PRLZ67CjojIBaOycgONDcUMStzLmIxNDErcy2Wp2wDYUjYEMPF6i6ms3GBtoZ2UAk8buSYuGHhqbQ4chqGwIyJygfF6T3+ExLCU4NPTtx8dRGMgqsV+8s0p8LSRj48eBcBnc9BgmizaX2JxRSIi0pacztTT2vrEH8Ll8OD1x7D7WP8W+8k3p8DTBhbtL2FzU+C5o28v5vdLZ2FRiUKPiMgFJCFhFE5nOqfu1bIZJkNTdgCwtWIwTmcGCc2bXKRVKfBEkNvtZvbaj1hYVMIV3ZrWh0fFMLdvOlOMeoUeEZELiGHYuWTAw81HofbhTdNan5Zlk7z1Fup3HLegus5PgSeCbDYb+4r2M8WoZ3iXphX3UU7y8/NJXLuKKUY9fj27VUTkgpGaOpEh2Utw2FJCbZcm7Sba1khFfRJlB4Zw9LldnNheYWGVnZO2pUdQbm4ukI/bvYqy1AOkAnsPHMa9t4q8vDxyc6+wukQREWljKckT8BXGU2Pbhs/pIcrrYmQgho/w8yE+LsZO5WufE5OVhKGnp7cajfBEWG5uLnl5eRwtOwLAP/Z+3hR2ci2uTERErOAt8hDw+Ig9finxJVcQe/xSriIagA/xAeD3ePEWeawss9NR4GkDubm5ROMHwG84FHZERC5ggeqG09rGNk247MBPJYEW+8nX164Cz+OPP45hGMyZMyfUdu2112IYRtjXXXfdFfZzBw8eZNKkScTGxpKamsq8efPw+XxtXH3L8vPzsTcFngbTRn5+vsUViYiIVWxN92U7VSo2+mPDBD5uGuU5Uz/5+trNGp4NGzbwpz/9iaFDh5527sc//jG//vWvQ8exsbGh7/1+P5MmTSI9PZ2CggKKi4u57bbbiI6O5j//8z/bpPazyc/Px+12c298V6iCS7OH85LbDaCRHhGRC5Cznwu7y4HfEz6Ck0MUe2mgAB83urrh7OeyqMLOqV2M8NTU1DBt2jT+/Oc/071799POx8bGkp6eHvqKj48PnXvnnXfYuXMnzz33HMOHD+fGG2/k0UcfZcmSJTQ0tDwc6PV6qaqqCvtqbc8uWYzb7SYvLw9XbDCpZw8bSV5eHm63m2eXLG719xQRkfbNsBkk3JR5WvuVTWMQH5s+PvE08Pmn5W1dWqfWLgLPzJkzmTRpEuPHjz/j+eXLl5OcnEx2djYPPPAAdXV1oXOFhYUMGTKEtLS0UNvEiROpqqpix44dLb7nggULcLlcoa9evXq13i/UzDBwlB/GUXEEfN5gW5QTR8URHOWHwdDqexGRC1GX7GSSbr0Us8vJiZZLseMyDWoMKKiuZ9WftrNvsx4z0Vosn9J64YUX2LRpExs2nPlhaT/84Q/p06cPPXr0YOvWrdx3333s3r2b//u//wOgpKQkLOwAoeOSkpZv6vfAAw8wd+7c0HFVVVWrh57pM2ZR+PIKClYu57JhR4kBtq17n4LXC8mbMo2cyVNb9f1ERKTjcGYlsea5fxBT4yPGgHoTLnLY8Dj87IsO0MtvZ93KPfQbloJN29O/MUsDz6FDh7jnnntYvXo1MTExZ+zzk5/8JPT9kCFDyMjI4LrrrmPfvn1kZp4+JHiunE4nTqfza//8uWoONY2bZhMTDVtWr2bslJ8q7IiIXOCK91RSW9lA7SltmYaNnQ4/n0f7ubY+mprjXor3VHLRwNOXe8j5sXRKa+PGjZSVlTFixAiioqKIiooiPz+fxYsXExUVhd/vP+1nxowZA8DevXsBSE9Pp7S0NKxP83F6evt4InnO5KlE2YLbDE17tMKOiIhQW+U9ra2vz45hwlG7iafpc+NM/eT8WRp4rrvuOrZt28aWLVtCX5dffjnTpk1jy5Yt2O32035my5YtAGRkZACQk5PDtm3bKCs7Oc+5evVq4uPjycrKapPf46sUvrwCuxH8w21oDFD48gqLKxIREat1jT99liHGNLjIH/xo/jwq0GI/OX+WTmnFxcWRnZ0d1ta1a1eSkpLIzs5m3759PP/883zrW98iKSmJrVu3cu+993LNNdeEtq9PmDCBrKwspk+fzsKFCykpKeGhhx5i5syZbTJldTblT/6BrV/sY8v+PYy5NNh22bcns3blcurWr2doz0xSZv3M0hpFRMQaGQMS6JrgpLYyfATn4kYbX0QF+Dzaz0Cjlp2OjVzEmTf1yLlrF7u0WuJwOHj33XeZMGECgwYN4t/+7d+YPHkyr732WqiP3W7n9ddfx263k5OTw6233sptt90Wdt8eqzSHneF9+2NrunPmyJtuYXjfAWzZv4etX+yzuEIREbGKzWZw9S0Dmo5OPki6X2NwduNgVID3e7/Cv70/l3cPvGtBhZ2LYZp6XDcEd2m5XC48Hk/YfX6+iYIXl3Pik0+46PW3GPSDYgAqkn9J+R/+H0e+cwNdLr+csT+Y1irvJSIiHdOejSX87a8fEesNfvaYmCyLP0GtzaBLr78Q3W0vabFprJq8Crvt9KUeF7pz/fy2fFt6Zzb2B9PgB9Oo6NUTKoIjTuVL/0Ty7NlcOmOGxdWJiEh7UHnRIZ697GEyqjKJbYynLrqKhtqh4BmNr2YQUd32UFJXwqayTYxKH2V1uR1Wu57S6iyS/2V66HvDHk2Kwo6IiDQpryvHNEyOuPayN3kTR1x7scf9AwBfzcCwfvL1KfC0gaNP/Q8AAT+YjT7Kly61uCIREWkvUmJTTmuLit0L+DEbkwk0JLXYT86dAk+ElS9dyvFnngLAFhtP8uxZVCx+UqFHREQAGJE6grTYNAxO3k3ZsDdgj90PgK/mEtJi0xmROsKiCjsHBZ4IKp83lYrFT5J42w+DDU3TWaHQM083IBQRudDZbXbuH30/QFjosXfbDQSntTxf3MjqnXqu1jehwBNJJiRnV5F4cdOT2O3B+wKlDK4hObvq1F2IIiJyARvfZzyLrl1EfHRSqC2qazDw+Gsvobx0IHc/t4lV24utKrHD07b0JpHYlg5A/kJwPxb8vntfGD4teJz3IOTOb733ERGRDs0fMLnyiXcpb9yFEVVNoDGOwImLoWnUxwDSXTGsu28cdj1MNORcP781whNpufNh+K3B74/vV9gREZEzWl90jBJPA/66THxVwwmcyIRTprhMoNhTz/qiY5bV2JEp8LSF7O+d/N7uUNgREZHTlFXXt2o/CafA0xY+faHpGwP8DcFpLhERkVOkxsW0aj8JpzstR1r+Qti2Mvh97ysgc9zJNT0a6RERkSaj+yWS4YqhxFPf4p6WDFcMo/sltmldnYVGeCJo3d9+EQw3Wf8UbLBHB0NO3oPgfix4XkREBLDbDB65KQs4deXOqUymDFjO0Yp32rKsTkOBJ4LsZoAn+t7BW4k5TQ0OABb1uY0n+t6B3QxYWJ2IiLQ3N2RnsOzWEaR0O/2cw9bA4IR1bNs+k7Kyt9u+uA5OU1oRlPPdxyjcX8Lqgv/hRgC7g0X7S1hYVML8a+8jp2+61SWKiEg7M3FwKrGVC9hW0hWPN544RzV/3HoHtY1d+dzTmwHd9/PZnkdJSRmPYejp6edKIzwRNrdvOpO6dwHgjWN1wbDTL525CjsiInIGlZUbaGwoZlDiXsZkbCIraQ9ZScGHie44eilg4vUWU1m5wdpCOxgFnjZwXUJwRb3XsOMwDIUdERFpkdd7+iMkskOBZ9BZ+0nLFHjawPsVwZtE+Y1oGkyTRftLLK5IRETaK6cz9bS2rKTgYyaKPL2paYxtsZ+0TIEnwhbtL6Hg6HEAfnBRGvP7pbOwqEShR0REzighYRROZzqn7tVKjKmkR9diTGz84+glOJ0ZJCSMsq7IDkiBJ0Lcbjez137EwqISrnUFHxqK3cHcvulMMeoVekRE5IwMw84lAx5uPgq1Dw5Naw0kZdst1O84bkF1HZcCT4TYbDb2Fe1nilHPFXHNgSea/Px8EteuYopRj1/PbRURkTNITZ3IkOwlOGwpobbmwPOP4tHE7h/G0ed2cWJ7hVUldjjalh4hubm5QD5u9yoO9fqcXsDBIyW4D7rJy8sjN/cKq0sUEZF2LCV5Ar7CeGps2/A5PSTXJ7AEKAtEc4gAvbFT+drnxGQlYejp6V9JgSeCgqEHjrjd9AL2H/yCvLx/CbWLiIi0xFvkIeDxEculobah1LIRP+vx0xs7fo8Xb5GHmMwE6wrtIDSlFWG5ublEGcGpK9OIUtgREZFzEqhuOK3t8qZxik/wnbWfnE6BJ8Ly8/OxmcE/zEbTID8/3+KKRESkI7DFOU5rG9UUeDbhw9f0iNEz9ZPTKfBEUH5+Pm63mx5pwUVn/TIvwe12K/SIiMhXcvZzYXeFh5lLsBGPQR2wCz82lwNnP5c1BXYwCjwR8uySxbjdwQXKacmJAGQOGEheXh5ut5tnlyy2uEIREWnPDJtBwk2ZYW02DEYSfH7WBtPHZk8jn39abkV5HY4CT6QYBo7ywzgqjkCgMdhmi8JRcQRH+WEwtKJeRETOrkt2Mkm3XorZ5eQeo+ZpLXfAx/7KBlb9aTv7NusxE19FgSdCps+YRd64cRSsXM6xLw4AsO/TLRSsXE7euHFMnzHL4gpFRKQjcGYlseaEn3U1Pj6p9UFtsP2ALUBD0zqedSv3EAjo3m5no8ATQTmTpzJ2yjQ8xYcA+GzDesZOmUbO5KkWVyYiIh1F8Z5KaisbOOozOdxoYjYaJPgNAgYcjAoAUHPcS/GeSmsLbecUeCIsZ/JU7M1X2RalsCMiIueltsp7WlsfX/CD5WC0/6z95CQFnggrfHkFhhn8g/T5AhS+vMLiikREpCPpGu88ra2PL7hw+UDTCE9L/eQkBZ4IKnx5BQUrl5OQkgzAgLHXUrByuUKPiIics4wBCXRNCA8zvZpGeCrsJrWGSdfuTjIGJFhQXcehwBMha+bNoWDlcsZOmUZcQgIAg67MY+yUaRSsXM6aeXMsrU9ERDoGm83g6lsGhLXFmgapvuBu3wNRft7r+TzvHVpjRXkdhgJPhAQMGFB8jP6lx09uS7dH0b/0OAOKjxHQrnQRETlHmZelcsNPs4mKO7kTq3fTtFZB0i62dPuAuWvn8u6Bd60qsd0zTNPUPjagqqoKl8uFx+MhPj6+VV6zfOlSKhY/yYBpfqL8pVQm/CvFf3yT5NmzSJkxo1XeQ0RELgz+gJ+JL92AvaQbsY3xlPvj+eLYDRjRx+ma+QQ2wyAtNo1Vk1dht9mtLrfNnOvnt56WHkHNoca/9yGi4qHy5VdInv1zhR0RETlvm8o2UXqiBJqeJGEGouHYeMzG7piNiZiOY5TUlbCpbBOj0kdZW2w7pCmtCEuZMQPD1jR/ZYtW2BERka+lvC78ERKGrRF7l+B93ny1mS32kyAFnggrX7oUwwjOGpoNPsqXLrW4IhER6YhSYlNOa7N33QeAvy7zrP1EgSeimtfw2OJiAXD981QqFj+p0CMiIudtROoI0mLTMDi56yUUeGozwTRIj01nROoIq0ps1xR4IqR8XjDcJM+ehT0meP+ExH/+IcmzZwVDzzzdcVlERM6d3Wbn/tH3h7fFHASjAdMfh9+bwoT0n1xQC5bPhwJPpJiQnF1FyuCasKelpwyuITm7CrQ3TkREztP4PuOZfvEvCDQGVy4bNj/22P0A1B/5Z5a+Ecuq7cUWVth+aVt6k0hsSyd/IbgfA7sD/A1wxQz4aCnkPQi581vnPURE5ILhD5hc9cR7FHvqsMcWYURV4z/RC7MxCQADSHfFsO6+cdhtF8YN387181sjPJGUOz8YbvwNwWOFHRER+QbWFx2j2FMP2PDXZeKrGh4KOxCcPCj21LO+6JhlNbZXCjyRdmq4sUUr7IiIyNdWVl3fqv0uJAo8kbb2iZPfBxqD01wiIiJfQ2pcTKv2u5Ao8ETIfxUV8+HffwFr//Nk41X3gvsxPvz7L/ivIi0qExGR8zO6XyIZrhhaXp1jkhjjoW/XDW1YVcegwBMhY7cu5crNiykYdsqdla+6lw8vm82VmxczdqvuxSMiIufHbjN45Kass/aZcsnL7Nz5M8rK3m6jqjoGBZ4IuTI+lg8vm82tcTeH2hYfOsrk+MnB0BMfa2F1IiLSUd2QncHSacNJjKkKazcwAYOU2KMAfLbnUUzTb0GF7ZMeHhopeQ9wJTD3sz2hpt8crGB+Zm+u7PuodXWJiEiHd0XPQzxx9S/47HgmHm88LmcVb+8fx9aKbP5xbAB94w/h9RZTWbmB7t2vsLrcdkEjPBH2s54ntwvabFHM7ZtuYTUiItIZeL1l2AyTQYl7GZOxiUGJexmUGPwH9u5j/cP6SZACT4T98cCR0Pf1psGi/SUWViMiIp2B05l6WtvAxL0A7KnMJGAaLfa7UCnwRNCi/SUsO9AUcGxRzL84g4VFJQo9IiLyjSQkjMLpTIdT9mv1jvuCLlEnOOHrwsHqnjidGSQkjLKuyHZGgSdCZrkLWVhUws96JgYbDDtz+6Yzv186C4tKmOUutLZAERHpsAzDziUDHm4+AsBmmPRP+BwITmulbLuF+h3HLaqw/VHgiRATg1FFuxj6RdOiZVtwffjIA7sZVbQL8yx3URAREfkqqakTGZK9BIctJdQ2qHvwM+fg/uvpun84R5/bxYntFVaV2K5ol1aE/CHvCvJtXj52/x9jAGxR5Ofn43a7+XleHrm5WjUvIiLfTEryBHyF8dTYtuFzeri6NpkXgR0N3QhgYsOg8rXPiclKwrhAHibaEgWeCMrNzSW29hCsf5o6rxe3201eXh65ublWlyYiIp2At8hDwOMjlksBGIpJF6qpBvYRYAB2/B4v3iIPMZkJltZqNU1pRdiokSOA4BSX3W5X2BERkVYTqG4IO47CYCh2ADbja7HfhUiBJ8I+2fAxAAFs+P1+8vPzLa5IREQ6C1uc47S24U2TN1vxn7XfhUaBJ4Ly8/PZ+Ml6AOLiE8jLy8Ptdiv0iIhIq3D2c2F3hYeZYU0jPFvwY2Jiczlw9nNZUV67osATIc8uWYzb7WbUiMuCDbbgdFZz6Hl2yWJrCxQRkQ7PsBkk3JQZ1jYIOw6gEpMDpp/NnkY+/7TcmgLbEQWeSDEMHOWHia5suq23EUzcjoojOMoPg3Fhr5YXEZHW0SU7maRbL8XsEpzKcmAwuGmU5+8NPvZXNrDqT9vZt/nCfsyEAk+ETJ8xi7xx49jx3tvBBlsUhS+voGDlcvLGjWP6jFnWFigiIp2GMyuJNSf8rKvx8Umtj8SG4D+qtxsn1/GsW7mHQMC0qkTLaVt6BOVMnkp8zW4o2srRI4cpWLecsVOmkTN5qtWliYhIJ1K8p5LaygZqm46TTBs44IuoQKhPzXEvxXsquWhgd2uKtJhGeCJs8FXBbegBE+xRUQo7IiLS6mqrvGHHGT4bNhOqbSYeI9BivwuJAk+E7fxgDQAmNvw+H4Uvr7C4IhER6Wy6xjvDjh0YpPmD01qnjvJ8ud+FRIEnggpfXsE/3n8PgNR+/Rk7ZRoFK5cr9IiISKvKGJBA14TwMHORL7hwuTnwdOvuJGNAQluX1m4o8ETImnlzKFi5nKyrm+6sbLOTM3lqKPSsmTfH0vpERKTzsNkMrr5lQNNRcGFyT1/wI/5wVAATk/i8E9gu4OdptXrgqampae2X7JACBgwoPkZGZVWwoWlbev/S4wwoPkbgwv2bExGRCMi8LJUe3wtQ46gE4CJ/8CP+qN3krf7LeaR4Lu8eeNfCCq11XoHnt7/97VnPV1dXM3HixG9UUGdx/cLfkfPPt1L9xhvBBpud8qVLqVj8JDn/fCvXL/ydpfWJiEjn4g/4WeJ5nOUjfsWrWU9S0P+vOKKOA7AvJrh/64n1T+AP+M/2Mp3WeQWef//3f+evf/3rGc/V1tZyww03cPTo0a9dzOOPP45hGMyZMyfUVl9fz8yZM0lKSqJbt25MnjyZ0tLSsJ87ePAgkyZNIjY2ltTUVObNm4fP58NqKTNmEP+tGwCo27iJisVPkjx7FikzZlhcmYiIdDabyjZRWleKaZgcce1lb/ImzG6fAeCv64uJSUldCZvKNllcqTXOK/A8++yz/PSnP+XVV18Na6+trWXixImUl5fjdru/ViEbNmzgT3/6E0OHDg1rv/fee3nttdd48cUXyc/P58iRI3zve98Lnff7/UyaNImGhgYKCgp45plnePrpp3n44Ye/Vh2tLf768QCYARMjOlphR0REIqK87vTHR9hji4Bg4DlbvwvBeQWe73//+zz55JNMnTqVtWvXAidHdkpLS1m7di0ZGRnnXURNTQ3Tpk3jz3/+M927n7whksfj4S9/+QuLFi1i3LhxjBw5kqeeeoqCggI++ugjAN555x127tzJc889x/Dhw7nxxht59NFHWbJkCQ0NDS2+p9frpaqqKuwrEqpWN91pGRtmYyPlS5dG5H1EROTClhKbclqbvcsBAAL1PTADUS32uxCc96Llf/3Xf+WRRx7hO9/5DmvXruXGG2/kyJEjuN1uevTo8bWKmDlzJpMmTWL8+PFh7Rs3bqSxsTGsfdCgQfTu3ZvCwkIACgsLGTJkCGlpaaE+EydOpKqqih07drT4ngsWLMDlcoW+evXq9bVqP5vypUupeecdALqOvZLk2bOoWPykQo+IiLS6EakjSItNw+Dkrhgj+jhGVBUQhb++F2mx6YxIHWFdkRb6Wru05s+fz9133811113H4cOHWbt2LT179vxaBbzwwgts2rSJBQsWnHaupKQEh8NBQkJCWHtaWholJSWhPqeGnebzzeda8sADD+DxeEJfhw4d+lr1t6R83lQqFj9J3PXXBRtsdlJmzDgZeubpjssiItJ67DY794++HyAUegwD7F32A+Cv64PnixtZvfPCfIjoeT1L69S1MwDR0dEkJydzzz33hLX/3//93zm93qFDh7jnnntYvXo1MTEx51PKN+Z0OnE6I3jHSROSs6uI63ECdgNGMFumDK6B7Krm2ySIiIi0mvF9xrPo2kX88sPH8DRWAGCPPYCveiiNx66kwh/H3c9tYtmtI7gh+/yXoHRk5xV4XC5X2PHUqd9slGLjxo2UlZUxYsTJ4TW/38/777/PH/7wB95++20aGhqorKwMG+UpLS0lPT0dgPT0dNavXx/2us27uJr7WCHlNysgfyG4Hws2GPbQccqsByF3vmW1iYhI55XX6zoeOmBS17gLI6qagDcZANMfB4AB/Oq1nVyflY79AroR4XkFnqeeeqpV3/y6665j27ZtYW0/+tGPGDRoEPfddx+9evUiOjqaNWvWMHnyZAB2797NwYMHycnJASAnJ4fHHnuMsrIyUlNTAVi9ejXx8fFkZWW1ar3nLXc+HP4EPnsbdr8Ju9+APIUdERGJnPVFxyjxNACZZzxvAsWeetYXHSMnM6lNa7PSeQWe1hYXF0d2dnZYW9euXUlKSgq133nnncydO5fExETi4+OZNWsWOTk5XHHFFQBMmDCBrKwspk+fzsKFCykpKeGhhx5i5syZkZ2yOleZ44OBBxPsDoUdERGJqLLq+lbt11m0+2dp/fa3v+Xb3/42kydP5pprriE9PT1sjZDdbuf111/HbreTk5PDrbfeym233cavf/1rC6s+xZ7gLi0MG/gbgtNaIiIiEZIad25rYs+1X2dhmKap5bNAVVUVLpcLj8dDfHx867zoqWt4hvwAki8JHmtaS0REIsQfMLnqifco8dSfcX+MAaS7Ylh337hOsYbnXD+/2/0IT0e17m+/CIabzKZt6YYtGHLyHgT3Y8HzIiIircxuM3jkpuAa1jPFGROTKQOWc7TinbYtzGLnFXgefvhhNm7cGKlaOhW7GeCJvnfwfsJlwYamp6Uv6nMbT/S9A7sZsLA6ERHpzG7IzmDZrSNI6Xb6uRv7rmZo4vts2z6TsrK3T+/QSZ3XouUvvviCG2+8EYfDwU033cTNN9/Mddddh8PhiFR9HVbOdx+jcH8JH+T/hmsADBuL9pewsKiE+dfeR05f67bMi4hI5zdxcCqxlQvYVtIVjzeej4ovZ2tFNsFxHxMw+GzPo6SkjMdo+kd5Z3ZeIzz/+7//S0lJCStWrCAuLo45c+aQnJzM5MmT+etf/8qxY8ciVWeHNLdvOrkJXQFYUXI8GHb6pTNXYUdERCKssnIDjQ3FDErcy5iMTYxM+xSAvZUXN/Uw8XqLqazcYF2Rbei81/DYbDauvvpqFi5cyO7du/n4448ZM2YMf/rTn+jRowfXXHMNv/nNbzh8+HAk6u1wrmoKPI2GDYdhKOyIiEib8HrDHyGRmRB8cvr+ql74ArYW+3VW33jR8qWXXsr8+fP58MMPOXToELfffjsffPABK1asaI36OryC48GnsBuGjQbTZNH+lp/vJSIi0lqcztSw47TYcmKj6mgMOPii+qIW+3VWrXrjwZSUFO68807uvPPO1nzZDmvR/hI45mEsMP2iVMr7pbOwKBh4NNIjIiKRlJAwCqczHa+3FDCxGSYXu/az/WgW+zz96Ov6AqcznYSEUVaX2ia0LT1CZrkLWVhUwtiE2GCDYWNu33TmN4WeWe5CawsUEZFOzTDsXDLg4bC2zIT9AOyr7AumSV/nPRfEgmU4z8Dz7rvvovsUnhsTg1FFu+hRGXxabfPT0kce2M2ool2YZ7w7goiISOtJTZ3IwPgFRNV3B06u4/m8MpMen/4MXkrnxPYKK0tsM+c1pTVx4kSKi4tDD+mUlv0h7wrybV4OuvfTG8BmJz8/H7fbzc/z8sjNvcLqEkVEpJMzAyb21b252PPfnOi+m/joagxMyuu701jfC4DK1z4nJisJoxPcdflszmuER6M75yc3N5c+vYJ/UIUffYTb7SYvL4/c3FyLKxMRkQuBt8iD39OAgY3Y45eSUTaavgSnsHbgB8Dv8eIt8lhZZpvQGp4I69UzuBLebwYfdKqwIyIibSVQ3XBa2+CmwLOzKfC01K+zOe/As2zZMtasWcPx48cjUU+n88WhQ0BwW7rf7yc/P9/iikRE5EJhizv9SQiDvzTC01K/zua8t6X/4Q9/4Fe/+hWGYdCrVy9GjBgR9pWeru3WBS8ux7DZaEjugfOLg/QErrzqanxRubjdbg5u/5TpM2dbXaaIiHRyzn4u7C4Hfs/JEZyspsCzCz8+M4DPsHG40kumVUW2kfMe4dmxYwdffPEFr776KnfeeSemafLnP/+Zb3/721x00UVcdNFFX/0inZxhs+F+7z3cbjc9m6+HYcNRcQRH+WH2lR/TSI+IiEScYTNIuCkYZZpX4fbFRhfgBLCfAFtrfaz68w72be7cd1w+rxEewwiu4O7Rowc9evRg0qRJoXNHjx5l48aNbNmypVUL7IhyJk9lb2kFh3ZsJSqxGoBD/9hJQf5H5E2ZRkNyDwIBPS1dREQir0t2Mt1/OIji5/9BDGDH4FLsbMLPmw0++jQGR3zWrdxDv2Ep2Drpbq3zCjxn26WVlJTEhAkTmDBhwjcuqjOYPmMWhS+voOT9X5LeHQ7t2MbYKf9OzuSpVpcmIiIXmEpnFG9XNpIUZRBjQHy0AQ74B376NE1x1Rz3UrynkosGdre42sg4rymtVatW4XK5IlVLp5MzeSp2W/ASGzabwo6IiFiitsoLwFGfyeFGk4SG4GfTkajAGft1RucVeCZMmIDT6YxULZ1O4csrMJumrvx+k8KX9UBVERFpe13jwz+7M/zBj/+jNpMGzBb7dSa6D0+EFL68goKVy0m7OLhYrPeQ4RSsXK7QIyIibS5jQAJdE06GmW6mQVzAwDSg1B78h3m37k4yBiRYVGHkKfBEwJp5cyhYuZyxU6aR1qcfAL2zhzN2yjQKVi5nzbw51hYoIiIXFJvN4OpbBjQdBUd0MnzBxcnFUQFMTOLzTnTaBcugwBMRAQMGFB+jf+lxMJvmRw0b/UuPM6D4GIHO+/ckIiLtVOZlqfT4XoAaRyUA6U3TWoeivay+5CkeKZ7LuwfetbDCyDJMPSALgKqqKlwuFx6Ph/j4+G/8euVLl1Kx+En6/UsaMfWbqel2I4f+51OSZ88iZcaMVqhYRETk3PkDfia+PJGy2jIyqjLx12ay15OHEXWcbgOewMAgLTaNVZNXYbfZrS73nJ3r57dGeCIkZcYMkmfPwvuPfwBQ+8GHCjsiImKZTWWbKK0rxTRMjrj2UpLmBgKYvu4EfN0wMSmpK2FT2SarS40IBZ4ISpkxA5rnQ212hR0REbFMeV152LFhb8DmCLYFTvRqsV9nocATQeVLl0LTjKHp9wePRURELJASm3Jam63LFwD46y86a7/OQIEnQprX8DgvCa6K73pNLhWLn1ToERERS4xIHUFabBoGJ3fO2GMOAeA/0ROAtNh0RqSOsKS+SFPgiYDyeVOpWPwkybNnEZN5MQBxV19D8uxZwdAzT3dcFhGRtmW32bl/9P0AodBjD43w9CQQAM8XN7J6Z+d8iKgCTySYkJxdRcrgGkLPpzUMUgbXkJxdBdoXJyIiFhjfZzyLrl1EfHQSADZnMeADfzfqv/gRFaUDufu5TazaXmxtoRGgbelNWntbOvkLwf0YpAyE8t1wyQ3w2SrIexBy53/z1xcREfka/AGTK594l/LGXRhR1fiqLwXz5F2YDSDdFcO6+8Zh7wA3IjzXz+/zelq6nIfmUON+LPhfhR0REWkH1hcdo8TTAGSe8bwJFHvqWV90jJzMpDatLZI0pRVJufOheXGYYVfYERERy5VV17dqv45CgSeS8hcSWrBj+puORURErJMaF9Oq/ToKBZ5IaV7Dk9Q/eDxoUvBYoUdERCw0ul8iGa4YWlqdYwAZrhhG90tsy7IiToEnAtb97RfBcJP3ICQGt6Uz8FvBY/djwfMiIiIWsNsMHrkpq4WzJiYmc65p6BALls+HAk8E2M0AT/S9g0V9bgvdaRnDxqI+t/FE3zuwNz9BXURExAI3ZGfw+E02ujuPh7XH2L3MGPa/JHtnUVb2tkXVRYZ2aUVAzncfo3B/CQuLSvhe3Qn6Am9VVLHweAnzr72PnL7pVpcoIiIXMNP0cxH/wcJrSvnseCYfF4/k/cNX0if+ICPTPgUMPtvzKCkp4zGMjvPk9LPRCE+EzO2bzvx+6RSd8ALwRoWH+f3SmauwIyIiFqus3IDXW4LNMBmUuJe8XusAOFjdi4BpACZebzGVlRusLbQVKfBE0Ny+6dibdmnZsSnsiIhIu+D1hj8+oke3YqJsjZzwdaH8RFKL/ToyBZ4IWrS/JLSGp6H5WERExGJOZ2rYcZQtQK9uRwA4WNWrxX4dmQJPhCxqWsPTt0s0AN9O7c7CohKFHhERsVxCwiicznQ4ZXN67/jgk9MPVgefnO50ZpCQMMqK8iJCgScCZrkLWVhUwvx+6fR2BgPPpNTuzO+XzsKiEma5Cy2uUERELmSGYeeSAQ83HwHQJz745PQDVT3BhJRtt1C/43gLr9DxKPBEgInBqKJdjDyw++S2dAxGHtjNqKJdmC3e7klERKRtpKZOZEj2Ehy2FAD6xDWN8Hh6k7HlZ3TdP5yjz+3ixPYKK8tsNdqWHgF/yLuCfJsXt9vNMNdxEoAdu3bh3tHIz/PyyM29wuoSRURESEmegK8wnhrbNpIcVdgxqfZ15UT5CJqfO1752ufEZCVhdPAbEWqEJ0Jyc3PJy8vD46kEYMeOHeTl5ZGbm2ttYSIiIk28RR4CHh+xxy8luXQM/Qjec+cz/KE+fo8Xb5HHqhJbjQJPBOXm5oYmrwybXWFHRETalUB1Q9jxJWcIPGfq1xEp8ERQfn4+EHyMhD9gNh2LiIi0D7Y4R9jxgKZYsJfAWft1RAo8EZKfn4/b7cYV7wIgO3sIbrdboUdERNoNZz8XdtfJMDPgDCM8dpcTZz9Xm9fW2hR4IuDZJYtxu93k5eXhio8DIDs7m7y8PNxuN88uWWxxhSIiImDYDBJuygTABPo3BZ5STDxmABOoz+74C5ZBgScyDANH+WEcFUfCtqU7Ko7gKD8MRsf/wxERkc6hS3YyjVf2oD5g0g2DHk2rT7ebfjbU+njzjQPs29zxHzGhwBMB02fMIm/cOApWLqf6WPD+Bf8o/ICClcvJGzeO6TNmWVyhiIhIUCBgkv9hCe9U+VhX4yPZF4wGb3kbKW4M/qN93co9BALm2V6m3VPgiZCcyVMZO2UatU2BZ9e6tYydMo2cyVMtrkxEROSk4j2V1FZ6ATjqM4lvDI7wlNlPBpya416K91RaUV6rUeCJoJzJUzGapq8Mm11hR0RE2p3aKm/YcYo/GA3K7IGz9utoFHgiqPDlFaE1PAF/IHgsIiLSjnSNd4Ydp/qD/1A/ZjPxYbbYr6NR4ImQwpdXULByOV27dwfg0mvyKFi5XKFHRETalYwBCXRNOBlm4kwDZwACBhxtmtbq1t1JxoAEiypsHQo8EbBm3hwKVi5n7JRpdEtIAODSK/MYO2UaBSuXs2beHEvrExERaWazGVx9y4CmIxMDg9RA07SWLYCJSXzeCWwdfGu6Ak8EBAwYUHyM/qXH4eSudPqXHmdA8TECHftvRkREOpnMy1Lp8b0ANY5KAFKaprUOO06w+pKneKR4Lu8eeNfCCr85wzTNjr3PrJVUVVXhcrnweDzEx8d/9Q98hfKlS6lY/CQDbg0Q5Suh0vUjiv/0NsmzZ5EyY0YrVCwiItI6/AE/E1+eSFltGRlVmZyoGsbBmlHYY/cR2+fPGBikxaaxavIq7Da71eWGOdfPb43wREjKjBkkz56FryK4Lb3qb39X2BERkXZpU9kmSutKMQ2TI669VCR/BIDfm45pgolJSV0Jm8o2WVzp16fAE0EpM2acvKtyVJTCjoiItEvldeVhxzZnKRAAf1dMX1yL/ToSBZ4IKl+6NLQt3fT5g8ciIiLtTEpsStixYfNhcwRnKALe9Bb7dSQKPJHgXkD5/B9SsfhJopKSAHB997tULH6S8vk/BPcCiwsUERE5aUTqCNJi0zA4uavG5iwGIODNwDTB8CVQXp5hVYnfmAJPBJS/tY2KVzeTfPNlRCUG78OTcPPNJN98GRWvbqb8rW0WVygiInKS3Wbn/tH3h7XZYkoA8NcHR3jqSr7NzOWfsmp7cZvX1xoUeCKh11iSb76MlNg3oDY4JMjW/4+U2DdIvvky6DXW2vpERES+ZHyf8fwm978x/AkA2J3BwBOov4j6w7fiq84G4Fev7cTfAR8kGmV1AZ1RyqyfAT+D/IXgfizYuGU55D1ISu58S2sTERFpSZx/BFWfzcceWwS24LOzAg2pBBrSgOCt5Yo99awvOkZOZpKFlZ4/jfBE0qnhxhYVfiwiItLOlFXXAzb8dZn4a7KaWk+/W26wX8eiwBNJ+QtPfh/whR+LiIi0M6lxMa3arz1R4ImU5umsLonB48umB48VekREpJ0a3S+RDFfMGcZ0ggwgwxXD6H6JbVlWq1DgiYB1f/tFMNzkPQhdgru0GD4teOx+LHheRESknbHbDB65KauFsyYmJnOuacDeAR8kanngWbZsGUOHDiU+Pp74+HhycnJ46623QuevvfZaDMMI+7rrrrvCXuPgwYNMmjSJ2NhYUlNTmTdvHj6fr61/lRC7GeCJvnewqM9thJ4eahgs6nMbT/S9A7sZsKw2ERGRs7khO4PHb7LR3Xk8rD3RWcmMYf9LsncWZWVvW1Td12f5Lq2ePXvy+OOPM2DAAEzT5JlnnuE73/kOmzdvZvDgwQD8+Mc/5te//nXoZ2JjY0Pf+/1+Jk2aRHp6OgUFBRQXF3PbbbcRHR3Nf/7nf7b57wOQ893HKNxfwsKiEu5o9JEAvFB8lIV1Mcy/9j5y+qZ/1UuIiIhYwjT9XMR/sPCaUjaXZbP00x8DJr++8jG6RDUABp/teZSUlPEYRvt6kOjZWB54brrpprDjxx57jGXLlvHRRx+FAk9sbCzp6WcOCe+88w47d+7k3XffJS0tjeHDh/Poo49y33338ctf/hKHw3HGn/N6vXi93tBxVVVVK/1GQXObQs3xj/0kAM8VH2f+8JGhdhERkfaosnIDXm8JNgNGpm0jLrqa6sY4SuvS6Bt/CDDxeouprNxA9+5XWF3uObN8SutUfr+fF154gdraWnJyckLty5cvJzk5mezsbB544AHq6upC5woLCxkyZAhpaWmhtokTJ1JVVcWOHTtafK8FCxbgcrlCX7169Wr132du33RsTVNaUYahsCMiIu2e11sWdtyjW/AGhIerM87ar71rF4Fn27ZtdOvWDafTyV133cUrr7xCVlZw0dQPf/hDnnvuOdxuNw888ADPPvsst956a+hnS0pKwsIOEDouKSlp8T0feOABPB5P6OvQoUOt/nst2l/SvIKHhqZjERGR9szpTA07vqhb8FESR2rTz9qvvbN8Sgtg4MCBbNmyBY/Hw0svvcTtt99Ofn4+WVlZ/OQnPwn1GzJkCBkZGVx33XXs27ePzMzMr/2eTqcTp9PZGuWf0aLmNTxRwUw5PSOJe4uCgUcjPSIi0l4lJIzC6UzH6y0FTDK6Bj+7jtQ0f3YZOJ3pJCSMsqzGr6NdjPA4HA769+/PyJEjWbBgAcOGDeP3v//9GfuOGTMGgL179wKQnp5OaWlpWJ/m45bW/UTaLHchC4tKmN8vnYSmwDO1RzLz+6WzsKiEWe5CS+oSERH5KoZh55IBD4eOL2qa0jpSmx7ceGya9HXe06EWLEM7CTxfFggEwhYUn2rLli0AZGQE5xJzcnLYtm0bZWUn5xJXr15NfHx8aFqsrZkYjCraxcgDu09pNRh5YDejinZhtnhLJxEREeulpk5kYPwCouq7h9bwVJxIxl+bRo9PfwYvpXNie4XFVZ4fy6e0HnjgAW688UZ69+5NdXU1zz//PGvXruXtt99m3759PP/883zrW98iKSmJrVu3cu+993LNNdcwdOhQACZMmEBWVhbTp09n4cKFlJSU8NBDDzFz5syITlmdzR/yriDf5sXtdjMmpp4YYNPmTbg3HubneXnk5nacVe0iInLhMQMm9tW9udjz35zovhuXzYcnEIWt4D+IIxqAytc+JyYrCaOD3ITQ8sBTVlbGbbfdRnFxMS6Xi6FDh/L2229z/fXXc+jQId59911+97vfUVtbS69evZg8eTIPPfRQ6Oftdjuvv/46d999Nzk5OXTt2pXbb7897L49VsjNzQWg3v0XYoBPNm4kL29qqF1ERKS98hZ58HsaMLARe/xS+lHLFvwUYTKoqY/f48Vb5CEmM8HKUs+Z5YHnL3/5S4vnevXqRX5+/le+Rp8+fXjzzTdbs6xWkZubS6U7uE/LZrMp7IiISIcQqG4IO+6LjS342U/grP3as3a5hqezyM/PD63WCQQC5xTeRERErGaLC79pb1+CC5QPfCnwfLlfe6bAEyH5+fm43e7QOqKRl4/C7XYr9IiISLvn7OfC7joZZvo0xYVTA4/N5cDZz9XmtX1dCjwR8OySxbjdbvLy8ohpDjwjRpCXl4fb7ebZJYstrlBERKRlhs0g4aaT97rr2xQXjhCgwQxgmiabPY18/mm5VSWeNwWeSDAMHOWHcVQcObURR8URHOWHwegYK9pFROTC1SU7maRbL8XsEkUyBrGAH9hrBthQ52d/ZQOr/rSdfZs7xiMmFHgiYPqMWeSNG0fByuV462oB2Pre2xSsXE7euHFMnzHL4gpFRES+mjMriTUn/HxY4yfZH4wMr5/wUdxohvqsW7mHQMBs6SXaDQWeCMmZPJWxU6bRcCL4oNNP33mLsVOmkTN5qsWViYiInJviPZXUVjZw1GcS5w/OThy1hS9crjnupXhPpQXVnR8FngjKmTw1NHtli7Ir7IiISIdSW3XyqQdJTYHnmP300ZxT+7VXCjwRVPjyCpofl+73+YPHIiIiHUTX+JNPLOgeCEaGY18a4flyv/ZKgSdCCl9eQcHK5Ti6dAFg2IRJFKxcrtAjIiIdRsaABLomBMPMqSM8JidHebp1d5IxIMGK8s6LAk8ErJk3h4KVyxk7ZRqOmBgAho2/gbFTplGwcjlr5s2xtkAREZFzYLMZXH3LAAASAmCY0GhArQFm0//i805g6wDP01LgiYCAAQOKj9G/9PgprQb9S48zoPgYgfb/dyEiIgJA5mWp9PhegBMOD65A8yhPgBpHJasveYpHiufy7oF3La7yqxmmabb/vWRtoKqqCpfLhcfjIT4+/hu/XvnSpVQsfpKBP6zCFqjhWOJsSpe+RPLsWaTMmNEKFYuIiESeP+Bn4ssTKastw190N7Xe3qS51nEi4w1Mw8TAIC02jVWTV2G32du8vnP9/NYIT4SkzJhB8uxZBOqC29Irl69Q2BERkQ5nU9kmSutKMQ2Thq77AThmA9MIjpeYmJTUlbCpbJOFVX41BZ4ICgs3UVEKOyIi0uGU1518fITNUQFAoCH5rP3aIwWeCCpfuvTkgc8XfiwiItIBpMSmhL4/W+A5tV97pMATIc1reGxN29ITpv2QisVPKvSIiEiHMiJ1BGmxaRgYocBjNnbHNIMRwsAgPTadEakjrCzzKynwRED5vKlULH6S5NmzQoEn8Z+nkjx7VjD0zNMdl0VEpGOw2+zcP/p+AIyoKjAaADtmQyKmCaZpMiH9J5YsWD4fCjyRYEJydhUpg2vglJszpQyuITm76tQmERGRdm98n/FMv/gXmD7XKdNaSZg+FycO38rSN2JZtb3Y4irPTtvSm7T2tnTyF4L7MYiOhcY6GP0TWP//IO9ByJ3/zV9fRESkjfgDJlc98R7Fnjqw14G/G0Z0BWZjImDDANJdMay7bxz2Nr4JobalWy13fjDcNAa3pSvsiIhIR7W+6BjFnnrABv5uAJiNyTTHCBMo9tSzvuiYZTV+FQWeSDo13NiiFXZERKRDKquub9V+VlDgiaT8hSe/DzSGH4uIiHQQqXExrdrPCgo8kRJawxPcpcXonwaPFXpERKSDGd0vkQxXDC2tzjGADFcMo/sltmVZ50WBJwLW/e0XwXCT9yBENaXdUXcGj92PBc+LiIh0EHabwSM3ZbVwNvjU9DnXNLT5guXzocATAXYzwBN972BRn9tOaTVY1Oc2nuh7B3YzYFltIiIiX8cN2Rk8fpON7s7jYe2JzkpmDPtfkr2zKCt726LqvpoCTwTkfPcxoq+9j4VFJZwIBHf9P3W4nIVFJURfex85333M4gpFRETOj2n6uYj/YOE1v6R/wj4Aruu9lieu+SUj0z4F4LM9j2KafivLbJECT4TM7ZvO/H7p1PuD/8f/5XAF8/ulM7dvusWViYiInL/Kyg14vSXYDJOLXfuB4Nodm9F8Oz8Tr7eYysoNVpV4Vgo8ETS3b3pogVeUYVPYERGRDsvrLQt9nxp7FICKE0ln7deeKPBE0KL9JTQ/R6LRNJuORUREOh6nMzX0fUqX4OMlys8QeE7t155EWV1AZ+R2u3nF6MJKM4YZtmCm/NeeyTxQVML+/fv5rnmCvLw8i6sUERE5dwkJo3A60/F6S0npEhzhKa9LwjTBMAATohqScH7RD7pbW+uZaIQnAprDzhSjnpimLXo/uiiFKUY9K80YXjG6WFyhiIjI+TEMO5cMeBiApC7HMAjQEHBS1RAXeih26q6pHFv+GSe2V1hY6Zkp8ERArz59mGLUk7h2FT6fD4D1GzaQuHYVU4x6evXpY3GFIiIi5y81dSLZg/9ATKOL7jGVQHBaK6o+kR6f/oy4sssBqHztc8xA+3o2uaa0ImBevwzol0G+4cXnXkoU8PHHH5OX9z1yc6+wujwREZGvzVVzBRfn/4aeUUc5Bpg7/oWLa3tjnDKG4vd48RZ5iMlMsKzOL9MITwTl5ubSPM5ns9majkVERDquQHUDBjZ6+oJPTa+ozQgLO6f2a08UeCIoPz8/9L0/EAg7FhER6YhscQ4AMpoiRAlnfnpAc7/2QoEnQvLz83G73UTZg7OGV4y5ArfbrdAjIiIdmrOfC7vLQfOd5s4UeOwuJ85+rrYu7awUeCLg2SWLcbvd5OXlERUVDDyjR48mLy8Pt9vNs0sWW1yhiIjI12PYDBJuyiQ9NMJzcnGyaZqYQH12EkY7e5CoAk8kGAaO8sM4Ko6ENTsqjuAoP9x0wwIREZGOqUt2MskjM4DgCE+gKfScMGFDrY833zjAvs3t647LCjwRMH3GLPLGjaNg5XJ8jcFFW5vffp2ClcvJGzeO6TNmWVyhiIjI1xcImOzcWIFhgg94r66RdTU+Vlf5KG4Mhp91K/cQaEdb07UtPUJyJk8FwL+lgCg7bHrzVcZO+ddQu4iISEdVvKeS+soG4uINqgyTz/wBLvKHz17UHPdSvKeSiwa2j9sua4Qngk4NN7You8KOiIh0CrVVXgBcgWDI8djOPJLT3K89UOCJoMKXV4S+9/v8YcciIiIdVdd4JwBxTYGnuoXA09yvPVDgiZDCl1dQsHI59uhoAEZ86zsUrFyu0CMiIh1exoAEuiY4iW8KPFVnCDzdujvJGJDQxpW1TIEnAtbMm0PByuWMnTIttC19xA3fZuyUaRSsXM6aeXOsLVBEROQbsNkMrr5lwBlHeMym/8XnncDWjramK/BEQMCAAcXH6F96/JRWg/6lxxlQfIxA+/n/X0RE5GvJvCyVfjnBoHPqCE+No5LVlzzFI8VzeffAu1aVdxrDNM32s2fMQlVVVbhcLjweD/Hx8d/49cqXLqVi8ZMMnFqBzWzgaNI8ypYsJ3n2LFJmzGiFikVERKzjD/i59rkfcmjnbdiMeoYlv0pddBXF8fswDRMDg7TYNFZNXoXdZo9YHef6+a1t6RHSHGrMw/8O0XD86WdInn2vwo6IiHQKm8o2cdy3D4CAGcOe7tsx7CcfGGpiUlJXwqayTYxKH2VVmSGa0oqglBkzQjdVNqKjFHZERKTTKK8rx7B7wXYCgIDvzM/OKq8rb8uyWqTAE0HlS5fS/IgRs9EXPBYREekEUmJTALBFVQFgthB4mvtZTYEnQprX8BiO4Lb07v9yOxWLn1ToERGRTmFE6gjSYtMwoj0AmI3hgcfAID02nRGpI6wo7zQKPBFQPm8qFYufJHn2LIyoYOBJuvVWkmfPCoaeebrjsoiIdGx2m537R98fGuEJ+E4uGDbN4JPTJ6T/JKILls+HAk8kmJCcXUXK4Jqw5pTBNSRnV4WmuURERDqy8X3GMyxlGABm4ymBx+fixOFbWfpGLKu2F1tVXhjt0oqAlN+sgPyF4H4M7MERHj7+f/DRElJmPQi5860tUEREpBX4AyaffdEF8NFYPRQz0AXTF4e/rh9gwwB+9dpOrs9Kx27xTQg1whMpufMh70HwNwaPP1oSPFbYERGRTmJ90TGq6n3BA39XfFXD8ddl0hwvTKDYU8/6omOW1dhMgSeSTg03tmiFHRER6VTKqutbtV8kKfBEUv7Ck98HGsOPRUREOrjUuJhW7RdJCjyR0ryGx9a0hueKmcFjhR4REekkRvdLJD3e2eJ5A8hwxTC6X2LbFdUCBZ4IWPe3XwTDTd6DJxctj/lp8Nj9WPC8iIhIB2e3Gfzy5sEtnA0+NX3ONQ2WL1gGBZ6IsJsBnuh7B4v63BbWvqjPbTzR9w7sZsCiykRERFrXDdkZXHSGmywnOiuZMex/SfbOoqzs7bYv7Eu0LT0Ccr77GIX7S1hYVMIs0yQa+J8vyllYEcX8a+8jp2+61SWKiIi0CtP0kxqzh8OeAUzos4a+8YdwOau4pPs+bIYJGHy251FSUsZjGNbdhFCBJ0LmNoWaxg8CRAN/+qKc+ZdeFmoXERHpDCorNxAXVQYMICbKy5iMTV/qYeL1FlNZuYHu3a+wokRAU1oRNbdvOs2zllGGTWFHREQ6Ha+3DJezGoAqb9xZ+1lJgSeCFu0vCT1FotE0WbS/xNJ6REREWpvTmUqcoynwNLQceJzO1LYq6YwUeCJkUdManmgjOMbz014pLCwqUegREZFOJSFhFEldg2tzqlsIPE5nBgkJo9qyrNMo8ETALHchC4tKmN8vPRR4ftwzhfn90oMLmd2FFlcoIiLSOgzDzuDMHwBnGOExg18p226hfsfxti/uFAo8EWBiMKpoFyMP7A5rH3lgN6OKdmFi/f0IREREWkv/nlcBUNUQH9YeVZ9Ij09/Rtf9wzn63C5ObK+worxgLZa9cyf2h7wryLd5cbvdXGXzYwc++vhj3IU7+HleHrm51q1SFxERaW0p3YJ3Wz7hiyFt/X3YYjxEeV10OT4Q45SxlcrXPicmKwnDghsRKvBESG5uLgAB92LsQGFhIXl53wm1i4iIdBbxXaKIthk0BkzqKweS3sIEkt/jxVvkISYzoW0LRFNaERUMN8EUa7PZFXZERKRTMgyD7s7gGIontD/5zALVDW1R0mksDzzLli1j6NChxMfHEx8fT05ODm+99VbofH19PTNnziQpKYlu3boxefJkSktLw17j4MGDTJo0idjYWFJTU5k3bx4+n6+tf5XT5OfnQ9P/8YGAv+lYRESk8+neJfjsyK8KPLY4R1uUc/r7WvKup+jZsyePP/44Gzdu5JNPPmHcuHF85zvfYceOHQDce++9vPbaa7z44ovk5+dz5MgRvve974V+3u/3M2nSJBoaGigoKOCZZ57h6aef5uGHH7bqVwKCYcftdmOzBbfq5eSMxe12K/SIiEinlJTQBYDKswQeu8uJs98ZHrzVBgzTNM8exSyQmJjIf/3Xf/H973+flJQUnn/+eb7//e8D8I9//INLL72UwsJCrrjiCt566y2+/e1vc+TIEdLS0gD44x//yH333Ud5eTkOx5mTpNfrxev1ho6rqqro1asXHo+H+Pj4M/7MuXp2yWL2lR8jLy+P3A+mgK8e5mwn/9PPcbvdZKYkMn3m7G/0HiIiIu3JzOc38cbWYu7Byfdxhu1HNk0TDAPflT3od1Nmq75vVVUVLpfrKz+/LR/hOZXf7+eFF16gtraWnJwcNm7cSGNjI+PHjw/1GTRoEL1796awMHgvm8LCQoYMGRIKOwATJ06kqqoqNEp0JgsWLMDlcoW+evXq1Xq/iGHgKD+Mo+JIWLOj4giO8sNgaFu6iIh0LomxwQGGYz27UR8IH0s5YcKGWh9vvnGAfZutecREuwg827Zto1u3bjidTu666y5eeeUVsrKyKCkpweFwkJCQENY/LS2NkpLgHYtLSkrCwk7z+eZzLXnggQfweDyhr0OHDrXa7zN9xizyxo2jYOVyAn4/ABvfepWClcvJGzeO6TNmtdp7iYiItAfduwYDz64vqnmnyse6Gh+f1Ab/u7rKR3FjMAStW7mHQKDtJ5faxbb0gQMHsmXLFjweDy+99BK33357xNe6OJ1OnE5nxF4/Z/JUAPyffojNBhtff4WxU+4MtYuIiHQmibHBRcvVDX7AzlHfmUNNzXEvxXsquWhg9zasrp2M8DgcDvr378/IkSNZsGABw4YN4/e//z3p6ek0NDRQWVkZ1r+0tJT09OCTx9PT00/btdV83NzHKjmTp4bmMO1RUQo7IiLSabmaAk+98dWjN7VV3q/s09raReD5skAggNfrZeTIkURHR7NmzZrQud27d3Pw4EFycnIAyMnJYdu2bZSVnZwTXL16NfHx8WRlZbV57acqfHlFaK263+ej8OUVltYjIiISKa4u5x54usZHboalJZZPaT3wwAPceOON9O7dm+rqap5//nnWrl3L22+/jcvl4s4772Tu3LkkJiYSHx/PrFmzyMnJ4Yorgo9nmDBhAllZWUyfPp2FCxdSUlLCQw89xMyZMyM6ZXU25U/+ga1f7GPL/j2MybKDGWDkt7/L2pXLqVu/nqE9M0mZ9TNLahMREYmE5sDjjWp5Y46JSXQcZAxIaKOqTrI88JSVlXHbbbdRXFyMy+Vi6NChvP3221x//fUA/Pa3v8VmszF58mS8Xi8TJ05k6dKloZ+32+28/vrr3H333eTk5NC1a1duv/12fv3rX1v1K4XCzvC+A7DZN4CvkZE33kzllr1s2b8HgOssq05ERKT1NQceX7RBMNqAccrmdLNpzuPNjKfIPGQyvs/4M7xK5LTL+/BY4Vz38Z+LgheXc+KTT+jx91UM+ucyDHwcTbqPsiXPcuQ7N9Dl8ssZ+4NprVS5iIiI9cqq6xn92BoMA6666E2yPxtHt4aTC5OrHccp6Pt/7E/aRlpsGqsmr8LedHPeb+JcP78tH+HpjMb+YBr8YBrlfQZgHnkAIwqOPfUUybPv5dIZM6wuT0REpNU1j/CYJmyO3cCnIz4goyqT2MZ46qKrKI7fh9m0vqekroRNZZsYlT6qzeprl4uWO4uUGTOanx2KERUdPBYREemEnFF2YqKDscL0x2AaJkdce9mbvIkjrr2hsNOsvK68TetT4Img8lPWGpk+X9ixiIhIZxMX0zTKE4j5yr4psSmRLieMAk+ElC9dSsXiJzHswVnDxB/9CxWLn1ToERGRTivOGfzM6x6dEbZg+VQGBumx6YxIHdGWpSnwREL5vKlULH6S5NmzMOzBBVlJt91G8uxZwdAzTzcgFBGRzqdbTDDwTO7/wzOeN83gg0QnpP+kVRYsnw8FnkgwITm7ipTBNWHNKYNrSM6uAu2LExGRTqhb0whPZnw20y/+BYFGV9h50+fixOFbWfpGLKu2F7dpbdqlFQEpv1kB+QvB/Rg0J9iP/giFT5Iy60HInW9tgSIiIhHQHHiqTvj4v3WJ1Hruwx5bhBFVjemLw1/XD7BhAL96bSfXZ6Vjt7V8o8LWpMATKc2hxv1Y8L+FT0Kewo6IiHRezVNau4qrKPbUAzb8dZmn9TOBYk8964uOkZOZ1Ca1aUorkk4NN7ZohR0REenUmhctV9Sc28NBy6rrI1lOGAWeSMpfGPyvYYdA48ljERGRTug7l13Eb28ZxnWXpp1T/9S4r96+3loUeCKleQ1P3oPwyLHgf92PKfSIiEinNaJ3d757WU++P7InGa6YFjamB+/Jm+GKYXS/xDarTYEnEk4NO83TWLnzFXpEROSCYLcZPHJTFsBpoaf5+JGbstpswTIo8ERGwH/mBcrNoSfgt6YuERGRNnJDdgbLbh1Buit82irdFcOyW0dwQ3ZGm9ajp6U3ac2npYuIiEiQP2CyvugYZdX1pMYFp7Fac2RHT0sXERERy9ltRpttPT8bTWmJiIhIp6fAIyIiIp2eAo+IiIh0ego8IiIi0ukp8IiIiEinp8AjIiIinZ4Cj4iIiHR6CjwiIiLS6SnwiIiISKenOy03aX7CRlVVlcWViIiIyLlq/tz+qidlKfA0qa6uBqBXr14WVyIiIiLnq7q6GpfL1eJ5PTy0SSAQ4MiRI8TFxWEYrftQs169enHo0CE9lPRr0PX75nQNvxldv29G1++b0zU8O9M0qa6upkePHthsLa/U0QhPE5vNRs+ePSP2+vHx8fpD/QZ0/b45XcNvRtfvm9H1++Z0DVt2tpGdZlq0LCIiIp2eAo+IiIh0ego8EeZ0OnnkkUdwOp1Wl9Ih6fp9c7qG34yu3zej6/fN6Rq2Di1aFhERkU5PIzwiIiLS6SnwiIiISKenwCMiIiKdngKPiIiIdHoKPCIiItLpKfBE2JIlS+jbty8xMTGMGTOG9evXW11SxL3//vvcdNNN9OjRA8Mw+Nvf/hZ23jRNHn74YTIyMujSpQvjx49nz549YX2OHTvGtGnTiI+PJyEhgTvvvJOampqwPlu3buXqq68mJiaGXr16sXDhwtNqefHFFxk0aBAxMTEMGTKEN998s9V/39a2YMECRo0aRVxcHKmpqfzTP/0Tu3fvDutTX1/PzJkzSUpKolu3bkyePJnS0tKwPgcPHmTSpEnExsaSmprKvHnz8Pl8YX3Wrl3LiBEjcDqd9O/fn6effvq0ejra3/CyZcsYOnRo6K60OTk5vPXWW6Hzunbn5/HHH8cwDObMmRNq0zU8u1/+8pcYhhH2NWjQoNB5XT+LmBIxL7zwgulwOMz//d//NXfs2GH++Mc/NhMSEszS0lKrS4uoN99803zwwQfN//u//zMB85VXXgk7//jjj5sul8v829/+Zn766afmzTffbPbr1888ceJEqM8NN9xgDhs2zPzoo4/MDz74wOzfv785derU0HmPx2OmpaWZ06ZNM7dv326uWLHC7NKli/mnP/0p1OfDDz807Xa7uXDhQnPnzp3mQw89ZEZHR5vbtm2L+DX4JiZOnGg+9dRT5vbt280tW7aY3/rWt8zevXubNTU1oT533XWX2atXL3PNmjXmJ598Yl5xxRXm2LFjQ+d9Pp+ZnZ1tjh8/3ty8ebP55ptvmsnJyeYDDzwQ6vP555+bsbGx5ty5c82dO3eaTz75pGm3281Vq1aF+nTEv+FXX33VfOONN8zPPvvM3L17t/nv//7vZnR0tLl9+3bTNHXtzsf69evNvn37mkOHDjXvueeeULuu4dk98sgj5uDBg83i4uLQV3l5eei8rp81FHgiaPTo0ebMmTNDx36/3+zRo4e5YMECC6tqW18OPIFAwExPTzf/67/+K9RWWVlpOp1Oc8WKFaZpmubOnTtNwNywYUOoz1tvvWUahmEePnzYNE3TXLp0qdm9e3fT6/WG+tx3333mwIEDQ8dTpkwxJ02aFFbPmDFjzJ/+9Ket+jtGWllZmQmY+fn5pmkGr1d0dLT54osvhvrs2rXLBMzCwkLTNIOh02azmSUlJaE+y5YtM+Pj40PXbP78+ebgwYPD3uuWW24xJ06cGDruLH/D3bt3N//nf/5H1+48VFdXmwMGDDBXr15t5ubmhgKPruFXe+SRR8xhw4ad8Zyun3U0pRUhDQ0NbNy4kfHjx4fabDYb48ePp7Cw0MLKrFVUVERJSUnYdXG5XIwZMyZ0XQoLC0lISODyyy8P9Rk/fjw2m42PP/441Oeaa67B4XCE+kycOJHdu3dz/PjxUJ9T36e5T0e7/h6PB4DExEQANm7cSGNjY9jvNmjQIHr37h12DYcMGUJaWlqoz8SJE6mqqmLHjh2hPme7Pp3hb9jv9/PCCy9QW1tLTk6Ort15mDlzJpMmTTrt99Q1PDd79uyhR48eXHzxxUybNo2DBw8Cun5WUuCJkIqKCvx+f9gfLEBaWholJSUWVWW95t/9bNelpKSE1NTUsPNRUVEkJiaG9TnTa5z6Hi316UjXPxAIMGfOHK688kqys7OB4O/lcDhISEgI6/vla/h1r09VVRUnTpzo0H/D27Zto1u3bjidTu666y5eeeUVsrKydO3O0QsvvMCmTZtYsGDBaed0Db/amDFjePrpp1m1ahXLli2jqKiIq6++murqal0/C0VZXYCItGzmzJls376ddevWWV1KhzJw4EC2bNmCx+PhpZde4vbbbyc/P9/qsjqEQ4cOcc8997B69WpiYmKsLqdDuvHGG0PfDx06lDFjxtCnTx9WrlxJly5dLKzswqYRnghJTk7GbreftvK+tLSU9PR0i6qyXvPvfrbrkp6eTllZWdh5n8/HsWPHwvqc6TVOfY+W+nSU6/+zn/2M119/HbfbTc+ePUPt6enpNDQ0UFlZGdb/y9fw616f+Ph4unTp0qH/hh0OB/3792fkyJEsWLCAYcOG8fvf/17X7hxs3LiRsrIyRowYQVRUFFFRUeTn57N48WKioqJIS0vTNTxPCQkJXHLJJezdu1d/gxZS4IkQh8PByJEjWbNmTagtEAiwZs0acnJyLKzMWv369SM9PT3sulRVVfHxxx+HrktOTg6VlZVs3Lgx1Oe9994jEAgwZsyYUJ/333+fxsbGUJ/Vq1czcOBAunfvHupz6vs092nv1980TX72s5/xyiuv8N5779GvX7+w8yNHjiQ6Ojrsd9u9ezcHDx4Mu4bbtm0LC46rV68mPj6erKysUJ+zXZ/O9DccCATwer26dufguuuuY9u2bWzZsiX0dfnllzNt2rTQ97qG56empoZ9+/aRkZGhv0ErWb1qujN74YUXTKfTaT799NPmzp07zZ/85CdmQkJC2Mr7zqi6utrcvHmzuXnzZhMwFy1aZG7evNk8cOCAaZrBbekJCQnm3//+d3Pr1q3md77znTNuS7/sssvMjz/+2Fy3bp05YMCAsG3plZWVZlpamjl9+nRz+/bt5gsvvGDGxsaeti09KirK/M1vfmPu2rXLfOSRRzrEtvS7777bdLlc5tq1a8O2tdbV1YX63HXXXWbv3r3N9957z/zkk0/MnJwcMycnJ3S+eVvrhAkTzC1btpirVq0yU1JSzritdd68eeauXbvMJUuWnHFba0f7G77//vvN/Px8s6ioyNy6dat5//33m4ZhmO+8845pmrp2X8epu7RMU9fwq/zbv/2buXbtWrOoqMj88MMPzfHjx5vJyclmWVmZaZq6flZR4ImwJ5980uzdu7fpcDjM0aNHmx999JHVJUWc2+02gdO+br/9dtM0g1vTf/GLX5hpaWmm0+k0r7vuOnP37t1hr3H06FFz6tSpZrdu3cz4+HjzRz/6kVldXR3W59NPPzWvuuoq0+l0mhdddJH5+OOPn1bLypUrzUsuucR0OBzm4MGDzTfeeCNiv3drOdO1A8ynnnoq1OfEiRPmjBkzzO7du5uxsbHmd7/7XbO4uDjsdfbv32/eeOONZpcuXczk5GTz3/7t38zGxsawPm632xw+fLjpcDjMiy++OOw9mnW0v+E77rjD7NOnj+lwOMyUlBTzuuuuC4Ud09S1+zq+HHh0Dc/ulltuMTMyMkyHw2FedNFF5i233GLu3bs3dF7XzxqGaZqmNWNLIiIiIm1Da3hERESk01PgERERkU5PgUdEREQ6PQUeERER6fQUeERERKTTU+ARERGRTk+BR0RERDo9BR4RERHp9BR4REREpNNT4BERiaDKykouv/xyhg8fTnZ2Nn/+85+tLknkgqRHS4iIRJDf78fr9RIbG0ttbS3Z2dl88sknJCUlWV2ayAVFIzwiIk2uvfZa5syZ06qvabfbiY2NBcDr9WIGH9rcqu8hIl9NgUdE2qUf/ehHPPTQQ1aXAXzzWiorKxk2bBg9e/Zk3rx5JCcnt2J1InIuFHhEpN3x+/28/vrr3HzzzVaX0iq1JCQk8Omnn1JUVMTzzz9PaWlpK1YoIudCgUdEIm7dunWMHj2amJgYkpOT+f3vf3/W/gUFBURHRzNq1Kgznr/22muZNWsWc+bMoXv37qSlpfHnP/+Z2tpafvSjHxEXF0f//v156623Qj/j9XqZPXs2qampxMTEcNVVV7Fhw4avrP3UWr7O+54qLS2NYcOG8cEHH3zl+4pI61LgEZGIevPNN/nud7/LjBkz2Lp1Kz/96U+599572b9/f4s/8+qrr3LTTTdhGEaLfZ555hmSk5NZv349s2bN4u677+YHP/gBY8eOZdOmTUyYMIHp06dTV1cHwPz583n55Zd55pln2LRpE/3792fixIkcO3bsrPV/uZbzfd/S0lKqq6sB8Hg8vP/++wwcOPB8LqGItAZTRCRCTpw4Yfbs2dNcvnx5qM3n85ndunUzn3nmmRZ/bsCAAebrr7/e4vnc3FzzqquuCnvNrl27mtOnTw+1FRcXm4BZWFho1tTUmNHR0WF1NDQ0mD169DAXLlwY9rr33HNPi7Wc7/uapml+/PHH5rBhw8yhQ4eaQ4YMMf/4xz+2+HuJSOREWR24RKTzeu+99zhx4gS33HJLqM1ut2MYBk6n84w/s2vXLo4cOcJ111131tceOnRo2GsmJSUxZMiQUFtaWhoAZWVl7Nu3j8bGRq688srQ+ejoaEaPHs2uXbtafI8z1XI+7wswevRotmzZctbfRUQiT1NaIhIxbreb4cOHY7fbQ2179+6lurqayy677Iw/8+qrr3L99dcTExNz1teOjo4OOzYMI6yteQoqEAh83fLPWEtbvK+ItD4FHhGJmM2bN9PQ0BDWtnTpUkaOHMkll1xyxp/5+9//zne+851WrSMzMxOHw8GHH34YamtsbGTDhg1kZWW1+HORqEVErKEpLRGJmM2bN2OaJn/9618ZM2YML774IsuWLaOgoOCM/cvKyvjkk0949dVXW7WOrl27cvfddzNv3jwSExPp3bs3CxcupK6ujjvvvLNNaxERayjwiEhEHDx4kGPHjvH6669z//3389lnnzF06FBWrVrV4nTWa6+9xujRoyNyY77HH3+cQCDA9OnTqa6u5vLLL+ftt9+me/fubV6LiLQ9PUtLRCLi1Vdf5Uc/+hFHjx4955+5+eabueqqq5g/f34EK+t4tYjIN6c1PCISEZs3bw7bvXQurrrqKqZOnRqhis5Pe6pFRL45jfCISET80z/9E71792bx4sVWlyIiosAjIiIinZ+mtERERKTTU+ARERGRTk+BR0RERDo9BR4RERHp9BR4REREpNNT4BEREZFOT4FHREREOj0FHhEREen0FHhERESk01PgERERkU5PgUdEREQ6PQUeERER6fT+f3QywqF72njkAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model = teqp.make_model({\"kind\":\"genericSAFT\", \"model\":Dufal_water})\n", "anc = teqp.build_ancillaries(model, 676, 7000, 290)\n", "z = np.array([1.0])\n", "for T in np.linspace(290, 678):\n", " rhoL, rhoV = model.pure_VLE_T(T, anc.rhoL(T), anc.rhoV(T), 10)\n", " X_A = model.get_assoc_calcs(T, rhoL, z)['X_A']\n", " plt.plot(T, X_A[0],'o')\n", " X_A = model.get_assoc_calcs(T, rhoV, z)['X_A']\n", " plt.plot(T, X_A[0],'x')\n", "\n", "plt.plot(TL_Dufal, XL_A_Dufal)\n", "plt.plot(TV_Dufal, XV_A_Dufal)\n", "plt.gca().set(xlabel='$T$ / K', ylabel='$X_A$ (non-bonded site fraction)');\n", "\n", "plt.figure()\n", "Ts = np.linspace(290, 500)\n", "for T in Ts:\n", " rhoL, rhoV = model.pure_VLE_T(T, anc.rhoL(T), anc.rhoV(T), 10)\n", " plt.plot(rhoL, T,'o')\n", " plt.plot(rhoV, T,'x')\n", " \n", "plt.plot(CP.PropsSI('Dmolar','T',Ts,'Q',0,'Water'), Ts)\n", "plt.plot(CP.PropsSI('Dmolar','T',Ts,'Q',1,'Water'), Ts)\n", "plt.title('Water')\n", "plt.gca().set(xlabel=r'$\\rho$ / mol/m$^3$', ylabel=r'$T$ / K');" ] }, { "cell_type": "code", "execution_count": 4, "id": "6d6b5fa6", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:46.463967Z", "iopub.status.busy": "2024-12-12T18:08:46.463637Z", "iopub.status.idle": "2024-12-12T18:08:47.068109Z", "shell.execute_reply": "2024-12-12T18:08:47.067613Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHOCAYAAAB3imgWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABo3ElEQVR4nO3deVxU5f4H8M/MsIvsmwi4L6GiSalYKAK5RGahZeaW11tqVmpdK7uBXOhmWb/SrKzbLTU1Lc2uSy6pgCuaorhnbgiigKIMIMvA8Pz+GGZ0EhSQmTPL5/16zQs45zDznaPC1/M8n/PIhBACRERERFZCLnUBRERERMbE5oeIiIisCpsfIiIisipsfoiIiMiqsPkhIiIiq8Lmh4iIiKwKmx8iIiKyKmx+iIiIyKqw+SEiIiKrwuaHiCzG4sWLIZPJcPDgQalLuSuZTIaEhASpyyCyWmx+iKjJaZsQmUyG3bt337FfCIHAwEDIZDI88cQTDX7+L7/8EosXL26CSonIGrH5ISKDcXBwwA8//HDH9h07duDSpUuwt7dv1POy+SGi+8Hmh4gM5vHHH8eqVatQVVWlt/2HH35AaGgo/Pz8JKqMiKwZmx8iMphRo0ahoKAAW7du1W1TqVRYvXo1nn/++TuOr66uxrx589ClSxc4ODjA19cXkyZNwo0bN3THtG7dGidOnMCOHTt0Q2sRERF6z1NRUYHXX38d3t7eaNasGZ5++mlcvXpV75i1a9ciJiYG/v7+sLe3R7t27ZCUlAS1Wq13XEREBLp27YqTJ09iwIABcHJyQsuWLTF37tw76s/Pz8fEiRPh6+sLBwcHdO/eHUuWLGnMqSMiA2LzQ0QG07p1a4SFhWHFihW6bZs2bYJSqcRzzz13x/GTJk3CzJkz8cgjj2D+/PmYMGECli9fjkGDBqGyshIAMG/ePAQEBKBz585YunQpli5din/+8596z/Pqq6/iyJEjmD17NqZMmYL169fjlVde0Ttm8eLFcHZ2xuuvv4758+cjNDQU8fHxePvtt++o68aNGxg8eDC6d++O//u//0Pnzp3x1ltvYdOmTbpjysrKEBERgaVLl2L06NH46KOP4OrqihdeeAHz58+/r/NIRE1MEBE1sUWLFgkA4sCBA+Lzzz8XzZs3F6WlpUIIIZ555hkxYMAAIYQQrVq1EjExMUIIIXbt2iUAiOXLl+s91+bNm+/Y3qVLF9G/f/86Xzc6OlpUV1frts+YMUMoFApRWFio26at53aTJk0STk5Oory8XLetf//+AoD4/vvvddsqKiqEn5+fGD58uG7bvHnzBACxbNky3TaVSiXCwsKEs7OzKCoq0m0HIGbPnl37ySMig+OVHyIyqGeffRZlZWXYsGEDiouLsWHDhlqHvFatWgVXV1c89thjuHbtmu4RGhoKZ2dnpKSk1Ps1X3rpJchkMt3X4eHhUKvVuHjxom6bo6Oj7vPi4mJcu3YN4eHhKC0txR9//KH3fM7OzhgzZozuazs7O/Tq1Qvnz5/Xbdu4cSP8/PwwatQo3TZbW1u89tprKCkpwY4dO+pdPxEZlo3UBRCRZfP29kZ0dDR++OEHlJaWQq1WY8SIEXccd+bMGSiVSvj4+NT6PPn5+fV+zaCgIL2v3d3dAUBv7tCJEyfw7rvvIjk5GUVFRXrHK5VKva8DAgL0mintcx49elT39cWLF9GhQwfI5fr/p3zggQd0+4nINLD5ISKDe/755/Hiiy8iNzcXQ4YMgZub2x3HVFdXw8fHB8uXL6/1Oby9vev9egqFotbtQggAQGFhIfr37w8XFxckJiaiXbt2cHBwwKFDh/DWW2+hurq6Qc9HROaFzQ8RGdzTTz+NSZMmYd++ffjxxx9rPaZdu3bYtm0bHnnkEb0hqdr89SpMQ6WmpqKgoABr1qxBv379dNsvXLjQ6Ods1aoVjh49iurqar2rP9ohtFatWjW+YCJqUpzzQ0QG5+zsjIULFyIhIQFDhw6t9Zhnn30WarUaSUlJd+yrqqpCYWGh7utmzZrpfd1Q2is5t1+5UalU+PLLLxv9nI8//jhyc3P1mruqqiosWLAAzs7O6N+/f6Ofm4iaFq/8EJFRjB8//q77+/fvj0mTJmHOnDnIyMjAwIEDYWtrizNnzmDVqlWYP3++bq5QaGgoFi5ciPfeew/t27eHj48PIiMj611L37594e7ujvHjx+O1116DTCbD0qVL72sY66WXXsLXX3+NF154Aenp6WjdujVWr16NPXv2YN68eWjevHmjn5uImhabHyIyGV999RVCQ0Px9ddf45133oGNjQ1at26NMWPG4JFHHtEdFx8fj4sXL2Lu3LkoLi5G//79G9T8eHp6YsOGDXjjjTfw7rvvwt3dHWPGjEFUVBQGDRrUqNodHR2RmpqKt99+G0uWLEFRURE6deqERYsW4YUXXmjUcxKRYcgEZ+wRERGRFeGcHyIiIrIqbH6IiIjIqrD5ISIiIqvC5oeIiIisCpsfIiIisipsfoiIiMiq8D4/Naqrq3H58mU0b978vm+dT0RERMYhhEBxcTH8/f3vWFi4Lmx+aly+fBmBgYFSl0FERESNkJ2djYCAgHody+anhvbW89nZ2XBxcZG4GiIiIqqPoqIiBAYGNmgJGTY/NbRDXS4uLmx+iIiIzExDpqxwwjMRERFZFTY/REREZFXY/BAREZFVYfNDREREVoXNDxEREVkVNj9ERERkVdj8EBERkVVh80NERERWhTc5JKIGU6vV2LVrF65cuYIWLVogPDwcCoVC6rKIiOqFV35IUgkJCUhKSqp1X1JSEhISEoxbEN3TmjVr0Lp1awwYMADPP/88BgwYgNatW2PNmjVSl0ZEVC+SNz8JCQmQyWR6j86dO+v2l5eXY+rUqfD09ISzszOGDx+OvLw8vefIyspCTEwMnJyc4OPjg5kzZ6KqqsrYb4UaQaFQID4+/o4GKCkpCfHx8byaYGLWrFmDESNG4NKlS3rbc3JyMGLECDZARGQWTGLYq0uXLti2bZvuaxubW2XNmDEDv/76K1atWgVXV1e88soriI2NxZ49ewBoLr/HxMTAz88Pe/fuxZUrVzBu3DjY2tri/fffN/p7ob+oUgE2dnXujouLAwDEx8frvtY2PomJibr9JD21Wo1p06ZBCHHHPiEEZDIZpk+fjmHDhrFpvYsqdTVsFJL/v5PIugmJzZ49W3Tv3r3WfYWFhcLW1lasWrVKt+3UqVMCgEhLSxNCCLFx40Yhl8tFbm6u7piFCxcKFxcXUVFRUefrlpeXC6VSqXtkZ2cLAEKpVDbNGyMh8v8Q4rOeQpxcf89DExMTBQBhZ2cnAIjExEQjFEgNkZKSIgDc85GSkiJ1qSZt5qoM8fLydHG5sFTqUogsglKpbPDvb5P478eZM2fg7++Ptm3bYvTo0cjKygIApKeno7KyEtHR0bpjO3fujKCgIKSlpQEA0tLS0K1bN/j6+uqOGTRoEIqKinDixIk6X3POnDlwdXXVPQIDAw307qzUn78B/40GCs4Cye8B1eq7Hh4XFwc7OzuoVCrY2dnxio8JunLlSpMeZ41yCsuw5lAOfj16BZEf78CXqWdRUXX3fxtE1PQkb3569+6NxYsXY/PmzVi4cCEuXLiA8PBwFBcXIzc3F3Z2dnBzc9P7Hl9fX+Tm5gIAcnNz9Rof7X7tvrrMmjULSqVS98jOzm7aN2athAD2fAb88CxQUQQE9QVe2ADI7z4MkpSUpGt8VCpVnZOgSTotWrRo0uOsUUs3R6x95RE81ModZZVqzN18GkPm7cKOP69KXRqRVZF8zs+QIUN0n4eEhKB3795o1aoVfvrpJzg6Ohrsde3t7WFvb2+w57dKleXAhunAkRWar3uOBx7/+K5zfgDcMcdH+zUAXgEyIeHh4QgICEBOTk6t835kMhkCAgIQHh5e6/czHq/Rxd8VqyaH4ZfDOXh/4x84f+0mxn/3OwZ18cW7McEI9HCSukQiiyd58/NXbm5u6NixI86ePYvHHnsMKpUKhYWFeld/8vLy4OfnBwDw8/PD77//rvcc2jSY9hgyguI84MfRwKUDgEwBDJ6DhE2XoTjyYa0NTFJSEtRqtS7tdfvk5tomQZP0FAoF5s+fjxEjRkAmk+k1QDKZDAAwb968WhuaNWvWYNq0aXopsYCAAMyfPx+xsbGGL97EyGQyxPYMQHSwL+ZvO4PFezOx5UQeUk9fxdQB7fFSv7ZwsLW+xpDIWCQf9vqrkpISnDt3Di1atEBoaChsbW2xfft23f7Tp08jKysLYWFhAICwsDAcO3YM+fn5umO2bt0KFxcXBAcHG71+q3Q5A/hmgKbxcXADxvwM9J4EhcLmnjF2tVpda6orLi4OiYmJUKs5H8KUxMbGYvXq1WjZsqXe9oCAAKxevbrWRobx+Lq5ONgi7olgbHwtHL3beKCiqhqfbP0TAz/die2n8u79BETUOAabfl1Pb7zxhkhNTRUXLlwQe/bsEdHR0cLLy0vk5+cLIYSYPHmyCAoKEsnJyeLgwYMiLCxMhIWF6b6/qqpKdO3aVQwcOFBkZGSIzZs3C29vbzFr1qwG1dGY2eIkhDi2WogkXyFmuwix4CEhrp3V261NcWnTW3/9msxTVVWVSElJET/88INISUkRVVVVdR4XEBBQZzJMJpOJwMDAOr/fmlRXV4u1GTmi17+3ilZvbRCt3tog/rbod5F5rUTq0ohMWmN+f0ve/IwcOVK0aNFC2NnZiZYtW4qRI0eKs2dv/QItKysTL7/8snB3dxdOTk7i6aefFleuXNF7jszMTDFkyBDh6OgovLy8xBtvvCEqKysbVAebn0bY+bGm6ZntIsSyEUKUFdZ6GGPs1ovx+IYrKa8U7288KdrN+lW0emuD6PDPjeLz5DOiSl0tdWlEJqkxv79lQtQyc9EKFRUVwdXVFUqlEi4uLlKXY/p2zwO2zdZ83vdVIPpfd0102dvb69JcFRUVxqmRJLdixQo8//zz9zzuhx9+wKhRo4xQkfk4m1+ChHUnsPvsNQDAQ63c8enIHpwQTfQXjfn9bXJzfsgM7Ft4q/GJigcGvnfXxocxduvFeHzjtfdxxtKJvfDxM93hbG+DgxdvYPC8nfjpYHataTsiqj82P9QwB74FNr+t+bz/W0D4G3c9/PYYe0VFBRITE2udBE2WSRuP16bB/komkyEwMLDWeLxarUZqaipWrFiB1NRUq5z8LpPJMCI0AJumhePh1u64qVLjzdVHMXlZOq7fVEldHpHZYvND9Xd4GfDr65rPH5mGhB0Vd12RfcCAAbXG2NkAWQ9tPB7AHQ3Q3eLxXDleX6CHE1a+FIY3B3eCrUKGLSfyMGjeTqSczr/3NxPRHdj8UP0cXQWsfUXzee8pQPS/7hllB8AYOzU4Hs9ofO0UchlejmiPX15+BB18nHG1uAITFh1A3P+Oo0zFf0tEDcEJzzU44fkuTvwPWP03QKiBh/4GxHwC1Pyvva67M3NFdvqr+tzhWa1Wo3Xr1nc0Plrau0hfuHDBKu8OrVVeqcaHm//Aoj2ZAIC23s0wb2QPhAS4SVoXkRQa8/ubzU8NNj91OJcCLB8BVFcBPUYDT34OyPUvGGobHu2EZjY+1FipqakYMGDAPY9LSUlBRESE4QsycbvOXMU/Vh1BXlEFbOQyvD2kMyY+2qbOOVZElohpL2paNzKB1RM0jU/X4cCTC+5ofACuyE5NhyvHN0x4B29smd4PMSEtUFUt8N6vpzD9xwwOgxHdA5sfqp3qJrByNFB2A2gZCgz7ss44O6Ps1FQYjW84Nyc7fD7qQSQMDYZCLsPajMsYvnAvsq+XSl0akcli80N3EkIzuTnvONDMG3h2KWDrUOuhjLJTU2psNN7aY/EymQwvPNIGy//eG57N7HDyShGGfr4bu89ck7o0IpPE5ofutPcz4MQaQG4DPPs9Ej79ptZmRtv4REREMMpOTaIx0XjG4m/p09YT6199FN0DXFFYWolx3+3H1zvO8aaIRH/B5of0nUsGtiVoPh/8AdCqLxQKRa3NTHJyMgAgMjJSbzuj7HQ/GhKNZyz+Tv5ujvhxUhieCQ1AtQDmbPoDr6w4jFJVldSlEZkMpr1qMO0F4PoF4D8RQHkh8OAYTbKLkXaSyL2i8YzF350QAsv2Z+Ff606gqlqgs19zfD02FK08m0ldGlGTYtT9Plh981OlAv4bBeQe1UxwfmHjHfN8GGknU8JYfP0cyLyOKcsO4VpJBVwdbfHt+IfwUGsPqcsiajKMulPj7fxI0/g4etQ5wZmRdjIljMXXz8OtPbDh1UfRPdANyrJKjP7vfmw+nit1WUSSYvNDQE46sOv/NJ/H/B/g2rLWwxhpJ1PCWHz9+bk6YOWLfRD9gC8qqqoxZXk6vk/LlLosIsmw+bF2leXAL1M0S1d0iQW6xtZ6GCPtZGoaGou39ji8o50CX43pied7B0EIIH7tCXy4+Q8mwcgq2UhdAEks5d/AtdNAMx8g5v+QkJAAhUKhN6SlbXwiIyN1vzC0+7ULmHIIjIxNG4sfMWIEZDKZ3i/xv8bi16xZg2nTpulNjg4ICMD8+fPvWFjVktko5Pj3U13h7+qAj3/7EwtTzyFPWY4PhofAzob/Fybrwb/t1ixrP7B3gebzofMBJ49aY+1qtRqRkZFITk7WS80w0k5Sq08snnF4fTKZDK9EdsBHI0KgkMuw5nAO/rb4AIrLK6UujchomPaqYXVpL9VN4KtHgevnge6jgKe/0u1irJ3MTV2xeMbh7y71dD5eXn4IpSo1glu4YPGEh+HjUvvd3IlMFaPu98Hqmp/f4jR3cm7uD7ycBji66e1mrJ0sAePw93b0UiH+tvgArpWoEOThhBUv9UFLN0epyyKqN0bdqX6unQX2LdR8/sSndzQ+AGPtZBkYh7+3kAA3rJnyCII8nJB1vRQjv07joqhk8dj8WKMt7wDVlUD7x4BOg2s9hLF2sgSMw9dPkKcTfpzUB228muHSjTKM/DoNmdduSl0WkcGw+bE2Z7YCZ7ZoFi0dPKfWQxhrJ0vBOHz9tXB1xMqX+qCddzNcVpZj5H/ScO5qidRlERkEmx9rUqUCNr+t+bz3ZCR8vvyOhqauWDsbIDJHDVklnqvDA74uDlj5Uhg6+jojr6gCI7/ehzN5xVKXRdTk2PxYk9+/BgrOAs28gf5vMtZOVoFx+Ibxbm6PFS/2wQMtXHCtpALP/WcfTl0pkrosoibFtFcNi097leQDC0KBiiLNau09xwJgrJ2sB+PwDVNYqsLYb3/HsRwl3J1ssXRib3Rt6Sp1WUR3YNT9Plh88/PrG8CB/wL+DwJ/Twbkty76MdZO1oxx+Lopyyox/rvfkZFdCHcnW/w0KQwdfJtLXRaRHkbdqXaF2UD6Es3njyXpNT4AY+1k3RiHr5uroy2WTuyF7oFuuFGqWRE+q4AxeDJ/bH6swa6PNdH2Nv2ANuF37GasnaxZQ+Lw1pgGa+5giyUTHkYn3+bIL67A6G/3IVdZLnVZRPeFC5tauhuZwOFlAIDvLvghJympzkVLtXMguFgpWRNtHD4nJ6fWFc61c36uXr16x9wga1kc1c3JDksn9sKzX6chs6AUY77djx9f6gNPZ3upSyNqFF75sXQ7PwKqq4B2kchRBOmlu25vfLTpLsbaydrUJw7/3HPPYeTIkVadBvNxccCyv/dGC1cHnM0vwfhFv6OIi6GSmeKVH0tWcA7IWKH5POIdxAU+DAC6Kzu3x9pvn+Ss/WgNl/SJgFtx+GnTpt1xZeeTTz7BjBkzar0qJISATCbD9OnTMWzYMItPgwW4O2HZ33vj2a/ScDynCBMXH8D3f+sNRzvLft9keZj2qmGRaa9fJgNHVgAdBgKjV+k2M91FVLva4vC7du1iGuwvTlxW4rn/7ENxeRX6dfTGf8c9BDsbDiSQNJj2oltuXASO/qj5POJtvV1MdxHVTqFQICIiAqNGjUJERAQUCgXTYLXo4u+KxRMehqOtAjv/vIq3fz5a65UxIlPF5sdS7f8KENVA2wigZajeLqa7iOqPi6PWLrSVB74aGwqFXIY1h3PwydY/pS6JqN7Y/FiiciVw6HvN52Gv6u3ioqVEDVPfxVH79u1rdTH4/h298f7TXQEAC5LPYuXvWRJXRFQ/bH4sUfoSQFUCeHdGwvJdd6S7bl/KQq1WswEiuov6psHatWtnlYuijnw4CK9FtgcA/PN/x5F6Ol/iiojujc2PpVFXAvu/1nweNhUKhY2usdE2Orev4XV7vN0a/qdK1Bh3Wxz1H//4Bz7++GOrjsHPeKwjYnu2hLpaYOryQzieo5S6JKK7YtqrhsWkvY6tBn6eqFm5ffpxwNaBi5cSNZG/psH69u2Ldu3acVFUAKqqakxY/Dv2nC2Ad3N7/PJyXwS4O0ldFlkBLmx6Hyyi+REC+GYAcPkwEPEOEPGWbhfj7URNj4ui6isqr8QzC9NwOq8YHXycsXpKX7g62kpdFlk4Rt2tXc4hTeOjsAcenqi3i/F2oqbHGLw+FwdbLJrwMHxd7HEmvwSvrTgMdTX/f02mh82PJUlfpPnY5SmgmZfeLsbbiZoeY/B38ndzxLfjH4aDrRw7/ryKDzf/IXVJRHdg82MpyouA4zUTK0Nf0NvFeDuRYTAGX7uuLV3x8TPdAQD/2XkeP6fXPieKSCpsfizF8dVA5U1chQeSlmzTbb698QGAhIQELl5K1EQYg6/bEyH+eLUmAj9rzTEcyrohcUVEt7D5sRTpiwEAh2UhiJ89W9fUaOPtAHTRdgCMtxM1Ecbg6zYjuiMGBvtCpa7GpKXpuKIsk7okIgBMe+mYddrr8mHgPxGAwg54/Q8kffIlo+1ERsYYfO1uVlRh+MK9+CO3GN1aumLV5DA42Fru+yXjY9T9Pph187N+umayc9cRwIhvATDaTiQ1xuBvyb5eiic/340bpZUY1sMf80b2qHOeFFFDMepujSrLb0107jlOt5nRdiJpMQZ/S6CHExaOCYWNXIa1GZexZG+m1CWRlWPzY+7O/AZUKAGXlkDrcN1mRtuJpMUYvL4+bT3xzuMPAADe+/UU0i9yAjRJh82PuTv2k+Zj1+GAXPPHyWg7kfQYg7/ThEdaIyakBapq1gC7VlIhdUlkpWykLoDuQ1kh8OcWAMBXewtwdb+mualtcnNERATi4+MBgENgREagjcGPGDECMpkMt0+v/GsM/vZJ0QEBAZg/fz5iY2ONXrOhyWQyfDg8BH9cKcK5qzfx2orD+P5vvWCj4P/Dybj4N86cnVoHqFWAd2dclfshPj4eycnJeo2P9ipQZGQko+1ERsYY/J2c7W3w1ZhQONkpsPdcAT7Z+qfUJZEV4pUfc3a0Zsir2zOI6/cPQCbTNToAGHEnMgGxsbEYNmxYrTH42sK2QgjIZDJMnz4dw4YNs8gYfAff5vhweAheXXEYX6aew4NB7ngs2FfqssiKMOpew+yi7kWXgU+CAQhg2lHAvRUARtyJzAFj8Br/Wn8Ci/ZkormDDX59NRxBnk5Sl0RmiFF3a3JqAwABBPTSNT4AI+5E5oAxeI1ZQx5AaCt3FJdX4dWVh1Gprpa6JLISbH7M1R/rNR+Dn9TbzIg7keljDF7DzkaOz0Y9CBcHGxzJLsTHv52WuiSyEmx+zNHNAiBzj+bzzk/oNjPiTmQe6hODDwgIgFqttvgIfEs3R8wdoVkB/usd57Hjz6sSV0TWgM2POfpzEyDUyIU3kr5YBuDOyc1JSUm6RU3ZABGZlnutBi+EQFlZGaKjo61iJfjBXf0wLkwzfP/6jxnILyqXuCKydGx+zNGpDQCAP2QddI2NttG5fSFThULB1duJTFRdMXgPDw8AQEFBgd52S4/Av/P4A+js1xwFN1WY8VMGqquZxSHDYdqrhtmkvSqKgbntAHUFMCUNSf/5mSu4E5mx21eD9/Hxwfjx45GTk1PrsZa+EvzZ/BIMXbAbZZVqzBzUCVMHtJe6JDIDXNX9PphN83PiF2DVC4BHO+DVdEAmY7ydyEIwAg+sOpiNmauPQiGXYdXkMPQMcpe6JDJxjLpbgz9/03zsNASomSvAeDuRZWAEHhgRGoAnu/tDXS3w+o8ZuFlRJXVJZIHY/JiT6mrg7FbN5x0G6jYz3k5kGRiB1wztJT3VFf6uDsgsKMV7v56SuiSyQGx+zEnuEeDmVcDOGQgKA8B4O5ElYQRew9XRFh8/2x0yGbDi9yxsO5kndUlkYdj8mJMzmqs+p1R+SJrzYZ2Tm7UruLMBIjIvjMDf0redF/7+aBsAwNtrjuJaSYXEFZElYfNjTs5o5vuck7XlCu5EFooR+FveGNgJnf2a41qJCm//fKzWhWCJGoPNj7m4WQBcOggAeGL6PCQmJiI1NVW3+69XgeLi4pCQkCBNrUR0X2JjY5GZmYmUlBT88MMP2LZtGxwcHGo9VtsQTJ8+3eL+w+Ngq8CnI3vATiHHtlN5+PFAttQlkYVg82MuzqcAEIBPF8C1pe7mhfHx8bC3t+e9fYgsjEKhQEREBEaNGgWFQlHnvX8ATQOUnZ2NXbt2GbFC43ighQv+MagjACBxw0lkXy+VuCKyBGx+zMX5FM3HdrfuAcKIO5F1sPYI/N8fbYtebTxQqlLjzdVHefdnum8m1fx88MEHkMlkmD59um5bREQEZDKZ3mPy5Ml635eVlYWYmBg4OTnBx8cHM2fORFWVBd0bQgjg/E7N520jdJsZcSeyDtYegZfLZfhoRAgcbRVIO1+A5fsvSl0SmTmTaX4OHDiAr7/+GiEhIXfse/HFF3HlyhXdY+7cubp9arUaMTExUKlU2Lt3L5YsWYLFixcjPj7emOUb1o1MQJkFyG0YcSeyQozAA608m+GtwZ0AAHM2/cHhL7ovJtH8lJSUYPTo0fjmm2/g7n7nrcydnJzg5+ene9x+++rffvsNJ0+exLJly9CjRw8MGTIESUlJ+OKLL6BSqep8zYqKChQVFek9TNaFHQCArGpfwN6ZK7gTWRlG4DXGhbVG75rhr5mrj3D4ixrNJJqfqVOnIiYmBtHR0bXuX758Oby8vNC1a1fMmjULpaW3Ov60tDR069YNvr6+um2DBg1CUVERTpw4UedrzpkzB66urrpHYGBg072hpnZBM+T1Xep5ruBOZKUYgdcOf3WHo60C+85fxzIOf1EjSd78rFy5EocOHcKcOXNq3f/8889j2bJlSElJwaxZs7B06VKMGTNGtz83N1ev8QGg+zo3N7fO1501axaUSqXukZ1tohFKIXTNT5vIcXqNTm03OWTEnchyMQIPBHk64e0hnQEAczb+gawCDn9Rw9lI+eLZ2dmYNm0atm7dWuc/4Jdeekn3ebdu3dCiRQtERUXh3LlzaNeuXaNf297eHvb29o3+fqO5+odmSQtbJ4x/63NkyQIRHx+P9957jyu4E1khbQQe0KwCX98IvCWtAj+2TytsOn4F+85fx9trjmL533vXOR+KqDaSXvlJT09Hfn4+evbsCRsbG9jY2GDHjh347LPPYGNjU+v/Vnr37g0AOHv2LADAz88PeXn6675ov/bz8zPwOzCCi3s1HwMeBmzsGG8nIh1rjcDL5TJ8ODwEDrZy7D1XgFXpl6QuicyMpM1PVFQUjh07hoyMDN3joYcewujRo5GRkQGFQnHH92RkZAC4FekMCwvDsWPHkJ+frztm69atcHFxQXBwsFHeh0FlpWk+3pbyYrydiID6R9tPnjxpcQmwVp7N8Ppjmpsf/vvXU8gvLpe4IjInkjY/zZs3R9euXfUezZo1g6enJ7p27Ypz584hKSkJ6enpyMzMxLp16zBu3Dj069dPF4kfOHAggoODMXbsWBw5cgRbtmzBu+++i6lTp5rHsNY9FB7brPmkVdgd8fbIyEimu4is2L0i8FrvvfeeRSbA/vZIG3Rt6QJlWSX+tf6k1OWQGZF8wvPd2NnZYdu2bRg4cCA6d+6MN954A8OHD8f69et1xygUCmzYsAEKhQJhYWEYM2YMxo0bh8TERAkrbyKF2XBDMaqqBWImJdwRb09OTmYDRGTF7haBr42lJcBsFHJ8EBsChVyGX49ewbaTeff+JiIAMsFlcgEARUVFcHV1hVKp1LuPkKSO/gSseRE58EPAv/5EZGQktm/fXud9fpjyIrJOa9aswbRp03Dp0r3nvmhviHjhwoVapxaYozmbTuHrHefRwtUBv83oh+YOtlKXREbUmN/fbH5qmGTzs2EGcPA7oM9UJB1wRHx8vG6uD1NeRHQ7tVqNXbt2Yfv27XjvvffueXxKSorFJMDKVGoMnr8TFwtKMbZPKyQ91VXqksiIGvP726SHvaxe1n7Nx6DeTHkR0V1pI/D1DXpYUgLM0U6B95/uBgBYtv8iDmfdkLgiMnVsfkxVRTGQXzOBL6AXU15EVC/WugjqI+29ENuzJYQA/vnLcVSpq6UuiUwYmx9TdTkDgABcWiJp/n+5iCkR1Ys1L4L6zuMPwNXRFievFOH7NC59QXVj82Oqcg4CAHaeL611CQumvIioNta8CKqXsz3erFn5/ZOtfyJXyXv/UO3Y/JiqS5rmZ/3hK4iMjNSb43N7zN1S/sdGRE3HmhdBHfVwEB4MckNJRRWSNvDeP1Q7Nj+mKicdANB10HgkJyfrrvDcHnPfvn074+1EVCtrXQRVLpfhvae6Qi4Dfj12BTv+vCp1SWSC2PyYImUOUHwFkCkw/u1PdXN87O3t7xgCIyKqizYBNmrUKCgUinovgmruuvi74oW+bQAA8WuPo7zSvBs6anpsfkzR5UOajz4PAHbNGHMnovtmbYugvj6wI/xcHHCxoBT/2Xle6nLIxLD5MUVXjmg++vcAwMVMiej+WVsE3tneBu/EPAAA+CLlLC7dKJW4IjIlbH5Mkbb5adHjjsVMGXMnosaoTwTe29sbOTk5FhN/HxrSAr3beKCiqhr//vWU1OWQCWHzY4KKz+wGAHy3+VCtc3wiIiLYABFRg9xrEVQhBK5evYoxY8ZYTPxdJpPhX8O6QCGXYdPxXOw+c03qkshEsPkxNcW5aI5SqKsFVu04odf4aK8CRUZGIjEx0SL+Z0ZExlNXBL42lhJ/7+zngrF9WgEAZq87DlUV7/xMbH5MT82Q13W5FzYn30pd/HUl97i4OMbciajBbo/AL1u2DF5eXrUeZ0nx9xmPdYRnMzucu3oTS/ZmSl0OmQA2P6ampvnxDolmxJ2IDEIbgW/ZsiWuXat7KMhS4u+ujra6Oz/P334G+UW887O1Y/NjanKPaj76dWPEnYgMypri78+EBqJ7gCtKKqrw8W+npS6HJMbmx9TkndB89O3KiDsRGZQ1xd/lchnih3YBAKxKv4TjOUqJKyIpsfkxJaqbwPULAIBPlm9hxJ2IDMra4u+hrdzxZHd/CAEkbjipm9dE1ofNjwn55v03AAiUwAlvzP6QEXciMihrjL+/NaQzHGzl+P3CdWw+nit1OSQRNj8mxE92HQDwxw0FI+5EZBTWFn9v6eaIl/q1AwC8v+kU1/2yUmx+TMjQXpqF+Hb+cSt9wYg7ERmatcXfJ/dvC18Xe2RfL8OiPZlSl0MSYPNjSmomO7frO4wRdyIyKmuKvzvZ2eCtwZ0BAJ8nn8HV4gqJKyJjY/NjSq7+AQAY9ve3GHEnIklYS/z9qR4t0T3AFTdVaszb9qfU5ZCRsfkxFaXXgZtXAQAffPsLI+5EJAlrib/L5TL8MyYYALDyQDbO5hdLXBEZE5sfU3FVc9OtQjTHrNnvMeJORJK4V/wdADw9PaFWq8163g8A9GrjgceCfaGuFvhg0x9Sl0NGxObHRKxf9BEAIO3MDb05PnFxcYiMjGQDRERGca/4OwAUFBQgOjraIqLvbw/pDIVchm2n8rHvfIHU5ZCRsPkxEd6yQgDATceWenN8kpKSkJycjMjISLP/XxYRmYf6xt8tIfreztsZz/cKAgC8v/EUqqt540NrwObHRPRp6woA2HwoU3eF5/aY+/bt2xlxJyKj0cbft23bBg8Pj1qPsZTo+7ToDnC2t8HRS0qsP3pZ6nLICNj8mIqrmrTBI0/9jTF3IjIJCoUCCoUC169fr/MYS4i+eznbY3L/tgCAj7acRkWV+TZyVD9sfkyBqhQougQAmPDGvxlzJyKTYS3R94mPam58eOlGGZbvy5K6HDIwNj+m4Pp5zUdHdyR98iVj7kRkMqwl+u5op8D06I4AgM9TzqK4vFLiisiQ2PyYgoKzAIBLZQ5cyZ2ITIo1rfz+TGgA2no1w/WbKvx31wWpyyEDYvNjArav+o/mY8ZFxtyJyKRY08rvNgo5/jGoEwDgv7vO41oJl72wVGx+TIBXTcy9yq01Y+5EZHKsaeX3IV39dMtefJ58VupyyEDY/JiA7i2bAQC2HDjLmDsRmSRrWfldJpPpFj1dvv8isgpKJa6IDIHNjymomfPz2MhJjLkTkcmylpXf+7b3QngHL1SqBT7loqcWic2P1MqVQJnmHhovvjWHMXciMnnWEH9/c5Dm6s//MnLwZx4XPbU0bH6kdiNT89HJC0lz5zHmTkQmzxri790CXDG4ix+EAD7dyqs/lobNj9Sua+KUl0ptGXMnIrNgLSu/vz6wI2QyYNPxXBzPUUpdDjUhNj8S27rqGwDAjqNZjLkTkVmwlpXfO/o2x7Du/gCAj387LXE11JTY/EjMQ1YEAKh2C2LMnYjMhrWs/D49uiMUchlST1/Fwcy61zgj88LmR2KhbTSrJW8/dJ4xdyIyK9aw8ntrr2Z4JjQAgObqj/b9kHlj8yO1mgnPA2JfYMydiMyONaz8/mpUB9gp5Nh3/jrSzhVIXQ41ATY/UqpWA0rNau7jp8Uz5k5EZsnSo+8t3RwxqlcgAODTbX/y6o8FYPMjpeJcoLoKkNvgvfnfMuZORGapvpH2kydPmu3ipy8PaA87GzkOZN7AnrO8+mPu2PxI6LtPEwAAN6qbIW52wh0x9wEDBkhbIBFRPdQn+g4A7733ntkufurr4oDnewUB4NUfS8DmR0LushIAQMaFglrn+KSmpvIKEBGZvPpE329nrgmwKRHtYG8jR/rFG9h9tu7lPcj0sfmR0NMDegIAMgurddtuT3olJiaa5eVhIrI+DVn53VwTYL4uDni+d83Vn628+mPOZIJ/egCAoqIiuLq6QqlUwsXFxTgvuu414NAS7JCFISJhi26+D5NeRGSu1Go1du3ahe3bt+O999675/EpKSmIiIgwfGFNJL+oHOFzU1BRVY0lf+uF/h29pS7J6jXm9zev/EhJmQ0A6P/kGCa9iMgiaFd+Dw4Ortfx5pYA83FxwJg+rQAA8zn3x2yx+ZGSMgcAsGx9KpNeRGRRLHnx00n92sLeRo5DWYXYy/v+mCU2P1IRAijSND9Jny3igqZEZFEsefFTHxcHjKpJfn22/YzE1VBjsPmRyJx/vQOoNGmvCa+9wwVNiciiWPrip5P6t4WdQo79F65j/3le/TE3bH4k4i6/CQAoqlTg7fhbTQ4XNCUiS2HJi5+2cHXEiIc0a34tSD4rcTXUUGx+JDJ51FAAwIUCFRc0JSKLZcmLn07p3w42chl2n72GQ1k3pC6HGoDNj1Rq5vs4+bXngqZEZNEsdfHTQA8nxPbUXNXi3B/zwuZHKkWXAQAdQvsz5k5EFs9SFz99OaI95DIg9fRVHM9RSl0O1RObH6kUa/6Bpx76kzF3IrJ4lhp9b+3VDEO7+wMAFqaek7gaqi82P1IpzgUALFu7nTF3IrJ4lhx9nxLRDgCw8fgVnLtaInE1VB9sfiSQkJCAM4c149pRT41mzJ2ILJ4lR987+7kg+gFfCAF8xas/ZoHNjwQUCgVcoIm6j3pxhm47Y+5EZMksOfr+8gDN1Z9fDucgp7BM4mroXtj8SCDunbfh66w59f/3zQ8AGHMnIutgqdH3nkHu6NvOE1XVAt/sPC91OXQPbH6kUJIHAFBDjpmzP2TMnYisiqVG36cOaA8AWPF7Fq6VVEhcDd0Nmx8pFGuaH4VLC9gy5k5EVsgSo+9923mie6AbKqqqsXhPptTl0F2w+ZHCzXwAwOWiKsbcicgqWWL0XSaTYUr/tgCA79MyUVJRJXFFVBc2P1KoGfZKP32JMXciskqWGn1/LNgPbbyaoai8Cit/z5K6HKoDmx8jS0hIwKIFHwIAAjr3ZMydiKySpUbfFXIZXuqnufrz7e4LUFVVS1wR1abJm5+SEt7g6W4UCgVKr2YCAB58dJBuO2PuRGRtLDX6/vSDLeHd3B5XlOVYd+Sy1OVQLRrU/Hz66ad33V9cXIxBgwbd9RhrFxcXh8iHuwAANu0+BIAxdyKyXpYYfXewVeBvj7QBAHy94xyqq4XEFdFfNaj5eeedd/D999/Xuu/mzZsYPHgwCgoKGl3MBx98AJlMhunTp+u2lZeXY+rUqfD09ISzszOGDx+OvLw8ve/LyspCTEwMnJyc4OPjg5kzZ6KqynQnmj0Q6AkA+O6nDYy5E5HVs8To++g+QXC2t8GZ/BIk/5EvdTn0Fw1qfpYuXYpJkyZh3bp1ettv3ryJQYMG4erVq0hJSWlUIQcOHMDXX3+NkJAQve0zZszA+vXrsWrVKuzYsQOXL19GbGysbr9arUZMTAxUKhX27t2LJUuWYPHixYiPj29UHUZRk/a6XqFgzJ2ICJYXfXdxsMXo3kEAgP/s4k0PTU2Dmp8RI0ZgwYIFGDVqFFJTUwHcuuKTl5eH1NTURsUSS0pKMHr0aHzzzTdwd3fXbVcqlfj222/xySefIDIyEqGhoVi0aBH27t2Lffv2AQB+++03nDx5EsuWLUOPHj0wZMgQJCUl4YsvvoBKparzNSsqKlBUVKT3MJqbmqtjOYWVjLkTEcEyo+8THmkDG7kMv1+4jozsQqnLods0eMLz3//+d8yePRvDhg1DamoqhgwZgsuXLyMlJQX+/v6NKmLq1KmIiYlBdHS03vb09HRUVlbqbe/cuTOCgoKQlpYGAEhLS0O3bt3g6+urO2bQoEEoKirCiRMn6nzNOXPmwNXVVfcIDAxsVO0NVqUCKpQAgImvvcWYOxERLDP67ufqgCd7aH4vfsOrPyalUWmvN998E1OmTEFUVBRycnKQmpqKgICARhWwcuVKHDp0CHPmzLljX25uLuzs7ODm5qa33dfXF7m5ubpjbm98tPu1++oya9YsKJVK3SM7O7tR9TdEQkICRg6NAgBUQ4aZ774HgDF3IiJLjb6/GK6JvW86dgXZ10slroa0bBpy8O1zbQDA1tYWXl5emDZtmt72+v6lzM7OxrRp07B161Y4ODg0pJT7Zm9vD3t7e6O+pkKhwOnDe4HezpA7+wByTe/JmDsR0a3o+7Rp03Dp0qU6j9NG31evXn3H7yVT80ALF4R38MKuM9fw3Z4LmD20i9QlERp45ef2YSJXV1eMGjUKwcHBd2yvr/T0dOTn56Nnz56wsbGBjY0NduzYgc8++ww2Njbw9fWFSqVCYWGh3vfl5eXBz88PAODn53dH+kv7tfYYUxEXF4eZL78AAMgr0TQ5jLkTEd1iidF37dWfHw9kQ1laKXE1BDTwys+iRYua9MWjoqJw7NgxvW0TJkxA586d8dZbbyEwMBC2trbYvn07hg8fDgA4ffo0srKyEBYWBgAICwvDv//9b+Tn58PHxwcAsHXrVri4uCA4OLhJ620Ko58aBKxZjePncxFkbw+VSsWYOxHRbRoafY+IiDBecY0Q3sELnf2a44/cYizbf1G3+jtJp0HNT1Nr3rw5unbtqretWbNm8PT01G2fOHEiXn/9dXh4eMDFxQWvvvoqwsLC0KdPHwDAwIEDERwcjLFjx2Lu3LnIzc3Fu+++i6lTpxp9WKteSjVJr4JyGWPuRER1sKTou0wmw4vhbfHGqiP4Pi0TL4a3hZ0NV5eSksmf/U8//RRPPPEEhg8fjn79+sHPz09vTpFCocCGDRugUCgQFhaGMWPGYNy4cUhMTJSw6ruoaX7yS9SMuRMR1cHSou9Du/vDu7k98ooqsPGY6Tdslk7SKz+10d4/SMvBwQFffPEFvvjiizq/p1WrVti4caOBK2saB3f9hocAhPTuj4qNm3VzfgDwChARUQ1t9D0nJ0c3x+evbo++KxQKI1fYMHY2cozr0wr/t/VP/Hf3eQzr4X/XWD8Zlslf+bEUCQkJiIqKwvnjBwEA/QY/DYAxdyKi2lhi9H10n1awt5HjeE4Rfr9Q93wmMrwGNT/x8fFIT083VC0WTaFQIDk5Ge1b1qQXHDUfGXMnIqqdpa367tHMDrE9NffE+3b3BYmrsW4Nan4uXbqEIUOGICAgAFOmTMGmTZvuuoQE3RIXF4fExEQoygs1G5zcGXMnIroHS4u+T3y0NQBg66k8ZF67KW0xVqxBzc93332H3NxcrFixAs2bN8f06dPh5eWF4cOH4/vvv79rLJE0DVAbP819kMKinuBq7kRE9WBJq76392mO/h29IQSweG+m1OVYrQbP+ZHL5QgPD8fcuXNx+vRp7N+/H71798bXX38Nf39/9OvXDx9//DFycnIMUa/Zc7HR/K8kt4gxdyKi+rKk6PvER9sAAFanX0JxOW96KIX7nvD8wAMP4M0338SePXuQnZ2N8ePHY9euXVixYkVT1GdZKsuBqjIAQInaljF3IqJ6sqToe3gHL7T3cUZJRRVWHax7GQ8ynCZNe3l7e2PixIlYu3Yt/vGPfzTlU1uET+fMBqBZ1PSqspyruRMR1ZMlrfouk8kwvm9rAMCStExUV9ce5SfDYdTdSAYMGID/fv4xAEDu6A7IZLpJ0PHx8RgwYIDEFRIRmS5Li74P79kSLg42uFhQipTT+VKXY3Ua1Pxs27atzptN0b15ONb8g3V0l7YQIiIzZEnRdyc7GzzXKwgAsGhPprTFWKEGNT+DBg3C1atXDVWLRUtJScErE0cDAC5dLwWgv6J7SkqKlOUREZkFS4q+jwtrBbkM2H32Gs7kFUtdjlVpUPPDqz73Z+TQgQCAY2eyYW9vz6g7EVEjWEr0PcDdCQOD/QAAixh7NyrO+TGmciUAQKniiu5ERPfDUqLv2onPvxzKgbKMsXdjaXDzs3DhQmzfvh03btwwRD2Wrab5uVHGFd2JiO5HfSPteXl5Jj301aetBzr5NkdZpRqrDmZLXY7VkIkGjGXJ5XJ4enqioKAAMpkMgYGB6Nmzp97Dz8/PkPUaTFFREVxdXaFUKuHi4tKkz52QkACFQoGB1cnoLQ5hj6wXHpm9VTfnJyIignN+iIgaQK1Wo3Xr1ndd9V0rICAA8+fPR2xsrJGqa5jl+y/in78cRytPJ6S8EQG5nKu9N0Rjfn83+MrPiRMncOnSJaxbtw4TJ06EEALffPMNnnjiCbRs2fKes/CtkUKhQHx8PE4e2gcAeCTqcb39qampvAJERNQA9Ym+a5l6+uvpB1uieU3sfcefDBUZg01DDtb+BfP394e/vz9iYmJ0+woKCpCeno6MjIwmLdASxMXFITk5GW4O+zUbHFz1kl4ATPqyLBGRKdJG36dNm4ZLl+q+U7IQAjKZDNOnT8ewYcOgUCiMWOW9OdnZ4NmHAvHt7gtYkpaJAZ19pC7J4jV42Cs3Nxc+Ppb3B2PIYS+tzISuaI1sjP6fCj8cKWfSi4ioCajVaixYsAAzZsy457EpKSmIiIgwfFENlHntJgb8XyqEAFL+EYE2Xs2kLslsGHzYa/PmzXB1dW1UcQS09nMDABSUVDLpRUTURBQKBXx9fet1rKmmv1p7NUNER28AwNK0ixJXY/ka1PwMHDgQ9vb2hqrF4t3IzQIAlFbbMOlFRNSELGHh03E1sffV6dkoU3EqhCHxPj9GkpSUBHWp5vYAO/dlcFFTIqImVJ+FT729vdG3b18jVtUw/Tt4I9DDEUXlVVh3JEfqciwamx8jGDBgAOLj4+HuVDO/3L45FzUlImpC9Ul/Xb16Fe3atTPZ1JdcLsOY3q0AAN+nXeSqCgbE5sdIHGwABao1X9g3l7YYIiILVJ+FT0099v7MQ4Gws5HjxOUiZGQXSl2OxWLzYwQpKSn4d9xbAAABAHbOXNSUiMgAYmNjce7cOXh5edW639QXPfVoZoehIf4AgKX7OPHZUNj8GMnrL/8dAFBULmDv6MhFTYmIDGTv3r24du1anftNfdHTsWGaoa8NR6/g+k2VxNVYJjY/xlJRBAAoVoGLmhIRGZC5L3raPcAV3Vq6QlVVjdXpXO/LENj8GIuqBABQXFHNRU2JiAzI3GPvMpkMY/oEAQCW789CdTUnPjc1Nj9G8uPSbwEALt4tUVFRwag7EZGB1Cf27unpCbVabZLzfgBgaHd/NLfXrPe151zdQ3jUOGx+DCwhIQFRUVFYu+oHAEDLNh0BaNb7ioyMZANERNTE6hN7LygoQHR0NFq3bm2SyS8nOxvE9tSk1pbvy5K4GsvD5sfAFAoFkpOT8XDIA5oNdpqYe1JSEpKTkxEZGWmy//MgIjJX9Ym9A6YdfX++5p4/W0/lIa+oXOJqLAubHwPT3sww58JpzQZ7/Zj79u3bkZCQIGmNRESWKDY2FpmZmdi2bRs8PDxqPcaUo++d/Jrj4dbuUFcL/HiAE5+bEpsfI4iLi8OTgzR3cf568XLG3ImIjEShUEChUOD69et1HmPK0ffRNVd/VvyehSp1tcTVWA42P0bSr08oAEBZpmbMnYjIiMw5+j64qx/cnWxxRVmOHX9elboci8Hmx0jS9+0EAJSp5Yy5ExEZkTlH3x1sFRjeMwAA8MN+TnxuKmx+jCApKQmnjhwEAMx+by5j7kRERmTuK76P6q2550/K6XxcLiyTuBrLwObHwLQruj8cEqzZYNeMK7oTERmRua/43s7bGb3beKBaAD8d5MTnpsDmx0hsUbM+i10zaQshIrJC5r7i+/M1V39+PJANNe/4fN/Y/BhYSkoKEhMTkZd9XrPBrhlXdCcikoA5r/g+qMutic+pp/OlLsfssfkxgri4OLQL9AMADH5yBKPuREQSMdcV3znxuWmx+TESHzfNcJeyrJJRdyIiiZhz7P25XrcmPucqecfn+8Hmx0hKCjX3Z1AJG0bdiYgkYs6x9/Y+zujVWjPxeRUnPt8XNj9GkJSUBFFxEwCQfuQEo+5ERBIx9xXfRz4cCAD48WA2qjnxudHY/BiYNurezL7mVDPqTkQkGXNf8f3xbi3Q3MEGl26UYc+5uucu0d2x+TECOwUgR02HbusobTFERFbOnFd8d7RT4KkemrpXcrHTRmPzY2ApKSl4L37WrQ22Toy6ExFJzJxXfH+ul2bo67cTuSgoqZC4GvPE5scIZk6bCgCoVAvYOzkz6k5EZALMdcX3Lv6u6NbSFZVqgV8O50hdjlli82MMlZq1WEorAZVKxag7EZGJMNfou27i84Fs3RUqqj82P8ZQpW1+BOzs7Bh1JyIyEeYafX+yhz8cbOU4k1+Cw9mFUpdjdtj8GMF3//kSAODQ3B0VFRWMuhMRmQhzXfHdxcEWj3fVNGQ/ceJzg7H5MaCEhARERUVh2aJvAADu3pq/qHFxcYiMjGQDREQkMXNe8f3ZmqGv9Ucuo1RVJXE15oXNjwEpFAokJyejT2h3zYaamHtSUhKSk5MRGRlpUgkCIiJrZK4rvvdu44HWnk64qVLj16OmNSfJ1LH5MSDtzQz/PHlUs8HGUS/mvn37diQkJEhaIxERmeeK7zKZDM88pLn68xOXu2gQNj8GFhcXh7EjhwMAtqbuYsydiMhEmeOK78N7BkAuAw5k3sC5qyVSl2M22PwYwbCYQQCAm6pqxtyJiEyUOcbe/VwdENHJBwCwOv2SxNWYDzY/RrD513UAAFW1nDF3IiITZa6x92dCAwAAaw5dQpW6WuJqzAObHwNLSkpC8m8bAQDPPj+OMXciIhNlrrH3qAd84e5ki7yiCuw6w8VO64PNjwFpV3R/fGCkZoONPVd0JyIyUeYae7ezkeOpBzVJtVXpnPhcH2x+jMAWNfdfsHGQthAiIrorc429PxOqSX1tPZmH6zdVEldj+tj8GFBKSgoSExPxe1pNMsDGniu6ExGZOHOMvQf7u6CLvwsq1QJrM7jY6b2w+TGwuLg4hIf1AgAkzfmIUXciIjNgjrH3Z2vu+bPqIFNf98Lmxwge6t4VAFBSUcWoOxGRGTDH2PuT3f1hp5Dj5JUinLislLock8bmxwiOH0kHAKihYNSdiMgM1DfOnpeXZzJDX+7N7BAdrLnnz8/pHPq6GzY/BqRd2PTPk8cAAB9/ukCX9IqKiuLSFkREJqo+sXcAmDFjBlq3bm0yk59H1Nzz538ZOVBV8Z4/dWHzY0C7du1CcnIy/H1rJs3VRN0jIyORnJxsUmPFRER0S31i71qmlP7q18EbXs72uH5ThdTT+VKXY7LY/BhQeHg4IiMjUVJYoNmgsNdb0T08PFzaAomIqE71ib0DppX+slHIEdtTUy+Xu6ibTGj/1KxcUVERXF1doVQq4eLi0qTPnZUQjCDk4NmfVVh1vJxpLyIiM6JWq7FgwQLMmDHjnsempKQgIiLC8EXdxencYgyatxM2chn2vxMFT2d7SesxtMb8/uaVHyMI8tdMQLvJtBcRkdlRKBTw9fWt17GmkP7q5NccIQGuqKoWWJtxWepyTBKbHyPIu6y53Xi1zIZpLyIiM2Rui54O71mz2OlhDn3Vhs2PgSUlJeHGtTwAwKYt27iwKRGRGTK3RU+HdveHrUKG4zlFOJ1bLHU5JofNj4FoY+7x8fHw9fLQbLwt7cUGiIjIfJjboqcezewwoJNmysWaQ7z681eSNz8LFy5ESEgIXFxc4OLigrCwMGzatEm3PyIiAjKZTO8xefJkvefIyspCTEwMnJyc4OPjg5kzZ6KqqsrYb0WPQqHQpbrcmzvVbLTVS3tJnQogIqL6M7dFT2Nrhr5+OZyDKjXv+XM7G6kLCAgIwAcffIAOHTpACIElS5Zg2LBhOHz4MLp06QIAePHFF5GYmKj7HicnJ93narUaMTEx8PPzw969e3HlyhWMGzcOtra2eP/9943+frS0k5rj4+NxM9wXzQB89c13iJ/9GdNeRERmKjY2Fk888QRatmxZ69pfQgjIZDJMnz4dw4YNg0KhkKBKjcjOPnB3skV+cQX2nCtA/47ektViaiS/8jN06FA8/vjj6NChAzp27Ih///vfcHZ2xr59+3THODk5wc/PT/e4Pcr222+/4eTJk1i2bBl69OiBIUOGICkpCV988QVUKlWdr1tRUYGioiK9R1OLi4tDYmIi1BWlAICP5y1g40NEZObMZdFTOxs5nuzuDwD4mff80SN583M7tVqNlStX4ubNmwgLC9NtX758Oby8vNC1a1fMmjULpaWlun1paWno1q2bXgxx0KBBKCoqwokTJ+p8rTlz5sDV1VX3CAwMNMh7iouLg11N4y9T2LLxISIyc+a06Kl26GvLiVwUl1dKXI3pMInm59ixY3B2doa9vT0mT56MX375BcHBwQCA559/HsuWLUNKSgpmzZqFpUuXYsyYMbrvzc3NveP+C9qvc3Nz63zNWbNmQalU6h7Z2dkGeGeatJe2+Skuq+QkZyIiM2dOsfeQAFe0826GiqpqbDpe9+9EayP5nB8A6NSpEzIyMqBUKrF69WqMHz8eO3bsQHBwMF566SXdcd26dUOLFi0QFRWFc+fOoV27do1+TXt7e9jbG/aul0lJSUiYHY+4eM0w3Rtvvo034+MBgFeAiIjMlDb2npOTg7oWSTCV2LtMJkNszwB8tOU0fjmUg2cfMswoh7kxiSs/dnZ2aN++PUJDQzFnzhx0795dFyn8q969ewMAzp49CwDw8/NDXl6e3jHar/38/AxY9d0NGDAA8fHxeC/hVpMz861Zuvv8DBgwQLLaiIio8cwt9j6sh2beT9r5AuQUlklcjWkwiebnr6qrq1FRUVHrvoyMDAC3LieGhYXh2LFjyM+/tXrt1q1b4eLiohs6k5ICt8ULFXbSFUJERE3GnGLvAe5O6NNWc7+5/x3OkbQWUyF58zNr1izs3LkTmZmZOHbsGGbNmoXU1FSMHj0a586dQ1JSEtLT05GZmYl169Zh3Lhx6NevH0JCQgAAAwcORHBwMMaOHYsjR45gy5YtePfddzF16lSDD2vdTUpKChITE/HRh7fi9knvf4j4+HgkJiYiJSVFstqIiOj+xcbG4ty5c/Dy8qp1vymt9h774K17/nA9cxNofvLz8zFu3Dh06tQJUVFROHDgALZs2YLHHnsMdnZ22LZtGwYOHIjOnTvjjTfewPDhw7F+/Xrd9ysUCmzYsAEKhQJhYWEYM2YMxo0bp3dfIKnExcXhn2/9AwBQVS0QP3s2o+5ERBbEXGLvQ7r5wd5GjrP5JTiWo5S0FlMg+YTnb7/9ts59gYGB2LFjxz2fo1WrVti4cWNTltVkpr/6MjD/a1SqwRXdiYgsjLnE3ps72GJgFz+sP3IZvxzOQUiAm6T1SE3yKz+W7osFmklxKjW4ojsRkYUxp9j70w9qJj6vP3LZ6pe7YPNjQElJSfjy888AAK7unlzRnYjIwpjTau/hHbzh2cwO10pU2HW27qE6a8Dmx0C0Ufdpr7ys2VBzd2dG3YmILIc5xd5tFXIMrVnuwtpTX2x+DEyOmhn+cltpCyEiIoMwp9j7Uw9qatxyIhclFVWS1iIlNj8Goo26f/vNfzQbFDZISkpi1J2IyAKZS+y9e4Ar2ng1Q3llNX47Yb3LXbD5MaC4uDhMfvFvAIDTZ8/rGh8mvoiILI85xN5lMhmerrn684sVD32x+TGw8WOeBwCoqgSj7kREFsxcYu9P9dA0P3vOXkN+UbmktUiFzY+BLV/2PQCgSsgYdScismDmEnsP8nRCzyA3VAtg3ZHLktYiFTY/BpSUlIQVy5YCAB7s+RCj7kREFqw+sXdPT0+o1WrJl7vQTnxem8Hmh5qQNuo+bswozQa5DaPuREQWrD6x94KCAkRHR6N169aSJr9iurWAQi7DsRwlzl0tkawOqbD5MTC5dlV3BaPuRESWrj6xd0D66Lunsz36d/QGAKy1wonPbH4MRBt1X7PqR80GuYJRdyIiKxAbG4vMzExs27YNHh4etR5jCtH3YT1qbniYcdnqVnpn82NAcXFxGDliOABg6/YURt2JiKyEQqGAQqHA9evX6zxG6uj7Y8G+cLJTIOt6KQ5lFUpSg1TY/BjYsKExAICKqmpG3YmIrIipR9+d7GwwqIsfAGBdhnUNfbH5MbAN69cCAKohZ9SdiMiKmEP0XTv0teHoFata6Z3NjwElJSVh44Z1AIAnhz3NqDsRkRUxhxXfH23vBc9mdii4qcJuK1rpnc2PgWij7k8+oRn2YtSdiMi6mMOK7zYKOZ4I0Vx5WmdF9/xh82Nguqi73EbaQoiIyOjMYcX3J3vcWum9TCXtzReNhc2PgWij7lt/26zZwKg7EZFVMvUV33sGuSHA3RE3VWpsO5Vn9NeXApsfA4qLi8OQgY8BABZ/v5RRdyIiK2XKK77LZDLdxOe1VpL6YvNjYJER/QEw6k5EZM1MPfY+rGboa8efV1FYqpKkBmNi82NgO1K3az6RMepORGStTD323tG3OTr7NUelWmDz8VxJajAmNj8GlJSUhJ07UgEAkya/zKg7EZGVMofY+5O6oS/LT32x+TEQbdR9QP9+mg2MuhMRWS1ziL0PDdE0P/suFCCvqFySGoyFzY+B6aLuMp5qIiJrZuqx90APJ4S2cocQwPojln31h7+RDUQbdU/bu1uzgVF3IiKrZ+qxd23qi80PNVpcXBwe7RsGAPjwo/9j1J2IiEw69v54txZQyGU4ckmJC9duGv31jYXNj4H1figUAFBRqWbUnYiITDr27uVsj77tPAEAGyz46g+bHwM7ePB3zSdyRt2JiKj+cXYfHx8DV1K7J7trhr7WHbmsG4azNGx+DCQhIQFRUVFIP3gAABAfn6BLekVFRSEhIUHaAomISBL1ib0DwPjx4yWZ+Dywix/sFHKcyS/BH7nFRn99Y2DzYyC7du1CcnIyAltqOmjI5IiLi0NkZCSSk5MlGcslIiLp1Sf2DgCXL1+WJPnl6miLiE7eACx34jObHwMJDw9HZGQk8q7U/MWpSXslJycjMjIS4eHh0hZIRESSqU/sXcrkl/aGh+uPWubQl0xY4rtqhKKiIri6ukKpVMLFxaXJnvfov8IQIk7i7e2V+HB3GdNeRESks337dkRHR9/zuJSUFERERBi+oBplKjVC39uKUpUav7zcFw8GuRvttRuqMb+/eeXHwEK6dgEAVFQx7UVERPry8/PrdZyxk1+Odgo8FuwLQDPx2dKw+TGw48ePAQBkcgXTXkREpMeUFzzVpr5+PXoF6mrLGiRi82NASUlJOFnT/HzyyTwubEpERHpMecHT8A7ecHGwQX5xBX6/cN3or29IbH4MQBtzj4+PR7cuwZqN8ltpLzZAREQEmPaCp3Y2cgzpqrnitP6oZQ19sfkxAIVCoUt1PdC5k2ajTK6X9pJizRYiIjI9przg6dCaoa9Nx66gUl1t1Nc2JKa9ajR12ku7iOkfsx9EJ5zDetlAPJmwmmkvIiKqlUqlQsuWLetc90smkyEgIAAXLlyAQqEwSk1V6mr0mbMd10pUWDzhYUR0kuau03fDtJcJiYuLQ2JiIs78+QcA4Jf/rWXjQ0REdTLFBU9tFHI83k0z9GVJqS82PwYUFxcHG4XmFMsVNmx8iIioTqa64Kl26GvriTyUV1rGlA02PwaUlJQE1IwqVlRWcZIzERHVyVRj76FB7mjh6oDiiirs/POqUV/bUNj8GIh2zk+H9u0AALGxw5nyIiKiOplq7F0ulyGmmzb1ZdyrTobC5scABgwYgPj4eCQmJqJdm1YAgKdjh+vu8zNgwACJKyQiIlNjyrH3J2qGvradzEOpqsqor20IbH4MTRumk/FUExHR3Zlq7L17gCsCPRxRVqlG8h/1W5LDlPE3sgGkpKTorvJczLwAAFi9Zo3ualBKSorEFRIRkamKjY3FuXPn4OXlVet+KVZ7l8lkeCJEc/VnwxHzH/pi82Mg2qh71sVMAMAPK35k1J2IiOrFFGPvT4Ro5v0kn85HcXml0V7XENj8GFBcXBwUNVF3hQ2j7kREVD+mGHsPbuGCtt7NoKqqxrZTeUZ7XUNg82NASUlJkAnN7cArVIy6ExFR/Zhi7N2Shr7Y/BiINuoeFBgAAHh+9GhG3YmIqF5MNfauHfraeeYqlKXmO/TF5scAbo+6t/TX/EV57rlRjLoTEVG9mGrsvaNvc3T0dUalWmDLyVyjvW5TY/NjaDXDXoy6ExFRQ5hq7F039GXGNzzkb2QDuD3qnlszGW35ihWMuhMRUYOYYuxdO/S15+w13LipMsprNjU2Pwaijbrn5WqanyVLvmfUnYiIGszUYu9tvZ0R3MIF6mqBzSfMc+iLzY8BxcXFQS7XjNXa2Niy8SEiogYzxdj7E901V382HL1stNdsSmx+DCgpKQkyaC5JlqsqmfQiIqIGM8XY+xPdNPN+0s4V4FpJhdFet6mw+TEQbdTd18cbAPDChAmMuhMRUYOZYuw9yNMJIQGuqBbApuPmN/TF5scAbo+6e9dMUhs3bjyj7kRE1GCmGnvXTnzecMT8hr7Y/BiaNuqOujt2IiKiuzHF2Pvj3TTNz++Z15FfVG6U12wqbH4M4Paoe0FBAQBg8fffM+pORESNZmqx9wB3JzwY5AYhgI3HzOueP2x+DEQbdb9xXdP8fPPfbxl1JyKi+2JqsfeYbtrUF5sfqhEXFwdFzWgXV3UnIqL7ZWqx95iaeT8HL95ArtJ8hr7Y/BjQ7ckuFVd1JyKi+2RqsfcWro54qJU7APMa+mLzYyDaqLu7uxsA4MWXXmLUnYiI7ospxt61V39+ZfNj3W6Puru5uAAAJk6cyKg7ERHdF1OMvT/erQVkMiD94g1cLiwzymveLzY/BidqPjLqTkRE98/UYu++Lg54uLUHAPMZ+mLzYwC3R92LipQAgG++/Y5RdyIiahKmFnvX3fDQTFJfbH4MRBt1LykuAgB8uXAho+5ERNRkTCn2PrirH2QyICO7EJdulBr89e4Xmx8DiouL043JclV3IiJqSqYUe/dp7oDebTRDX5uOmf5aX5I3PwsXLkRISAhcXFzg4uKCsLAwbNq0Sbe/vLwcU6dOhaenJ5ydnTF8+HDk5eXpPUdWVhZiYmLg5OQEHx8fzJw5E1VVVcZ+K3e4fVV3VSVXdScioqZjarH3mBDNSu8bzGDej+TNT0BAAD744AOkp6fj4MGDiIyMxLBhw3DixAkAwIwZM7B+/XqsWrUKO3bswOXLlxEbG6v7frVajZiYGKhUKuzduxdLlizB4sWLER8fL9VbAnAr6u7s7AwAePnlqYy6ExFRk6lP7D0gIADh4eFGqWdwFz/IZcCR7EJkXzfxoS9hgtzd3cV///tfUVhYKGxtbcWqVat0+06dOiUAiLS0NCGEEBs3bhRyuVzk5ubqjlm4cKFwcXERFRUVdb5GeXm5UCqVukd2drYAIJRK5X3XHxERIQCIxMREIT5sK8RsFyFyj4vExEQBQERERNz3axAREf38889CJpMJmUwmoIkX6z08PT3Fzz//bLR6Rv0nTbR6a4P4KvWs0V5TqVQ2+Pe35Fd+bqdWq7Fy5UrcvHkTYWFhSE9PR2VlJaKjo3XHdO7cGUFBQUhLSwMApKWloVu3bvD19dUdM2jQIBQVFemuHtVmzpw5cHV11T0CAwMN9K5qou4ykzrVRERkAbSxdw8Pj1r3X79+XZKV3k39hocm8Rv52LFjcHZ2hr29PSZPnoxffvkFwcHByM3NhZ2dHdzc3PSO9/X1RW6uZkJVbm6uXuOj3a/dV5dZs2ZBqVTqHtnZ2U32fm6PupeWai79LfzqK0bdiYioyQ0bNgwODg617hNGjrwP7qoZ+jp6SYmsAtMd+rKRugAA6NSpEzIyMqBUKrF69WqMHz8eO3bsMOhr2tvbw97e3mDPr012lRXPhZOTHJ8t+JxRdyIianK7du1CTk5OnfvFbZH3iIgIg9bi5WyPsHae2HO2AL8eu4IpEe0M+nqNZRJXfuzs7NC+fXuEhoZizpw56N69O+bPnw8/Pz+oVCoUFhbqHZ+Xlwc/Pz8AgJ+f3x3pL+3X2mOkcnvU3ZZRdyIiMgBTirwDt4a+TPluzybR/PxVdXU1KioqEBoaCltbW2zfvl237/Tp08jKykJYWBgAICwsDMeOHUN+fr7umK1bt8LFxQXBwcFGr/12mqi7RgWj7kREZAD1jbL7+PgYuBINberrWI7pDn1J3vzMmjULO3fuRGZmJo4dO4ZZs2YhNTUVo0ePhqurKyZOnIjXX38dKSkpSE9Px4QJExAWFoY+ffoAAAYOHIjg4GCMHTsWR44cwZYtW/Duu+9i6tSpBh3WupuEhARERUUhPj4ejo6acdjXXnsN8fHxiIqKQkJCgiR1ERGR5alP5B0Axo8fb5SJz57O9ujbTrPshqlOfJa8+cnPz8e4cePQqVMnREVF4cCBA9iyZQsee+wxAMCnn36KJ554AsOHD0e/fv3g5+en94enUCiwYcMGKBQKhIWFYcyYMRg3bhwSExOlekvYtWsXkpOTERkZCYeaBmzqy1MRGRmJ5ORko9xqnIiIrEN9VnoHgMuXLxst+XUr9XXZ4K/VGDKhnQpu5YqKiuDq6gqlUgkXF5f7eq6EhARdA1Q+2wv2UOEL+US8MvtTREZGIjw8nFd/iIioSa1ZswbTpk3DpUuX6jxGJpMhICAAFy5cgEKhMFgtBSUV6PX+dqirBXbMjEArz2YGe63G/P6W/MqPJUpISMD27duRmJgIVUUFAODTefOQmJiI7du3s/EhIqImFxsbi8WLF9/1GGGkxU49ne0R1tYTgGkOfbH5MSBN2kvzua2tHdNeRERkULeHf+7GGMmvmJCaoa+jbH6sil7aS6Vi2ouIiAzKlBY7HdTFDwq5DCcuFyHz2k2Dv15DsPkxEO3CprZ2tgA0C7RyYVMiIjKk+iS/vL290bdvX4PX4tHMDn3bmebQF5sfAxgwYIBuKQs7G03z8+qrr+qWvBgwYIDEFRIRkSWqT/Lr6tWraNeunVFTX6Z2w0M2PwanDdPd/f4LRERETUG72GnLli3rPCYnJ8cosXdTHfpi82MAty9sWlVVCQD4bMECLmxKRERGERsbi3PnzsHLy6vW/cZa8NRUh77Y/BhIXFwcEhMTUVVVBQD4+P8+4cKmRERkNHv37sW1a9fq3G+s2LspDn2x+TGguLg43WCXnR0XNiUiIuMxlQVPbx/6umAiQ182UhdgyZKSknBqbRns7WxwRamJurMBIiIiYzCV2LtHMzvExTyAzi1cEOThZNDXqi9e+TEQbdT9gWfjsSi9DG/HJTLqTkRERnOv2LtMJkNgYCDCw8MNXssLj7RBn7aeUMhNI/zDKz8GoG18bp/jo/0YHx+v9zUREZEhaGPvI0aMgEwmw+1LeWobonnz5hl0jS9TxSs/BqBWq2ud3KydBG3ImfVERERadcXeAwICsHr1asTGxkpUmbS4qnuNplzVnYiIyJSo1Wrs2rULV65cQYsWLRAeHm4xV3wa8/ubw15EREQWTqFQICIiQuoyTAaHvYiIiMiqsPkhIiIiq8Lmh4iIiKwKmx8iIiKyKmx+iIiIyKqw+SEiIiKrwuaHiIiIrAqbHyIiIrIqbH6IiIjIqvAOzzW0q3wUFRVJXAkRERHVl/b3dkNW62LzU6O4uBgAEBgYKHElRERE1FDFxcVwdXWt17Fc2LRGdXU1Ll++jObNm0MmkzXZ8xYVFSEwMBDZ2dlcMNXAeK6Nh+faeHiujYfn2nia8lwLIVBcXAx/f3/I5fWbzcMrPzXkcjkCAgIM9vwuLi78x2QkPNfGw3NtPDzXxsNzbTxNda7re8VHixOeiYiIyKqw+SEiIiKrwubHwOzt7TF79mzY29tLXYrF47k2Hp5r4+G5Nh6ea+OR+lxzwjMRERFZFV75ISIiIqvC5oeIiIisCpsfIiIisipsfoiIiMiqsPkhIiIiq8Lmx4C++OILtG7dGg4ODujduzd+//13qUsyeQkJCZDJZHqPzp076/aXl5dj6tSp8PT0hLOzM4YPH468vDy958jKykJMTAycnJzg4+ODmTNnoqqqSu+Y1NRU9OzZE/b29mjfvj0WL15sjLcnqZ07d2Lo0KHw9/eHTCbD//73P739QgjEx8ejRYsWcHR0RHR0NM6cOaN3zPXr1zF69Gi4uLjAzc0NEydORElJid4xR48eRXh4OBwcHBAYGIi5c+feUcuqVavQuXNnODg4oFu3bti4cWOTv18p3etcv/DCC3f8PR88eLDeMTzX9zZnzhw8/PDDaN68OXx8fPDUU0/h9OnTescY82eGJf/Mr8+5joiIuOPv9eTJk/WOMZlzLcggVq5cKezs7MR3330nTpw4IV588UXh5uYm8vLypC7NpM2ePVt06dJFXLlyRfe4evWqbv/kyZNFYGCg2L59uzh48KDo06eP6Nu3r25/VVWV6Nq1q4iOjhaHDx8WGzduFF5eXmLWrFm6Y86fPy+cnJzE66+/Lk6ePCkWLFggFAqF2Lx5s1Hfq7Ft3LhR/POf/xRr1qwRAMQvv/yit/+DDz4Qrq6u4n//+584cuSIePLJJ0WbNm1EWVmZ7pjBgweL7t27i3379oldu3aJ9u3bi1GjRun2K5VK4evrK0aPHi2OHz8uVqxYIRwdHcXXX3+tO2bPnj1CoVCIuXPnipMnT4p3331X2NraimPHjhn8HBjLvc71+PHjxeDBg/X+nl+/fl3vGJ7rexs0aJBYtGiROH78uMjIyBCPP/64CAoKEiUlJbpjjPUzw9J/5tfnXPfv31+8+OKLen+vlUqlbr8pnWs2PwbSq1cvMXXqVN3XarVa+Pv7izlz5khYlembPXu26N69e637CgsLha2trVi1apVu26lTpwQAkZaWJoTQ/NKRy+UiNzdXd8zChQuFi4uLqKioEEII8eabb4ouXbroPffIkSPFoEGDmvjdmK6//kKurq4Wfn5+4qOPPtJtKywsFPb29mLFihVCCCFOnjwpAIgDBw7ojtm0aZOQyWQiJydHCCHEl19+Kdzd3XXnWggh3nrrLdGpUyfd188++6yIiYnRq6d3795i0qRJTfoeTUVdzc+wYcPq/B6e68bJz88XAMSOHTuEEMb9mWFtP/P/eq6F0DQ/06ZNq/N7TOlcc9jLAFQqFdLT0xEdHa3bJpfLER0djbS0NAkrMw9nzpyBv78/2rZti9GjRyMrKwsAkJ6ejsrKSr3z2rlzZwQFBenOa1paGrp16wZfX1/dMYMGDUJRURFOnDihO+b259AeY81/NhcuXEBubq7eeXF1dUXv3r31zq2bmxseeugh3THR0dGQy+XYv3+/7ph+/frBzs5Od8ygQYNw+vRp3LhxQ3cMz7/m0r6Pjw86deqEKVOmoKCgQLeP57pxlEolAMDDwwOA8X5mWOPP/L+ea63ly5fDy8sLXbt2xaxZs1BaWqrbZ0rnmqu6G8C1a9egVqv1/oABwNfXF3/88YdEVZmH3r17Y/HixejUqROuXLmCf/3rXwgPD8fx48eRm5sLOzs7uLm56X2Pr68vcnNzAQC5ubm1nnftvrsdU1RUhLKyMjg6Ohro3Zku7bmp7bzcft58fHz09tvY2MDDw0PvmDZt2tzxHNp97u7udZ5/7XNYg8GDByM2NhZt2rTBuXPn8M4772DIkCFIS0uDQqHguW6E6upqTJ8+HY888gi6du0KAEb7mXHjxg2r+plf27kGgOeffx6tWrWCv78/jh49irfeegunT5/GmjVrAJjWuWbzQyZlyJAhus9DQkLQu3dvtGrVCj/99JNVNiVkmZ577jnd5926dUNISAjatWuH1NRUREVFSViZ+Zo6dSqOHz+O3bt3S12KxavrXL/00ku6z7t164YWLVogKioK586dQ7t27Yxd5l1x2MsAvLy8oFAo7kgU5OXlwc/PT6KqzJObmxs6duyIs2fPws/PDyqVCoWFhXrH3H5e/fz8aj3v2n13O8bFxcVqGyztubnb31k/Pz/k5+fr7a+qqsL169eb5Pxb87+Ntm3bwsvLC2fPngXAc91Qr7zyCjZs2ICUlBQEBATothvrZ4Y1/cyv61zXpnfv3gCg9/faVM41mx8DsLOzQ2hoKLZv367bVl1dje3btyMsLEzCysxPSUkJzp07hxYtWiA0NBS2trZ65/X06dPIysrSndewsDAcO3ZM7xfH1q1b4eLiguDgYN0xtz+H9hhr/rNp06YN/Pz89M5LUVER9u/fr3duCwsLkZ6erjsmOTkZ1dXVuh9yYWFh2LlzJyorK3XHbN26FZ06dYK7u7vuGJ5/fZcuXUJBQQFatGgBgOe6voQQeOWVV/DLL78gOTn5jmFAY/3MsIaf+fc617XJyMgAAL2/1yZzrus9NZoaZOXKlcLe3l4sXrxYnDx5Urz00kvCzc1Nb5Y73emNN94Qqamp4sKFC2LPnj0iOjpaeHl5ifz8fCGEJrYaFBQkkpOTxcGDB0VYWJgICwvTfb82Sjlw4ECRkZEhNm/eLLy9vWuNUs6cOVOcOnVKfPHFF1YRdS8uLhaHDx8Whw8fFgDEJ598Ig4fPiwuXrwohNBE3d3c3MTatWvF0aNHxbBhw2qNuj/44INi//79Yvfu3aJDhw568evCwkLh6+srxo4dK44fPy5WrlwpnJyc7ohf29jYiI8//licOnVKzJ4926Li10Lc/VwXFxeLf/zjHyItLU1cuHBBbNu2TfTs2VN06NBBlJeX656D5/repkyZIlxdXUVqaqpevLq0tFR3jLF+Zlj6z/x7neuzZ8+KxMREcfDgQXHhwgWxdu1a0bZtW9GvXz/dc5jSuWbzY0ALFiwQQUFBws7OTvTq1Uvs27dP6pJM3siRI0WLFi2EnZ2daNmypRg5cqQ4e/asbn9ZWZl4+eWXhbu7u3BychJPP/20uHLlit5zZGZmiiFDhghHR0fh5eUl3njjDVFZWal3TEpKiujRo4ews7MTbdu2FYsWLTLG25NUSkqKAHDHY/z48UIITdw9Li5O+Pr6Cnt7exEVFSVOnz6t9xwFBQVi1KhRwtnZWbi4uIgJEyaI4uJivWOOHDkiHn30UWFvby9atmwpPvjggztq+emnn0THjh2FnZ2d6NKli/j1118N9r6lcLdzXVpaKgYOHCi8vb2Fra2taNWqlXjxxRfv+MHNc31vtZ1jAHr/no35M8OSf+bf61xnZWWJfv36CQ8PD2Fvby/at28vZs6cqXefHyFM51zLat4UERERkVXgnB8iIiKyKmx+iIiIyKqw+SEiIiKrwuaHiIiIrAqbHyIiIrIqbH6IiIjIqrD5ISIiIqvC5oeIiIisCpsfIiIisipsfoiIDKiwsBAPPfQQevToga5du+Kbb76RuiQiq8flLYiIDEitVqOiogJOTk64efMmunbtioMHD8LT01Pq0oisFq/8EBHViIiIwPTp05v0ORUKBZycnAAAFRUVEJoFpZv0NYioYdj8EJFJmjBhAt59912pywBw/7UUFhaie/fuCAgIwMyZM+Hl5dWE1RFRQ7H5ISKTo1arsWHDBjz55JNSl9Iktbi5ueHIkSO4cOECfvjhB+Tl5TVhhUTUUGx+iMjgdu/ejV69esHBwQFeXl6YP3/+XY/fu3cvbG1t8fDDD9e6PyIiAq+++iqmT58Od3d3+Pr64ptvvsHNmzcxYcIENG/eHO3bt8emTZt031NRUYHXXnsNPj4+cHBwwKOPPooDBw7cs/bba2nM697O19cX3bt3x65du+75ukRkOGx+iMigNm7ciKeffhovv/wyjh49ikmTJmHGjBnIzMys83vWrVuHoUOHQiaT1XnMkiVL4OXlhd9//x2vvvoqpkyZgmeeeQZ9+/bFoUOHMHDgQIwdOxalpaUAgDfffBM///wzlixZgkOHDqF9+/YYNGgQrl+/ftf6/1pLQ183Ly8PxcXFAAClUomdO3eiU6dODTmFRNTUBBGRgZSVlYmAgACxfPly3baqqirh7OwslixZUuf3dejQQWzYsKHO/f379xePPvqo3nM2a9ZMjB07VrftypUrAoBIS0sTJSUlwtbWVq8OlUol/P39xdy5c/Wed9q0aXXW0tDXFUKI/fv3i+7du4uQkBDRrVs38dVXX9X5vojIOGykbr6IyHIlJyejrKwMI0eO1G1TKBSQyWSwt7ev9XtOnTqFy5cvIyoq6q7PHRISovecnp6e6Natm26br68vACA/Px/nzp1DZWUlHnnkEd1+W1tb9OrVC6dOnarzNWqrpSGvCwC9evVCRkbGXd8LERkXh72IyGBSUlLQo0cPKBQK3bazZ8+iuLgYDz74YK3fs27dOjz22GNwcHC463Pb2trqfS2TyfS2aYepqqurG1t+rbUY43WJyLDY/BCRwRw+fBgqlUpv25dffonQ0FB07Nix1u9Zu3Ythg0b1qR1tGvXDnZ2dtizZ49uW2VlJQ4cOIDg4OA6v88QtRCR9DjsRUQGc/jwYQgh8P3336N3795YtWoVFi5ciL1799Z6fH5+Pg4ePIh169Y1aR3NmjXDlClTMHPmTHh4eCAoKAhz585FaWkpJk6caNRaiEh6bH6IyCCysrJw/fp1bNiwAW+//Tb+/PNPhISEYPPmzXUOea1fvx69evUyyE0AP/jgA1RXV2Ps2LEoLi7GQw89hC1btsDd3d3otRCRtLi2FxEZxLp16zBhwgQUFBTU+3uefPJJPProo3jzzTcNWJn51UJETYtzfojIIA4fPqyXgqqPRx99FKNGjTJQRQ1jSrUQUdPilR8iMoinnnoKQUFB+Oyzz6QuhYhID5sfIiIisioc9iIiIiKrwuaHiIiIrAqbHyIiIrIqbH6IiIjIqrD5ISIiIqvC5oeIiIisCpsfIiIisipsfoiIiMiqsPkhIiIiq8Lmh4iIiKwKmx8iIiKyKmx+iIiIyKr8Py39Kl6rJYh9AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model = teqp.make_model({\"kind\":\"genericSAFT\", \"model\": Dufal_methanol})\n", "anc = teqp.build_ancillaries(model, 520, 5000, 290)\n", "z = np.array([1.0])\n", "\n", "Ts = np.linspace(290, 500)\n", "for T in Ts:\n", " rhoL, rhoV = model.pure_VLE_T(T, anc.rhoL(T), anc.rhoV(T), 10)\n", " plt.plot(rhoL, T,'ko')\n", " plt.plot(rhoV, T,'kx')\n", " \n", "plt.plot(CP.PropsSI('Dmolar','T',Ts,'Q',0,'Methanol'), Ts)\n", "plt.plot(CP.PropsSI('Dmolar','T',Ts,'Q',1,'Methanol'), Ts)\n", "plt.title('Methanol')\n", "plt.gca().set(xlabel=r'$\\rho$ / mol/m$^3$', ylabel=r'$T$ / K');" ] }, { "cell_type": "code", "execution_count": 5, "id": "92d77d30", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:47.069951Z", "iopub.status.busy": "2024-12-12T18:08:47.069589Z", "iopub.status.idle": "2024-12-12T18:08:47.716752Z", "shell.execute_reply": "2024-12-12T18:08:47.716237Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHOCAYAAACcvdMVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkC0lEQVR4nO3deXhU5d3/8fdkkkw2EpYAAcIeBCObgmBQFMIurWmjVq0LtdYq1VZtqxV/JsSkLT7Wpz7WWmprrbblkccFKlUUlRBBQQRkBxEw7IQAIfs+c//+mMyQIQmLJrPl87quXEnOuWfmPplc5Ms59+d8LcYYg4iIiEgQC/H1BERERETamgoeERERCXoqeERERCToqeARERGRoKeCR0RERIKeCh4REREJeip4REREJOip4BEREZGgp4JHREREgp4KHhGRVtKvXz9+8IMf+HoaItIMFTwi0ib+9Kc/YbFYGDt2rK+nIiKCRb20RKQtXHnllRw5coR9+/axe/dukpKSfD2lNldTU0NISAhhYWG+noqInEFneESk1eXn57N69Wp+//vf07VrVxYsWODrKXmFzWZTsSPip1TwiEirW7BgAZ06dWLmzJnccMMNTQqeffv2YbFYePrpp3n++ecZMGAAUVFRTJ06lYMHD2KMIScnh8TERCIjI0lLS6OoqMjjOfr168e3vvUt8vLyGD16NJGRkQwbNoy8vDwAFi1axLBhw4iIiGDUqFFs3LixyTxzc3MZP3480dHRdOzYkbS0NHbu3OkxJisrC4vFwp49e/jBD35Ax44diYuL484776SysrLJnBqv4SkqKuKXv/wlw4YNIyYmhtjYWGbMmMHmzZu/wU9XRL4OXdISkVZ38cUXc+WVV/Liiy+yatUqrr76aj777DMuv/xywFnw9O/fn5EjR1JbW8uPfvQjioqKeOqpp7jssstITU0lLy+Pm2++mT179vDcc8/xgx/8gJdeesn9Gv369SMiIoLS0lLuuece4uLiePrppykpKeHPf/4zjz32GD/5yU8AmDdvHl27dmXXrl2EhDj/n/fhhx8yY8YMBgwYwI9+9COqqqp47rnnsNvtfP755/Tr1w9wFjxPPPEEl156Kf3792fy5Ml8/vnnvPjiizzyyCP813/9l8ecJkyYwMsvvwzA+vXrufnmm7nxxhvp378/x44d44UXXqC8vJwdO3bQs2dPL7wbIgKAERFpRevXrzeA+eCDD4wxxjgcDpOYmGgeeOAB95j8/HwDmK5du5ri4mL39jlz5hjAjBgxwtTV1bm333LLLSY8PNxUV1e7t/Xt29cAZvXq1e5ty5YtM4CJjIw0+/fvd29/4YUXDGBWrFjh3jZy5EjTrVs3c/LkSfe2zZs3m5CQEHPHHXe4t82dO9cA5oc//KHHcX73u981Xbp08djWt29fM2vWLPf31dXVxm63e4zJz883NpvNZGdnN/vzE5G2oUtaItKqFixYQPfu3Zk4cSIAFouFm266iYULF2K32z3G3njjjcTFxbm/dyW6brvtNkJDQz2219bWcvjwYY/HJycnk5KS0uTxqamp9OnTp8n2r776CoCjR4+yadMmfvCDH9C5c2f3uOHDhzNlyhSWLl3a5Ljuvfdej+/Hjx/PyZMnKS0tbfFnYbPZ3GeU7HY7J0+eJCYmhsGDB/P555+3+DgRaX0qeESk1djtdhYuXMjEiRPJz89nz5497Nmzh7Fjx3Ls2DGWL1/uMb5xUQK4i5/evXs3u/3UqVOt8vj9+/cDMHjw4CbHcPHFF3PixAkqKirO+lqdOnVqdk6NORwOnnnmGQYNGoTNZiM+Pp6uXbuyZcsWSkpKWnyciLS+0HMPERE5P7m5uRw9epSFCxeycOHCJvsXLFjA1KlT3d9brdZmn6el7eaMJYff9PEX4us8529/+1syMjL44Q9/SE5ODp07dyYkJIQHH3wQh8PxteciIhdOBY+ItJoFCxbQrVs3nn/++Sb7Fi1axOLFi/nzn//sg5l56tu3LwC7du1qsu+LL74gPj6e6Ojob/w6b7zxBhMnTuRvf/ubx/bi4mLi4+O/8fOLyPlTwSMiraKqqopFixZx4403csMNNzTZ37NnT1599VWWLFni87sv9+jRg5EjR/LKK68wZ84cOnbsCMC2bdt4//33ue2221rldaxWa5MzQK+//jqHDx9uFzdiFPEnKnhEpFUsWbKEsrIyrrvuumb3X3HFFe6bEPq64AH43e9+x4wZM0hJSeGuu+5yx9Lj4uLIyspqldf41re+RXZ2NnfeeSfjxo1j69atLFiwgAEDBrTK84vI+dOiZRFpFQsWLCAiIoIpU6Y0uz8kJISZM2fy3nvvcfLkSS/PrqnJkyfz3nvv0aVLFzIzM3n66ae54oor+OSTT+jfv3+rvMZjjz3GL37xC5YtW8YDDzzA559/zjvvvNNkUbWItD3deFBERESCns7wiIiISNBTwSMiIiJBTwWPiIiIBD0VPCIiIhL0VPCIiIhI0FPBIyIiIkFPNx5s4HA4OHLkCB06dMBisfh6OiIiInIejDGUlZXRs2dPQkJaPo+jgqfBkSNHdDMwERGRAHXw4EESExNb3K+Cp0GHDh0A5w8sNjbWx7MRERGR81FaWkrv3r3df8dbooKngesyVmxsrAoeERGRAHOu5ShatCwiIiJBTwWPiIiIBD0VPCIiIhL0VPCIiIhI0FPBIyIiIkFPBY+IiIgEPRU8IiIiEvRU8IiIiEjQ040HRUTka7Hb7axatYqjR4/So0cPxo8fj9Vq9fW0RJqlMzzSoqysLHJycprdl5OTQ1ZWlncnJCJ+Y9GiRfTr14+JEyfy/e9/n4kTJ9KvXz8WLVrk66mJNMvnBc/8+fMZPny4u6VDSkoK7777rnt/QUEBt99+OwkJCURHR3PZZZfx5ptvejxHUVERt956K7GxsXTs2JG77rqL8vJybx9K0LFarWRmZjYpenJycsjMzNT/5ETaqUWLFnHDDTdw6NAhj+2HDx/mhhtuUNEj/sn42JIlS8w777xjvvzyS7Nr1y7z2GOPmbCwMLNt2zZjjDFTpkwxl19+uVm7dq3Zu3evycnJMSEhIebzzz93P8f06dPNiBEjzKeffmpWrVplkpKSzC233HJB8ygpKTGAKSkpadXjC0gOh/vL7OxsA5js7OxmvxeR9qW+vt4kJiYaoNkPi8VievfuY2pq63w9VWknzvfvt88LnuZ06tTJvPjii8YYY6Kjo80//vEPj/2dO3c2f/3rX40xxuzYscMAZt26de797777rrFYLObw4cMtvkZ1dbUpKSlxfxw8eFAFj8u6l4x5aYYxO5YYY04XOeHh4Sp2RNq5FStWtFjsACasS2/T/ftPmkdeet/XU5V24nwLHp9f0mrMbrezcOFCKioqSElJAWDcuHH83//9H0VFRTgcDhYuXEh1dTUTJkwAYM2aNXTs2JHRo0e7n2fy5MmEhISwdu3aFl9r3rx5xMXFuT969+7dpscWULa+Dvs/gaJ8ADIyMggPD6e2tpbw8HAyMjJ8PEER8ZWjR4+edX94zyFE9B7Kot01HDpV6aVZiZybXxQ8W7duJSYmBpvNxr333svixYtJTk4G4LXXXqOuro4uXbpgs9m45557WLx4MUlJSYBzjU+3bt08ni80NJTOnTtTUFDQ4mvOmTOHkpIS98fBgwfb7gADSckhZ7GDBYZeDzjX7LiKndra2hYXMotI8OvRo8dZ91ds/YDqg9uoc1jIWrIdY4yXZiZydn5R8AwePJhNmzaxdu1aZs+ezaxZs9ixYwfgPLtQXFzMhx9+yPr16/n5z3/O9773PbZu3fqNXtNms7kXSrs+BNjWsCC875UQ18u9QDk7O5uamhqys7ObXcgsIu3D+PHjSUxMxGKxtDjGvnYBVgt8uLOQZduPeXF2Ii3zi4InPDycpKQkRo0axbx58xgxYgTPPvsse/fu5Y9//CMvvfQSkyZNYsSIEcydO5fRo0fz/PPPA5CQkEBhYaHH89XX11NUVERCQoIvDiewbX0dgLcPRHoUO40vY02YMEFFj0g7ZbVaefbZZwFaLHpO7N3KyU8WAvCr/1tPWXWd1+Yn0hK/KHjO5HA4qKmpobLSef03JMRzmlarFYfDAUBKSgrFxcVs2LDBvT83NxeHw8HYsWO9N+lgUPgFFGzFTgiz/msRubm5HsWOqwBKTU0lOzsbu93u4wmLiC+kp6fzxhtv0KtXrxbHlK55jbpTRyips/CT+Uu9ODuRFnhnDXXLHn30UfPRRx+Z/Px8s2XLFvPoo48ai8Vi3n//fVNbW2uSkpLM+PHjzdq1a82ePXvM008/bSwWi3nnnXfczzF9+nRz6aWXmrVr15qPP/7YDBo0SLH0r+PDbGPmxhqz4CbF0UXknOrr682HH35oOnfu3GxiK6LfSNP3V2+bPg8vMZ/vO+nr6UqQOt+/3z5vLVFYWMgdd9zB0aNHiYuLY/jw4SxbtowpU6YAsHTpUh599FG+/e1vU15eTlJSEq+88grXXnut+zkWLFjA/fffz6RJkwgJCeH666/nD3/4g68OKTAZA9vecH497AYyvn8DAJmZmfz617+mtra2yaUtEWnfrFYrVquVoqKiZvdX79tExfY8oi+ZwIML1pL76HSsIS2v/RFpSxZjtIQeoLS0lLi4OEpKStrnAubDn8NfJ0JYFDy8B8KjAefibldCq6amxseTFBF/8+qrr/L973+/xf0hUR3pefefsUbEkJN2Cben9PPe5KRdON+/3365hkd8YMe/nZ8HTXUXO4qji8i5nCum7qgspnjlPwD43bJdnCjXf5zEN1TwiPNy1o63nF9f8h0AxdFF5LycK6ZusViIPLyeHhH1lFbX8+TSnV6eoYiTCh6Bo5vh1D7qCIVBU5vE0XNycrDb7Sp6RKSJc8XUjTEcLyzk878+CsAbnx/m968s9uocRUAFj4D77M5bO6rI+a/fu4sbV7Hj6oyekZGhOLqINHE+MfXaI19QvuUDAJ7OO8gbb6qjuniXFi03aLeLlo2B5y6Doq9YZPkW12f9b5NiR+ksETkfdrudVatWcfjwYR588EFOnDjhsT8kKo6ed7+ANSIGx7qF5L//Mlar1UezlWChRctyfo5tg6KvIDSC9Ef/7L5sZbPZVOyIyAWxWq1MmDCBXr16NSl2AByVJe4FzGbYt3hn+UpvT1HaMRU87d3Ot52fB04CWwd1RheRb+xsHdXLN71HTcEerBEx/GtTsfcmJe2eCp72btc7zs9DZgKKoovIN3fWqLpxcGr5XwFYVxTO9iMlXpqVtHcqeNqzU/uhYCtYQuCi6Yqii0irOFdUvebQdur2fooBnliyHS0lFW9QwdOe7XoXgP2mJzm//5M6o4tIqzifjurHlr2Ao66az/adYu7f3vLm9KSdUsHTnn3hXL/z7LI96owuIq3qXFF1e9lxSte+CcBLG06x8A3F1KVtqeBpryqLYP9qAAbMuJ+8vDz3rjPj6BkZGWRlZflmniISsNLT09m3bx8ffvghnTt3brK/dO0i6ksLCY3rxiMvLdN/rKRNqeBpr3Z/AMYO3ZK5P/O/FUcXkTZxto7qpr6GUyv+7vzm4qm89cFHXp6dtCcqeNqrL99zfh48A0BxdBFpM2eLqVd+sYrqg9sJCYvgn5uV2JK2o4KnPbLXw97lzq8HTQMURxeRtnOujuqncl8EYOOpcLYeUtEjbUMFT3t06DOoLoHITpA4WnF0EWlT54qp1xbspm6Pc03hr99RTF3ahgqe9ujLZQBsrU4g5ze/VRxdRNrUecXU3/8rjroa1uafIuclxdSl9angaY92vw/AvDc2KI4uIl5xPjH1snX/BuCFtYW8ppi6tDIVPO1N8UEo3AGWEC698WHF0UXEa84VUy9Z+wb2ilOEde7FL194S//hklalgqe9aTi7Q+IYHs78reLoIuJVZ42p11ZRvOpfzq+TZ/BerrqpS+tRwdPe7M11fh40GVAcXUS876zd1Ld8QO2J/VgjO/DallNenJUEOxU87Ym9Dr5quLHXwEmA4ugi4n3n6qZenPcKAKtP2jhSXOWlWUmwU8HTnhxaB7VlENkZeoxQHF1EfOJcMfWqvZ9hP7qLOgf8/v1dXp6dBCsVPO1Jw+WsbdXdFEcXEZ85n5h64Yd/AeD19Qd5/l+LvTY3CV4qeNqTPc67Kz+9eKPi6CLiU+eKqdce2UXFrk+whISQ/dZmFi1STF2+GRU87UXFSTiyEYAR6Q8pji4iPneumHrxR69gHHYiB17Og799Xv8Rk28k1NcTEC/JzwMMdEvmoZ/8F+WWGDIzM/n1r39NbW2t4ugi4hNni6nXnzpC+ab36HDZTOqSZ7Jy5UomTpzog1lKMNAZnvbClc4a4PzHQnF0EfEXZ4upF69+FUdtNbaeg1m+64QXZyXBRgVPe5HvKniuARRHFxH/cbaYuqOimLINSwBYeshKbV29t6YlQUYFT3twaj+c2ocDC/RJaRJHT01NVTJLRHzmXDH10rVvYq8up6jeRtKkm7WAWb4WFTztQcPZnU8P1jFp5nc9Fijn5OSQm5urokdEfOZcMXVHTQWln77h/Dr5Wm74nooeuXAqeNqDhvU79j5XuYsbV7HjKn6WL1+uOLqI+My5YuplG/5DfXkRoR27EzNiGg8++KD+vZILYjHGGF9Pwh+UlpYSFxdHSUkJsbGxvp5O6zEGnr4IKgph1tvk/CuPzMxM99odpbNExJ/Y7Xaee+45HnrooSb7Yi69li5Tf4K9/BSH//Ijct9/jwkTJnh/kuJXzvfvt87wBLvju5zFTmgE9B6jdJaI+DWr1Ur37t2b3Ve++X3qTh3FGtOJDpd9+6zpLpEzqeAJdvtWOT/3HguhNqWzRMTvtZjactRT8smrAMSOTadj1wQvzkoCnQqeYLf/E+fnflepWaiIBISzpbYqduRRd/Ig1shY3vuqVut45Lyp4AlmxlC+fRkAr3y0R81CRSQgnDW1ZRwUf/y/ACzeUUy/i5KV2JLzooInmJ3YTQyVVNUZFuTtUrNQEQkYZ0ttVX7xMbWF+YRExFDeayw33HCDih45JxU8wWz/xwAcC+vDBytWujerWaiIBIKWm4sa91meDqOvIyQyVjF1OScVPMFsn3P9Tr8Jt7nX69hstmYvbYmI+KOWmotW7V5DTcEeQsIj6TAmnYMHD7Jq1SofzVICgQqeYGUM7F/t/LrvOMXRRSRgtRQ/L171LwA6XDaTkKg4xdTlrFTwBKviA1B2BELCoNdoxdFFJGC1FFOv/mo9NUd2ERIWQeyY9LM2IRVRwROsDnzq/NxzJDn/9d+Ko4tIwDpbTL34E+danthR3+JUVb3W8UiLVPAEqfWLnwNg9WGjOLqIBLSzxdSrv9pAzZFdWEJt/PCp/6Vfv35KbEmzVPAEqb4cAWDp1iLF0UUk4J0tpu46y9PhspkcPVWumLo0SwVPMKosoisnAfjz0s3uzYqji0ggaymm7jrLExIWQYfLvwugmLo0oYInGB1c6/wcP5gH5jyhOLqIBI2WYuqNz/JYImMVU5cmVPAEI9eC5T5jFUcXkaDTXPzceZbnS2di6/LvtDhO2i8VPMHo0Drn58QxiqOLSNBpKX5esnohAB0unUlIRAfF1MWDCp5gY6+Dw58DMP/tDYqji0jQaSmmXrX3M2qP7SXEFkXC1Tczbtw4H81Q/JEKniDzQs7PoL6KKmzcN/dZxdFFJOicLaZesvr/nGMunsTAIZcorSVuKniCTB9LAQCbT9p4QnF0EQlSLcXUK79cQ+2J/YRExFCWMEoRdXFTwRNkZlzijGq+s6XQvU1xdBEJRunp6ezdu5f4+PhGWw0lq18DnJ3ULWERiqgLoIIn+Bz6DIDBk25XHF1Egt7q1as5ceKEx7bKL1ZRV3QYa1QcMSOnK6IugAqe4FJ+3Nk0FAu3PfJ7xdFFJOg1Gz03Dko+fR3AeSNCa5gi6qKCJ6gc3uD83HUwOb97VnF0EQl6LUXPK7avoL6kkNCYzsQMm6yIuqjgCSoNBc+mE1bF0UWkXWixk7rDTulnzsXKnVJupLZOndTbOxU8QWTPSmcc84W313us2cnIyCA1NVVFj4gEnbNF1Mu3fIC9opiQ2G6kP/gbdVJv51TwBAtj6IUzkm56XOaxZicnJ4fc3FxSU1P1PxwRCTotRdRNfQ2l698CIPaKGzl8+Ihi6u2YCp5gUfQVkdRQj5W/vbPWfSancSR9+fLliqOLSFBqqZN62efv4KipILxrXyIGXg6ok3p7pYInWBxaD0Bo4igys7IVSReRdqe5TuqmtpKyDW8DEJfyPYwxiqm3Uyp4gsWRjc7PvS5Th3QRabeai5+XbliCo64GW8/B2HoPa3GcBDcVPMHCVfD0vEwd0kWk3Woufu6oLKFi64cAxF1xfYvjJLj5vOCZP38+w4cPJzY2ltjYWFJSUnj33Xc9xqxZs4bU1FSio6OJjY3l6quvpqqqyr2/qKiIW2+9ldjYWDp27Mhdd91FeXm5tw/Fdxx2KNgCwJ/eWqNIuoi0Wy3F1Es/W4Rx2IkcMJpugy9TJ/V2yOcFT2JiIk8++SQbNmxg/fr1pKamkpaWxvbt2wFnsTN9+nSmTp3KZ599xrp167j//vsJCTk99VtvvZXt27fzwQcf8Pbbb7Ny5Up+/OMf++qQvO757AegrpIawrhfHdJFpB1rKaZeX3KMyl2fAOAYlMrAgQOV1mpnLMYY4+tJnKlz58787ne/46677uKKK65gypQpLf6x3rlzJ8nJyaxbt47Ro0cD8N5773Httddy6NAhevbseV6vWVpaSlxcHCUlJcTGxrbasXjDW0/cRJp5j83FMSzpcm+TDunZ2dkA2O12pbREpF1YtGgRDzzwAIcOHXJvC+s2gJ53/gHjsHPkr/dgLznGG2+8QXp6ug9nKt/U+f799vkZnsbsdjsLFy6koqKClJQUCgsLWbt2Ld26dWPcuHF0796da665ho8//tj9mDVr1tCxY0d3sQMwefJkQkJCWLt2bYuvVVNTQ2lpqcdHoEq7vA8AH+486d6mDuki0p4110m9rvArqvI/xxJipcPo7wCKqLcnflHwbN26lZiYGGw2G/feey+LFy8mOTmZr776CoCsrCzuvvtu3nvvPS677DImTZrE7t27ASgoKKBbt24ezxcaGkrnzp0pKCho8TXnzZtHXFyc+6N3795td4BtrWHB8oBx6Yqji4g0aK6TeunaNwGIGT4ZS0QHRdTbEb8oeAYPHsymTZtYu3Yts2fPZtasWezYsQOHwwHAPffcw5133smll17KM888w+DBg3nppZe+0WvOmTOHkpIS98fBgwdb41C8z2GHgm0AfPe+JxRHFxFp0Fz0vHr/ZmqO7iYkLIIOl17b4jgJPn5R8ISHh5OUlMSoUaOYN28eI0aM4Nlnn3XHBpOTkz3GX3zxxRw4cACAhIQECgsLPfbX19dTVFREQkJCi69ps9ncyTDXR0A6sRvqqyAsmpw/vao4uohIg5ai56XrFgPQ4bJvYQkNV0S9nfCLgudMDoeDmpoa+vXrR8+ePdm1a5fH/i+//JK+ffsCkJKSQnFxMRs2bHDvz83NxeFwMHbsWK/O2yca4ugH6+LInDtXcXQRkQYtRdQrv/iY+pJjWKM70m3st7Hb7VrH0w74vOCZM2cOK1euZN++fWzdupU5c+aQl5fHrbfeisVi4eGHH+YPf/gDb7zxBnv27CEjI4MvvviCu+66C3Ce7Zk+fTp33303n332GZ988gn3338/N99883kntALZ6kXzAfj3Z/vUIV1EpJEWO6kbB6XrnE1FrclTmTxlqjqptwM+L3gKCwu54447GDx4MJMmTWLdunUsW7aMKVOmAM4V9HPmzOGhhx5ixIgRLF++nA8++ICBAwe6n2PBggUMGTKESZMmce2113LVVVfxl7/8xVeH5FU9OA5AdceL1CFdROQMLXVSL9/yPvbqcsI69yIyaQyHDx9WJ/Ug55f34fGFgLwPjzHwX32huoRLXygn/SdZZGRkNImki4i0d3a7nby8PL73ve+5m4t2vPoO4lK+R/WhHRxb8AgWi4XExETy8/OxWq0+nrGcr4C8D49coOL9UF0CIWHcMDtDkXQRkRY010m9bMN/MPV1RCQmE95ziDqpBzkVPIGsIY5O1yH8v8wsRdJFRM7izPi5veIUFTvyAIi9PK3FcRIcVPAEsmMNBU/CUHVIFxE5h+bi56Xr/g1A1EXjCI3rDtDkZrYSHFTwBKisrCy+yHsDgPe3HPXokK50lohIU83F1OtO7D/dbmLUtwGYNWuWFi8HIRU8AcpqtRJW5Lw/0ZMvv+Nes9M4naWiR0TktJZi6q6zPDHDp2IJj+LIkSNKbAUhFTwBKuPhBxjY2fn2xV10ZZN01vLly8nOzlYkXUSkkeZi6tX5n1N7Yj8htihiRkzDFV5WY9Hgolh6g4CLpR/4FF6aRikxxD1xxL12R+ksEZFzW758OZMnT3Z/HzN8Cl1mPEB9aSGHX7jb2acQWLFiBRMmTPDRLOV8KJYe7Aq2AhA7aJzSWSIiF+jMHozl2/OwV5wiNLYbUReNc29XYit4qOAJVIU7APhkT7HSWSIiF6hJYsteR9nGdwHoMPq6lsdJwFLBE6iOOQueP72Zp4ahIiIXqLnEVtmmpc4bEfa6mPAeF9G1a1fGjRt3lmeRQKKCJwBlZc2lPH8dAFffMFsNQ0VELlBziS1HRTEVOz8CIHb0dRw/fpyBAwcqrRUkVPAEoE4hlcSE2ql3WLjnsafd29UwVETk/DWX2CpdvwSAqMFXYY3poqaiQUQFTwB64GZnJ/ldJ+rJmfdfAE0i6VlZWT6coYhIYEhPT2fv3r3Ex8cDUFf4FdUHtmKxhtLh0msVUQ8iKngCUeF25+fuyWoYKiLyDa1evZoTJ064v3ed5YkZOR1LqE1NRYOECp5AVLgTgEsm3qhIuojIN3Rm9Lxqz1rqiguwRsURnXx1i+MksKjgCUQNBc9reVsVSRcR+YaaRM+Ng7LP3wGgwyhF1IOFCp5A47DDiS8B+H/PLlAkXUTkG2ouol6x5X0ctdWEd+uPrfdQRdSDgAqeAPOH7F9AfTVVdYZZD2Qqki4i8g01G1GvqaBiey4AHUZ9WxH1IKCCJ8B0DzkFwKGaKB7PnOverki6iMjX11xEvWzDfwCIGnQF1g5dFVEPcCp4AsxNE4YBsParEveZHEXSRUS+uSYR9ZMHqdq3CUuIlQ6XKaIe6FTwBJrjXwDQc8QkRdJFRFrZmRH1sg0NEfUR0xRRD3AqeAJNQ8GTetNsRdJFRFpZk4j63vXOiHpkLFEXK6IeyFTwBBKHA07sAeD51z5UJF1EpJU1F1Ev3+iMqMeO+lbL48TvqeAJJCUHoL6Keqw8kPU/iqSLiLSy5iLq5Vs+wFFXQ3j3gdh6DVFEPUCp4AkgC551prK+KKxl7hPZiqSLiLSyZiPq1eVUNnRR73DptxRRD1AqeAJIN4szkn7SEu+xZkeRdBGR1tNsRL3hzstRQ64kJLqjIuoBSAVPAJkysg8AH+0oUCRdRKQNnRlRrz22l+pDO7BYw+gwYroi6gFIBU8gObEbgKET0hVJFxFpY00i6g1neWJGzoAQqyLqAUYFTyBp6KGV/uNHFUkXEWljZ0bPK3d9gr38FKEduhCVNLbFceKfVPAEioqTUFUEwJN/fV2RdBGRNtYkeu6op3zLMgBiLp3Z8jjxSyp4AsVJ5+WsYjowZ+6vFUkXEWljzUXUyzYtwzjsRPYbQWjnREXUA4gKngCQlZXFkr//HoDP9p5qsmZnwoQJKnpERFpZcxF1e9lxqvauA6DDpTMUUQ8gKngCgNVqZefHzn4uHZMudxc7roRWamoq2dnZSgqIiLSyZiPqG5cCEDN0EpYwmyLqAcJiXNm6dq60tJS4uDhKSkqIjY319XSa2JU1isHs4V1LKjPmLvaIo2vRsohI26qtraVXr14NqS0LPX/8AmGdenLy3T9QvuV9LBYLiYmJ5OfnY7VafT3dduV8/37rDE+AGBzvfKv++5X/KI4uIuJlnhF1Q9nGdwGIufRa5xZF1P2eCp5AYK+HonwA9pVZFUcXEfGyM6PnFVs/xNTXYktIIrzHRS2OE/+hgicQlBwARx11hPLVCcXRRUS87czouaO6jIovPgagw8gZLY4T/6GCJxCc3AvAF8dqeEJxdBERr2s2ot6weDnq4vGE2KIVUfdzKnj8XFZWFn/MfgiA0O5D1CFdRMQHmouo1x75gtrCfELCIogemqqIup9TwePnrFar+wzPxVeevrOnOqSLiHjXWSPqDZe1FFH3Xyp4/FxGRgYzxjgXxC1ZvRNQh3QREV85s4t6xY48HLVVhMf3wZZ4ibqo+zEVPAFgYEcHAL97aZEi6SIiPtY4om5qq6jYkQc477wMiqj7KxU8/q6+BkoOAbBfkXQREZ87M3pevuk9AKIuupKQyNgWx4lvqeDxd8UHwDioJYyDpxRJFxHxtTOj57XH9lJzdDeW0DCih05qcZz4lgoef1f0FQA7CqrVIV1ExA80F1Ev3+w8y9NhxDQARdT9kAoeP5aVlcXzOb8AwJagSLqIiD9oLqJesXMljppKwrokYus9TBF1P6SCx49ZrVYciqSLiPidMyPqpraKip0fAdBhpPMsjyLq/kUFjx9rHEn/z+odgCLpIiL+4syI+pmLlxVR9y8qePxcUmfnW/T7lxcrki4i4mcaR9SbW7ysiLr/UMHjzxx2Z0oLOFiuSLqIiL9pElHfvAyADiOmnnWceJ8KHn9Wcggc9dRjJf+kIukiIv7mzOh5xc6PcNRWE9alN7Zeye7t3bp18/bU5AwqePxUVlYW/3zu1wDsPVFL1hOekfSJEyf6eIYiInJmRN3UVlH5xUoAYhoi6gCzZs3S4mUfU8Hjp6xWKx/9+xXn1/EDm1zGysvL05keEREfay6iXrb5fQCihlyJxRYNwJEjR5TY8jEVPH4qIyODiSP7AXDK0hHwTGhlZ2dr1b+IiB84M6Jee+QLao/vJyQsgujkawCU2PIDob6egLTs1hnjYPtiXn3vU676rY3a2loltERE/FB6ejpxcXFMnjwZcC5e7jz5x3QYMY3yjUsBz8TWhAkTfDjb9klnePzZqX0AHCwLUUJLRMTPFRYWur+u2J6Lqa8lvPtAwrsP9BinxJZvqODxZw0Fz67jSmiJiPi7xoktR3U5lV+uASBm+NQWx4n3qODxV9WlUHUKgFvve0xNQ0VE/NyZia3yLc7Fy9HJ12AJtQFqKupLKnj8UFZWFnff6IwzVhLJrzKdBY6ahoqI+K8zE1vV+7dQV1xASEQMUYOdRY6aivqOCh4/ZLVaKdy9HoConkPc29U0VETEv3kmtgwVWz8EPC9rqamob1iMKyvXzpWWlhIXF0dJSQmxsbG+ng7LnvgO08wKdlguInnuOo9IuhYui4j4t9raWnr16sWpGug1+yUslhAOv3A39cXOBcsWi4XExETy8/OxWq0+nm1gO9+/3zrD46emjRkMwH8+3qqmoSIiAcbVVNRedoLq/M8Bz7M8airqfSp4/FVD09BDiqSLiAScxtHz8oY7L0cPTQVLSIvjpG2p4PFXDQXPnpN1iqSLiASYxtHzyj2fYa8sIbRDFyL6X9biOGlbPi945s+fz/Dhw4mNjSU2NpaUlBTefffdJuOMMcyYMQOLxcK///1vj30HDhxg5syZREVF0a1bNx5++GHq6+u9dARto/rYbgCuu/0+RdJFRAKMR0TdUU/F9hUAxAyf4h6TmJjI+PHjfTXFdsfnBU9iYiJPPvkkGzZsYP369aSmppKWlsb27ds9xv3P//yP+94GjdntdmbOnEltbS2rV6/mlVde4eWXXyYzM9Nbh9CqsrKyuG7qNURQA8DsR38DKJIuIhJIzoyol2/5AICopDGERDoX1lZVVfHWW2/5bI7tjc8Lnm9/+9tce+21DBo0iIsuuojf/OY3xMTE8Omnn7rHbNq0if/+7//mpZdeavL4999/nx07dvCvf/2LkSNHMmPGDHJycnj++eepra315qG0CqvVyv4tHzu/iYqHcGenXUXSRUQCiyui3rlzZ+pO7Kfm6G4s1jCiL5kAQFFRkeLpXuTzgqcxu93OwoULqaioICUlBYDKykq+//3v8/zzz5OQkNDkMWvWrGHYsGF0797dvW3atGmUlpY2OUvUWE1NDaWlpR4f/iAjI4PHfnIbAEcqnVHFxpH05cuXk5WV5cMZiojI+UpLSyMiIgKA8q3Oszwxw5yXtdRB3bv8ouDZunUrMTEx2Gw27r33XhYvXkxycjIADz30EOPGjSMtLa3ZxxYUFHgUO4D7+4KCghZfc968ecTFxbk/evfu3UpH883dNNVZ7H2y/ZAi6SIiAWzVqlUcPnwYgModHzkbinbrT3hCEqB4ujeF+noCAIMHD2bTpk2UlJTwxhtvMGvWLD766CP27NlDbm4uGzdubPXXnDNnDj//+c/d35eWlvpP0VNyEIBD5RZF0kVEAljj2LmjpoLKL9cQnXwN0UMnU1uwp9lx0jb84gxPeHg4SUlJjBo1innz5jFixAieffZZcnNz2bt3Lx07diQ0NJTQUGd9dv311zNhwgQAEhISOHbsmMfzub5v7hKYi81mcyfDXB9+o6Hg+apIkXQRkUB2Zuy8vKHVRHTyNWANa3GctD6/KHjO5HA4qKmp4dFHH2XLli1s2rTJ/QHwzDPP8Pe//x2AlJQUtm7dSmFhofvxH3zwAbGxse7LYoHm8I61AFw18xZF0kVEAtiZHdSr92+mvvQ41sgORCWNAdRB3Vt8XvDMmTOHlStXsm/fPrZu3cqcOXPIy8vj1ltvJSEhgaFDh3p8APTp04f+/fsDMHXqVJKTk7n99tvZvHkzy5Yt4/HHH+e+++7DZrP58tAuWFZWFpMmTcJafgSAm+52XnJTJF1EJDCdGU/HOKjYlgtA9LDJgDqoe0urFzzl5eUXNL6wsJA77riDwYMHM2nSJNatW8eyZcuYMmXKuR+M85fp7bffxmq1kpKSwm233cYdd9xBdnb215m+T1mtVj75KJeEmIa3Jc65pkiRdBGRwOXZQR3Kty0HILL/ZVijOwHqoO4NF9Qt/ZlnnuGhhx5qcX9ZWRnTp0/nk08+aZXJeZO/dEt/Pvvn3Of4G7WEEj73BDm//rVSWiIiQcDVQf3EiRN0v/UpIhKTObXi75R+9iagDupfV5t0S3/sscf4xz/+0ey+iooKpk+fzsmTJy9spuLhvtuuA2DP8RpsEREqdkREgoSrgzpARcNZnpjhk937FVFvWxdU8Pzzn//knnvuYcmSJR7bKyoqmDZtGsePH2fFihWtOsF2p+QQAIfLUCRdRCSINI6eV+xciaOuhrAuvQnvcVGL46T1XFDBc8MNN/Dcc89xyy23kJeXB5w+s3Ps2DHy8vIUrfumSpw3qNpfbFckXUQkiDT++2hqq6javQaAmKGpLY6T1nPBi5Z/9KMfMXfuXNLS0sjLy2PGjBkcOXKEFStW0LNnz7aYY7vy+Uf/AWDQqAmKpIuIBJEzI+rlDWmtqIuvAavzPnOKqLedr5XSeuSRR5g9ezaTJk3i8OHD5OXlkZiY2Npza3cmTpxI4W7nXaWv+fb3AWck3VX0TJw40ZfTExGRb+DMiHr1vk3Ul5103pNnoPOePIqot50Lai2Rnp7u8X1YWBjx8fE88MADHtv1Rn19vWOdlT9xvXw7ERERaXWuiPoDDzzAoUOHqNi+grgrbiB66CQqv1wNnI6ov/HGG03+7srXd0FneBo324yLi+OWW24hOTm5yXb5elasWEFSt0gA/rTAuTC8cad0LQgXEQl86enp7N27l/j4eHdaK3LAKEKinH8/1UW9bVzQfXiCmV/ch6e6BJ7sA0D0b0uptzgXLSuWLiISXPLy8tzLFBLu+D22HhdRtPwvlK33TEGvWLHC3TtSmtcm9+GRNlbqbClBRJy72FEsXUQk+HhE1F2tJi5JPes4+WZU8PiTUmck/Vh1mLvYUSxdRCT4NI6eV+xcibHXY0tIIiy+b4vj5JtRweNPSp2V/IbdR8nOzlYsXUQkSDWOqDuqSqnauw6A6EtOp3ETExMZP368r6YYdFTw+ImsrCxefu63ACRcNMp9GUud0kVEgs+ZEfXy7a7LWhPA4vzTXFVVxVtvveWrKQadCyp4MjMz2bBhQ1vNpV2zWq3UntgHwGXXfMu9XZ3SRUSCkyui3rlzZ6r2rsNeVUZoh3gi+gwDoKioSB3UW9EFFTyHDh1ixowZJCYmMnv2bN59911qa2vbam7tSkZGBhNHDQZgyUfOorJxJH358uVkZWX5cIYiItLa0tLSiIiIAHs9lTtXAhA9dBKgeHpru6CC56WXXqKgoIBXX32VDh068OCDDxIfH8/111/PP/7xD4qKitpqnu3CoG5RADz/z0XYbDZ1ShcRCXKrVq3i8GFnYMV1WSvqonFYwiIAdVBvTRe8hickJITx48fz1FNPsWvXLtauXcvYsWN54YUX6NmzJ1dffTVPP/20+w2UC1DmjKUXVoUqki4i0g40jp3XHtlFXdERQsIjiBp0RYvj5Ov5xouWL774Yh555BE++eQTDh48yKxZs1i1ahWvvvpqa8yv/airhqpTAOwrqlEkXUSkHTgzdl6xw3lH/Wh1UG91rZrS6tq1K3fddRdvvfUWv/zlL1vzqYNfmbN6r6oz/HzOE4qki4i0A2d2UK/Y7ix4IvqOwBrdCVAH9daiWLofyMrK4sG7bgKgKqwTGZmZgCLpIiLB7sx4en1xAdWHd2IJsRKVfA2gDuqt5YIKng8//BC13mp9VquVo7s3AtC5T7J7uyLpIiLBzxVP79WrF9Co1UTyBPcYVwd1FT1f3wU1D7VarRw9epRu3bq15Zx8wtfNQ99/Io2pJo9tliEMnbvWI5KuhcsiIsGvtraWXr16UVReQ+L9/8BiDePI335C3YkDgPMMUGJiIvn5+VitVh/P1n+0SfNQnd1pO1OvGArAstWbFUkXEWmHVq9ezYkTJ3BUl1G1dz0A0cmnW00oov7NaA2PvygrAOBYRYgi6SIi7ZBHB/UdeQBEJ18DWFocJ+fvggue+fPns3z5ck6dOtUW82m/GgqegyV1iqSLiLRDjaPnVXvX4aipIDSuG7bE5BbHyfm74ILnj3/8I1OmTCE+Pp5+/fqRnp7Or3/9a5YuXUpBQUFbzDGoZWVlkZOTw8n92wGYfuOdHpH0iRMnnuMZREQkGDSOqJv6Wip3rQYaGoo2sFqtHD9+3EczDGwXXPBs376dQ4cOsWTJEu666y6MMfz1r3/lW9/6Fr169XKvMpfzY7VayczMJLzG2ZZj1n2/8tifl5enMz0iIu1A44g6nL6sFTX4KggJBcBut3PTTTcprfU1hF7IYNeNkXr27EnPnj2ZOXOme9/JkyfZsGEDmzZtatUJBruMjAzWfPQBHWybnRtiunsktABF0kVE2on09HRee+01br75ZqoPbKW+7CShHboQOWAUVXvWusc9+OCDpKWlKa11AS6o4DlbSqtLly5MnTqVqVOnfuNJtTdLF74EfxxFaY2ha2wXamtrldASEWmn4uPj3f/Rrdy5ktgx3yX6konugqdxWmvChAk+nGlguaBLWu+99x5xcXFtNZf2q9y59qmg3CihJSLSzjVOYZU3tJqIShqDJTyqxXFybhdU8EydOhWbzdZWc2m/GhJaR8ocSmiJiLRzjVNYdYVfUXfyIJbQcKIuuqLFcXJuug+PH1i26F8AxPcfqqahIiLtXNOGonmAZ6sJNRS9cCp4fCgrK4tJkyax6eP3ABg6NhVQ01ARkfbszIaiFTs/Apwd1EOiOwJqKPp1qODxIavVSm5uLpcm9XRuiOkOqGmoiEh717ihaH1xATVHvsASYiV6yHj3GDUUvTAX1Dw0mPmqeWhOTg5jv3ySqQND4Tt/Juc/e9RHS0REgNMNRWv6XEHnKfdSc+QLCv75S/d+NRRto+ah0voyMjIYOTABgGtv+qGKHRERcXM1FK344mOMw46t5xBCO55erKyGoudPBY8f6BblPMl2qFiRdBEROc0VPXdUFlO933mDWmdD0ebHSctU8PiavQ4qTwJwsiZUkXQREXFrHD2v2OFcvBx18dVnHSfNU8HjY8/85nEAHFg4XFSlSLqIiLg1jqhXfrkGU19LeHwfwrr2d49JTExk/PjxZ3kWARU8PjVx4kT+Of9pAEJiukNICBkZGeqULiIiwBkNReuqqNq7HoDo5NNneaqqqnjrrbd8Mb2AooLHx7rHNLwFMV19OxEREfFLroh6586d3ffkiW50WauoqEjx9POggseHVqxYwezbvgvAnoIyAI9O6StWrPDl9ERExE+kpaURERFB1d51OGoqCY3rjq3XEOB0Y+8HH3xQ9247CxU8PnZdqrM3ysebvsRmsymWLiIiTaxatYrDhw9j6mup3P0pAFEXn05rKZ5+bip4fK3iOAAnqkLUKV1ERJrVOHZesXMlANFDrgJLSIvjxJMKHl8rLwTgSGm9OqWLiEizGsfOq/dtxF5VijW6ExF9hrU4Tjyp4PGxr7Z9BsDV09PVKV1ERJrl0UHdYady1yeA5z151EH97FTw+IirU3rFsXwAvnPb3YA6pYuISFNNO6g7L2tFXTQOQkIBdVA/FxU8PuLqlJ7YyebcEO2MpatTuoiINKdxB/Wag9upLy/CGtmByH4j3WPUQb1l6pbewBfd0n+d/QSP2f+bEIsFfvElOf/zF6W0RETkrFwd1O0j0okdfR3l23I5+c7v3fvbWwd1dUsPAI//fDYhFgsOY4jq2kfFjoiInJO7g7rrstagK7CEhrv3K6LePBU8vtQQSS+qgqoaRdJFROTcXNHz2iNfUF9yjBBbFJEDRrc4TpxU8PhSxQkACisciqSLiMh58eig/sXHAERd3LR5qCLqnlTw+NCif/4FgKiufRVJFxGR8+LRQb3hslbkwMuxhEW4x6iDelMqeHzAFUlfsfR1APolO09FKpIuIiLn0jiiXlf4FXWnjhASFkFk0hj3GHVQb0oFjw+4IuljLhng3BAdDyiSLiIi56dxB/XKnc7FydFDTp/RUQf1plTw+EBGRgbZ2dlUFO53boju6tElffny5WRlZfl0jiIi4t9cHdQrvnAWPJEDRmMJjwLUQb05Knh8JCMjgwmjLwHgZ3OyFUkXEZEL4uqgXnd8H3UnD2IJDSNq0BXu/Yqne1LB40ND+jgvZR0pqVMkXURELohnB3VnURM15KqzjmvPVPD40IkDuwAorrUqki4iIhekcey8cpcznh7Z/1IstugWx7VnKnh8JCcnB0ul8z48H67eqEi6iIhckMbx9LoTB6g9vh+LNYyoQWPdY9RB/TQVPD4wceJEnpibSZeohh9/VLx7IXNmZiYTJ0707QRFRMTvndlBvfIL12Wt02ktdVA/TQWPj3SJsjR8ZYGozj6di4iIBKbGHdRdd12O7HcpIY0ua6mDupMKHh9YsWIFTzxyPwCVRECI1SOWvmLFCh/PUEREAkV6ejp79+6lY0g1tYX5WKyhRF6U4t6viLqTCh4fuff2GwE4cKIcm82mWLqIiHxt7g7qXzS9CSEoog4qeHyn8iQAJ6os1NaqU7qIiHx9ruh5ZcNlrYi+IwiJiGlxXHvk84Jn/vz5DB8+nNjYWGJjY0lJSeHdd98FnLfG/ulPf8rgwYOJjIykT58+/OxnP6OkpMTjOQ4cOMDMmTOJioqiW7duPPzww9TX1/vicM5fQ8FzvNyuTukiIvKNuKLn9aeOUHvsK+dlrUEpLY5rj3xe8CQmJvLkk0+yYcMG1q9fT2pqKmlpaWzfvp0jR45w5MgRnn76abZt28bLL7/Me++9x1133eV+vN1uZ+bMmdTW1rJ69WpeeeUVXn75ZTIzM314VOe2YumbAPRLvkyd0kVE5BtpHFGvaLgnT/SQKz3GtPsO6sYPderUybz44ovN7nvttddMeHi4qaurM8YYs3TpUhMSEmIKCgrcY+bPn29iY2NNTU1Ni69RXV1tSkpK3B8HDx40gCkpKWndgznD3LlzTWpqqnlmms2YubHGvJ/p3peammoAk52d3aZzEBGR4PPmm28ai8Viwjr3Mn1/9bbp88t/m5CIGAMYwHTp0sW8+eabvp5mqyspKTmvv98+P8PTmN1uZ+HChVRUVJCS0vRUHEBJSQmxsbGEhoYCsGbNGoYNG0b37t3dY6ZNm0ZpaSnbt29v8bXmzZtHXFyc+6N3796tezAtcHVKv6R/w2nFqC6AOqWLiMg344qox1oapbUaXdZq7x3U/aLg2bp1KzExMdhsNu69914WL15McnJyk3EnTpwgJyeHH//4x+5tBQUFHsUO4P6+oKCgxdecM2cOJSUl7o+DBw+20tGcnesGg/Wlhc4NUV3UKV1ERFqFq4O6a/Fy48tapp3H0/2i4Bk8eDCbNm1i7dq1zJ49m1mzZrFjxw6PMaWlpcycOZPk5ORWKQhsNpt7obTrw1syMjIYMagXAOm3/UiRdBERaRWuDuqudTwRfUd6pLVMO46n+0XBEx4eTlJSEqNGjWLevHmMGDHCfbtsgLKyMqZPn06HDh1YvHgxYWFh7n0JCQkcO3bM4/lc3yckJHjnAL6Gnh1tABwtVad0ERFpHa7YeX3R4dOXtZLGtjiuPfGLgudMDoeDmpoawHlmZ+rUqYSHh7NkyRIiIiI8xqakpLB161YKCwvd2z744ANiY2ObvSzmL2qKnZfbyupDFUkXEZFW4dlB/RMAooZcddZx7YXPC545c+awcuVK9u3bx9atW5kzZw55eXnceuut7mKnoqKCv/3tb5SWllJQUEBBQYH7+uPUqVNJTk7m9ttvZ/PmzSxbtozHH3+c++67D5vN5uOjayorK4tpkydioxaAbXuPuCPpkyZN0vodERH52pqLp0f2G4mlUW8tq9XK8ePHfTVFnwn19QQKCwu54447OHr0KHFxcQwfPpxly5YxZcoU8vLyWLt2LQBJSUkej8vPz6dfv35YrVbefvttZs+eTUpKCtHR0cyaNYvs7GxfHM45rVq1iu1rP4KrOgAWiIgjIyODvLw8cnNzfT09EREJYK4O6jfccAP1Jw9Re2I/4fF9iUoaQ8V2Z59Gu93OTTfdhNVqJT093ccz9h6fFzx/+9vfWtw3YcIE96rys+nbty9Lly5tzWm1mfHjx9M3qgrYTiU2ohoah7oi6e36plAiIvKNpaen89prr3HzzTdTuesTZ8Ez+Ep3wePy4IMPkpaWhtVq9dFMvcvnBU97k5WVBfumwMvXcuhkBcNsNmpra5XSEhGRVhMfH4/dbqfyi0/oeOX3iex/GZbwSExtFeCZ1powYYJvJ+slPl/D0y5VFQFQVK3GoSIi0vpcKay6E/upO3kQS2g4kQPHtDiuPVDB4wtVpwA4UaHGoSIi0vo801qrAYgaPO6s44KdCh4f+PA/rwPQZ/AINQ4VEZFW55nWcsbTIweMwhJ2Or3ctWtXxo1rWgQFKxU8XpSVlcWkSZNYv+oDAIaPnQA477ycmpqqokdERFqFK60FUH88n7riAkLCIogcMNo95vjx4wwcOLDd9NZSweNFrsahQwc620oQ2QlQ41AREWl9rmaivXr1On0Twos8z+gcPny43TQUVcHjRa7GoTWnGhaJRXZS41AREWkz6enp7N27l/Bj2wGIHHg5WE+3Z2pPDUVV8HhZRkYGo5IHAHDbj3+mxqEiItKmVq9eTeHOddSXHifEFkVk/0s99reXhqIqeHygX/c4AI6Xq3GoiIi0LWf03FD55RoAoi668izjgpcKHh8oObYfgNI6NQ4VEZG25Yqeu9bxRA4aCyFN7zsc7BF1FTxelpOTg7W2FIA1G3coki4iIm3KFVGvPfIF9opTWCNiiOgzzGNMYmJi0Lc2UsHjJa5Iek5WJjHhFufGyE6KpIuISJtyR9SNg8rdzobcZ96EsKqqirfeessX0/MaFTxe4oqkXzfFVUFbwBanSLqIiLQ5V0Q99OhWAKIGXQGW0yVAUVFR0MfTVfB4iSuSvn2D8xoqEXHk/OY3iqSLiIhXpKWlEXYqH3t1OdboTth6Xeze1x7i6Sp4vCgjI4NHfno3AF8dLVIkXUREvGbVqlUcPniAKvdlLc+0VrDH01XweNmdN38XgKIqo0i6iIh4jSt2Xvml667LV5x1XLBRweNl/371ZQBKalAkXUREvMYVO6/etwlHbRWhsd0IT0hqcVywUcHjRTk5OSxf+iYAk2Zer0i6iIh4jSuejr2Oqq82ABA1KMVjTDDH01XweMnEiRPJzMzk+msnOTdEdnQvZM7MzGTixIm+naCIiAS1xh3Uq3Y33HW5HcXTVfB4WQQ1DV/E+XYiIiLS7rji6RFFezH2OsK69Ca0S6J7fzDH01XweMmKFSvIzs5m5+fOqpqIjh6d0lesWOHbCYqISLuQlpZGhNVQvW8z4HlZK5jj6Sp4vCgjI4NxlyYDcN8vH1csXUREvG7VqlUcPnyYyi9XAxB1kedlrWCNp6vg8bLBfRMAOFGhTukiIuJ97nj6nrUYhx1bj0FYO3RtcVywUMHjZQX7dwFQXq9O6SIi4n2u2LmjsoSawzuB5u/JE2zxdBU8XpSTk0NN8TEA3vnwY8XSRUTE61zxdIvFQuWXDWmtdhBPV8HjJa5YeveOEc4NEXGKpYuIiNd5xtM/BcDW+xJCImPdY4Ixnq6Cx4tCLBBBrfObyI4+nYuIiLRfrnh6XGg9tcf2YgmxEpk0xr0/GOPpKni8ZMWKFTyZ9djpDbZYxdJFRMRn0tLSiIiIaPayVjDG01XweNHDDZ3SK+sMtugOiqWLiIjPnI6nOwueyP6XYgmLcO8Ptni6Ch5vqi4BoLja2ThUsXQREfEVV+y87sR+6k4dwRIaTmT/y1ocF+hU8HiTu+BxEB4erli6iIj4TOPYeWXD4uXIQcEbT1fB40Wv/fNFAGK7JlJTU6NYuoiI+EzjeHrVlw0FT9IYCLG6xwRTPF0FjxdkZWUxadIkli5aCEDiQGd7iYyMDFJTU1X0iIiI1zWOp9ce3YW9ohhrRAwRvYe6xwRTPF0FjxdYrVZyc3O5fNhFzg0NndJzcnLIzc0lNTU1aFbBi4hI4HDF0zt36kjlnrUARDZKawVTPF0Fjxe4bjB47MBu54YIz0j68uXLycrK8ukcRUSkfXLF0103IWzcZiKY4ukqeLwkIyODa1OvBOC/n39RkXQREfELrnh69f7NOGqrCO0QT3jCIPf+YImnq+DxoitGXgxAUWW9IukiIuIXXLFzU19LVf7nAEQNGtviuEClgseLdm50Xh+tqLcqki4iIn6hcey8ynUTwiCMp4f6egLtRU5ODmP37uTigaH8z/yX6LJkN5mZmQA60yMiIj7jiqcfPnyYqq/WYxx2wrv2I7RjAvXFBQB07dqVcePG+Xim34zO8HiBq1P6JQMTnRtsseqULiIifqFxPN3UVFB9YBvgeZbn+PHjDBw4MKDTWip4vMjm6pQeEevbiYiIiDTiiqf36tWLqj0Naa0kz3U8hw8fDuiIugoeL1ixYgXZ2dnUlp1wblCndBER8TPp6ens3buXiJNfAmBLTCYk8vR/0AM9oq6Cx0syMjKI7xAOwJCRYxRLFxERv7N69WqO79tF7bG9WEKsRA683GN/IEfUVfB4i72ecOoBOF6mTukiIuJ/XNHzyt3OVPGZl7XOHBdIVPB4S22Z+8tqE6ZYuoiI+B1X9NzVPT2i/2VYQsNbHBdIFEtvY1lZWVitVuJMCT8D6giloqrGvYYnNzdXa3hERMQvnI6o51NfWkhobDci+o6gau869xir1crx48d9OMuvR2d42pjVaiUzM5MXn38GgLDozh778/LydKZHRET8QuOIeuXuzwCIPOOylt1u56abbgq4tJYKnjaWkZHBhAkTiLVZnBtsHTwSWtnZ2QG52l1ERIJTeno6r732GjVfuQqeMYClybhAS2vpkpYXrFixglezfwCOxWzYvpvMvyihJSIi/is+Pp7KfVtw1FQQGtOZ8J4XUXtkl3t/47TWhAkTfDfRC6AzPF5yy3e/BUBptUMJLRER8WtHjx4FRz1VX20AICqpaW8t97gAoYLHS95etBCAsjqLEloiIuLXTqe1nPF052WtlscFAl3S8oKcnBxKlv2Hb02N4Lobvk/2xb3VOFRERPyWK611JH8Dxl5PeNe+Hs1EARITExk/frwPZ3lhdIanjbkah143bYJzg62DGoeKiIhfc6W1TE0FNYe2A03TWlVVVbz11lu+mN7XooLHS8Kpa/gixrcTEREROQ+uhqKWI1uBpnddLioqCqhmoip42pircej2z9c4N5wRS9dNB0VExF+lpaVhPbYTAFvvSwiJOP2f9kBrJqqCxwsyMjJIuWwoAA89mqnGoSIiEhBWrVrF4V2bqT2+z9lMdMBoj/2B1ExUBY+XJA/oDcCpynrF0kVEJCC4YudVexrfhLDlcf5MBY+XHNzrPCVYabcqli4iIgHBHU/f0xBPHzAKQpoGvAMhnq6CxwtycnI4dewgAK/9+x13QktFj4iI+DNXPL3u6G7sFacIsUUT0fsSjzGBEk9XwdOGsrKymDRpEpmZmfTu3sm5MdwZS09NTVXRIyIifu10M1FD1d71QODG01XwtCGr1Upubi6pqal0imw4BWiLIScnx709EFa2i4hI++WKp1uP7QCaruMJlHi6Cp425LrBYG5uLvVVJQA8++eX3Cmt5cuXk5WV5dtJioiInENaWhphJ/Zg6msJ65hAWHwf975Aiaer4GljGRkZ/PqJuYTi/CXImve0IukiIhJQVq1axeED+VTv3wI0vawVCPF0nxc88+fPZ/jw4cTGxhIbG0tKSgrvvvuue391dTX33XcfXbp0ISYmhuuvv55jx455PMeBAweYOXMmUVFRdOvWjYcffpj6+npvH0qL/t8vf+b+uhZF0kVEJLC4YufutNbAy886zh/5vOBJTEzkySefZMOGDaxfv57U1FTS0tLYvt3Zu+Ohhx7iP//5D6+//jofffQRR44cIT093f14u93OzJkzqa2tZfXq1bzyyiu8/PLL7uac/uAPT/8WgOp6Q2W1IukiIhJYXLHzqr3rALD1GkJIZGyL4/yS8UOdOnUyL774oikuLjZhYWHm9ddfd+/buXOnAcyaNWuMMcYsXbrUhISEmIKCAveY+fPnm9jYWFNTU3Per1lSUmIAU1JS0noHYozJzs42yV1DjJkba8yT/Ux2drYBTHZ2dqu+joiISFupr683iYmJxmKxmB4/eNb0/dXbJnpoqgHcH4mJiaa+vt7rczvfv98+P8PTmN1uZ+HChVRUVJCSksKGDRuoq6tj8uTJ7jFDhgyhT58+rFnj7E21Zs0ahg0bRvfu3d1jpk2bRmlpqfssUXNqamooLS31+Ghtrk7pP7//HucGW4w6pYuISMA5HU8/fZYn0OLpflHwbN26lZiYGGw2G/feey+LFy8mOTmZgoICwsPD6dixo8f47t27U1BQAEBBQYFHsePa79rXknnz5hEXF+f+6N27d+seVCM2ap1fqFO6iIgEKFc8PazwCwAi+13qcddlf4+n+0XBM3jwYDZt2sTatWuZPXs2s2bNYseOHW36mnPmzKGkpMT9cfDgwVZ/DVen9Df+9xXnhvAYdUoXEZGAlZaWRnh5AfXlRYTYoojoM9S9z/h5PN0vCp7w8HCSkpIYNWoU8+bNY8SIETz77LMkJCRQW1tLcXGxx/hjx46RkJAAQEJCQpPUlut715jm2Gw2dzLM9dEWMjIy+MEt1wPw4ao16pQuIiIBa9WqVRw+fOj0Za2BnjchNH4cT/eLgudMDoeDmpoaRo0aRVhYGMuXL3fv27VrFwcOHCAlJQWAlJQUtm7dSmFhoXvMBx98QGxsLMnJyV6fe3O+c61zDVJZtUOd0kVEJGAFcvd0nxc8c+bMYeXKlezbt4+tW7cyZ84c8vLyuPXWW4mLi+Ouu+7i5z//OStWrGDDhg3ceeedpKSkcMUVVwAwdepUkpOTuf3229m8eTPLli3j8ccf57777sNms/n46Jw+XOpcxFVRH6JO6SIiErBcsfPq/ZtP33W5S9M1sP4YT2/a493LCgsLueOOOzh69ChxcXEMHz6cZcuWMWXKFACeeeYZQkJCuP7666mpqWHatGn86U9/cj/earXy9ttvM3v2bFJSUoiOjmbWrFlkZ2f76pA85OTk4Mj7gMnX2Ljtzh+TP7KT+x5BOtMjIiKBxNU9/fDhw1Qf2ELkgNFEDhxD3cnT62D9tXu6xbhWGbVzpaWlxMXFUVJS0mrreSZOnEheXh6rsyaSYjbAuJ/B1Bz3wuUJEyZo4bKIiASURYsWccMNNxBz6bV0njKb6oPbOPa/j7r3d+nShb/85S8eNwluS+f799vnl7Tag3Aa2lwoli4iIgHOFU+3ndwNgK3XxYREnP775q/xdBU8bcgVS9+52bmanfBoxdJFRCTgpaWlYauvoLYwH0uIlYj+o9z7/DWeroKnjWVkZHD5cGda7L6HHlEsXUREAp4znn7YHU+PSvL/eLoKHi8Y3L8XAKcq6xRLFxGRgOeOp+91xtMjBowCS9OSwp/i6Sp4vOBQ/pcA1JpQxdJFRCTguWLnNUe+xF5ZgjUiBluvi1sc5w9U8LSxnJwcTh07BMAbby11Nw5V0SMiIoHKFU+3YKj6agMAkQMv9xjjb/F0FTxtJCsri0mTJpGZmUli987OjeHObumpqakqekREJGA17p5e/dV6oGnB42/d01XwtBGr1Upubi6pqal0igpzbgyPIicnx73dn1avi4iIXAhXPD2iOB/jsBPetS/W2G7u/f4WT1fB00YyMjLIzs4mNzeX2spiAJ574SV3Smv58uVkZWX5dI4iIiLfRFpaGhEhDmoO7QA8z/L4WzxdBU8bysjIIPuJJ9w3Hvz1U88oki4iIkHjdDzdeVkr6ozLWv4UT1fB08YyHv2F++tawlTsiIhI0HDH079y3o/H1mcYltCmjbv9IZ6ugqeN/feTpxcml1Qoki4iIsHDFTuvO3GA+pJjhITZiOg7vMVxvqSCpw3l5OTwx2eecn4TGskTiqSLiEgQccfTLRb3XZf9NZ6ugqeNTJw4kczMTH710P3ODeFR7oXMmZmZTJw40bcTFBER+YYax9Or3PH00R5j/CWeroKnjYW5OqWHRft2IiIiIm3AFU+PKjuEo66G0NhuhMX3de/3l3i6Cp424uqU/q+//8W5oeEePOqULiIiwSYtLY2IMCvVB7YA/hlPV8HThjIyMrjnztsAWL9lhzqli4hIUDqze/qZ63j8IZ6ugqeN3Zz+bQDKaxzqlC4iIkHpdPd05zoeW68hhNiaLuXwZTxdBU8bW/Lm/wFQVW9Rp3QREQlKrti5vbSQ2hP7sYRYieh/WYvjfEEFTxtxNQ99/51/AzDjunR3QmvSpElqKyEiIkHDM57ekNYa4JnWslqtHD9+3BfTA1TwtJlVq1aRm5vL8IuTnBvCot2d0nNzc/3iNtsiIiKtwSOe7i54RgEW9xi73c5NN93ks7SWCp42Mn78eFJTUzl64CvnhrBIj07p/nATJhERkdaSnp7Oa6+9Rn3BLhw1lVijOxKekNRknK/SWqFef8V2wnXJavUTk8Cs5/d/fIHMZZVKaYmISNCKj4/HXldL1b6NRA++ksiBo6kt2O3e3zitNWHCBK/OTWd42ti40SMBKK+xK6UlIiJB7XRaqyGePuDys47zJhU8bWzT+jUAVDtClNISEZGg5kphVX+1AYDwHkmERMW1OM6bVPC0oZycHHZt3QTAb596xp3SUtEjIiLByJXWclQWU1OwB4slhMgz4um+aiaqgqcNuCLpmZmZXDp0sHNjWKQ7paWiR0REglHjtJbrLM+Z8XRfNRNVwdMGrFarO411Uf9E58awKI+Uli/7iYiIiLQVVzPRsJPOxcoR/S8Dy+lyw1fNRFXwtIGMjAyys7PJzc3lUL7zDf+/xf9x99Javny5bjwoIiJBKy0tjfDSw9iryrBGdsDW8yL3Pl81E1XB00ZcRc/JgkMAvPjKAkXSRUSkXVi1ahWHDx2kOv9zoOllLV80E1XB04YyMjKICnfeZbLOhKrYERGRdsEdT29YxxNxRsFz5jhvUMHThnJycvj5smp+9HYd248pki4iIu2DK3Ze9dV6Tq34Gyff+f1Zx3mDCp42kpOTQ2ZmJmNuy+TF9ZX87NEnlM4SEZF2wRVPN9VllH62mLoTBzz2WywWevfu7dV4ulpLtAFXsdN4zY7rc2Zmpsf3IiIiwcYVT7/hhhuwWCzuhcrgLHYA/ud//ger1eq1OekMTxuw2+3NLlB2LWRWJF1ERIKdK57eq1cvj+2JiYm88cYbpKene3U+FtO47GrHSktLiYuLo6SkhNjYWF9PR0REJCjY7XZWrVrF0aNH6dGjB+PHj2/VMzvn+/dbl7RERESkzVitVq93Rm+OLmmJiIhI0FPBIyIiIkFPBY+IiIgEPRU8IiIiEvRU8IiIiEjQU8EjIiIiQU8Fj4iIiAQ9FTwiIiIS9FTwiIiISNDTnZYbuDpslJaW+ngmIiIicr5cf7fP1SlLBU+DsrIyAHr37u3jmYiIiMiFKisrIy4ursX9ah7awOFwcOTIETp06OBuXf91lJaW0rt3bw4ePNjumpC212Nvr8cNOnYdu469PfHXYzfGUFZWRs+ePQkJaXmljs7wNAgJCSExMbHVni82NtavfiG8qb0ee3s9btCx69jbHx27fx372c7suGjRsoiIiAQ9FTwiIiIS9FTwtDKbzcbcuXOx2Wy+norXtddjb6/HDTp2HbuOvT0J9GPXomUREREJejrDIyIiIkFPBY+IiIgEPRU8IiIiEvRU8IiIiEjQU8EjIiIiQU8FTyt6/vnn6devHxEREYwdO5bPPvvM11O6IFlZWVgsFo+PIUOGuPdXV1dz33330aVLF2JiYrj++us5duyYx3McOHCAmTNnEhUVRbdu3Xj44Yepr6/3GJOXl8dll12GzWYjKSmJl19+2RuH52HlypV8+9vfpmfPnlgsFv7973977DfGkJmZSY8ePYiMjGTy5Mns3r3bY0xRURG33norsbGxdOzYkbvuuovy8nKPMVu2bGH8+PFERETQu3dvnnrqqSZzef311xkyZAgREREMGzaMpUuXtvrxNnauY//BD37Q5Pdg+vTpHmMC8djnzZvH5ZdfTocOHejWrRvf+c532LVrl8cYb/6Oe/Pfi/M59gkTJjR53++9916PMYF47PPnz2f48OHuuwOnpKTw7rvvuvcH63sO5z72YH3PW2SkVSxcuNCEh4ebl156yWzfvt3cfffdpmPHjubYsWO+ntp5mzt3rrnkkkvM0aNH3R/Hjx9377/33ntN7969zfLly8369evNFVdcYcaNG+feX19fb4YOHWomT55sNm7caJYuXWri4+PNnDlz3GO++uorExUVZX7+85+bHTt2mOeee85YrVbz3nvvefVYly5dav7f//t/ZtGiRQYwixcv9tj/5JNPmri4OPPvf//bbN682Vx33XWmf//+pqqqyj1m+vTpZsSIEebTTz81q1atMklJSeaWW25x7y8pKTHdu3c3t956q9m2bZt59dVXTWRkpHnhhRfcYz755BNjtVrNU089ZXbs2GEef/xxExYWZrZu3eqzY581a5aZPn26x+9BUVGRx5hAPPZp06aZv//972bbtm1m06ZN5tprrzV9+vQx5eXl7jHe+h339r8X53Ps11xzjbn77rs93veSkpKAP/YlS5aYd955x3z55Zdm165d5rHHHjNhYWFm27Ztxpjgfc/P59iD9T1viQqeVjJmzBhz3333ub+32+2mZ8+eZt68eT6c1YWZO3euGTFiRLP7iouLTVhYmHn99dfd23bu3GkAs2bNGmOM8w9pSEiIKSgocI+ZP3++iY2NNTU1NcYYYx555BFzySWXeDz3TTfdZKZNm9bKR3P+zvyj73A4TEJCgvnd737n3lZcXGxsNpt59dVXjTHG7NixwwBm3bp17jHvvvuusVgs5vDhw8YYY/70pz+ZTp06uY/dGGN+9atfmcGDB7u//973vmdmzpzpMZ+xY8eae+65p1WPsSUtFTxpaWktPiZYjr2wsNAA5qOPPjLGePd33Nf/Xpx57MY4//g98MADLT4mWI7dGGM6depkXnzxxXb1nru4jt2Y9vWeG2OMLmm1gtraWjZs2MDkyZPd20JCQpg8eTJr1qzx4cwu3O7du+nZsycDBgzg1ltv5cCBAwBs2LCBuro6j2McMmQIffr0cR/jmjVrGDZsGN27d3ePmTZtGqWlpWzfvt09pvFzuMb4088pPz+fgoICj3nGxcUxduxYj2Pt2LEjo0ePdo+ZPHkyISEhrF271j3m6quvJjw83D1m2rRp7Nq1i1OnTrnH+OPPIy8vj27dujF48GBmz57NyZMn3fuC5dhLSkoA6Ny5M+C933F/+PfizGN3WbBgAfHx8QwdOpQ5c+ZQWVnp3hcMx26321m4cCEVFRWkpKS0q/f8zGN3Cfb3vDF1S28FJ06cwG63e/xSAHTv3p0vvvjCR7O6cGPHjuXll19m8ODBHD16lCeeeILx48ezbds2CgoKCA8Pp2PHjh6P6d69OwUFBQAUFBQ0+zNw7TvbmNLSUqqqqoiMjGyjozt/rrk2N8/Gx9GtWzeP/aGhoXTu3NljTP/+/Zs8h2tfp06dWvx5uJ7DF6ZPn056ejr9+/dn7969PPbYY8yYMYM1a9ZgtVqD4tgdDgcPPvggV155JUOHDnXPyxu/46dOnfLpvxfNHTvA97//ffr27UvPnj3ZsmULv/rVr9i1axeLFi0663G59p1tjK+PfevWraSkpFBdXU1MTAyLFy8mOTmZTZs2Bf173tKxQ3C/581RwSNuM2bMcH89fPhwxo4dS9++fXnttdf8ohAR77j55pvdXw8bNozhw4czcOBA8vLymDRpkg9n1nruu+8+tm3bxscff+zrqXhdS8f+4x//2P31sGHD6NGjB5MmTWLv3r0MHDjQ29NsVYMHD2bTpk2UlJTwxhtvMGvWLD766CNfT8srWjr25OTkoH7Pm6NLWq0gPj4eq9XaZGX/sWPHSEhI8NGsvrmOHTty0UUXsWfPHhISEqitraW4uNhjTONjTEhIaPZn4Np3tjGxsbF+U1S55nq29zMhIYHCwkKP/fX19RQVFbXKz8Offm8GDBhAfHw8e/bsAQL/2O+//37efvttVqxYQWJionu7t37HffnvRUvH3pyxY8cCeLzvgXrs4eHhJCUlMWrUKObNm8eIESN49tln28V73tKxNyeY3vPmqOBpBeHh4YwaNYrly5e7tzkcDpYvX+5xrTTQlJeXs3fvXnr06MGoUaMICwvzOMZdu3Zx4MAB9zGmpKSwdetWjz+GH3zwAbGxse5TqCkpKR7P4RrjTz+n/v37k5CQ4DHP0tJS1q5d63GsxcXFbNiwwT0mNzcXh8Ph/kcjJSWFlStXUldX5x7zwQcfMHjwYDp16uQe4+8/j0OHDnHy5El69OgBBO6xG2O4//77Wbx4Mbm5uU0uuXnrd9wX/16c69ibs2nTJgCP9z0Qj705DoeDmpqaoH7PW+I69uYE83sOKJbeWhYuXGhsNpt5+eWXzY4dO8yPf/xj07FjR4/V7f7uF7/4hcnLyzP5+fnmk08+MZMnTzbx8fGmsLDQGOOMb/bp08fk5uaa9evXm5SUFJOSkuJ+vCvCOHXqVLNp0ybz3nvvma5duzYbYXz44YfNzp07zfPPP++TWHpZWZnZuHGj2bhxowHM73//e7Nx40azf/9+Y4wzlt6xY0fz1ltvmS1btpi0tLRmY+mXXnqpWbt2rfn444/NoEGDPKLZxcXFpnv37ub2228327ZtMwsXLjRRUVFNotmhoaHm6aefNjt37jRz585t81j62Y69rKzM/PKXvzRr1qwx+fn55sMPPzSXXXaZGTRokKmurg7oY589e7aJi4szeXl5HjHcyspK9xhv/Y57+9+Lcx37nj17THZ2tlm/fr3Jz883b731lhkwYIC5+uqrA/7YH330UfPRRx+Z/Px8s2XLFvPoo48ai8Vi3n//fWNM8L7n5zr2YH7PW6KCpxU999xzpk+fPiY8PNyMGTPGfPrpp76e0gW56aabTI8ePUx4eLjp1auXuemmm8yePXvc+6uqqsxPfvIT06lTJxMVFWW++93vmqNHj3o8x759+8yMGTNMZGSkiY+PN7/4xS9MXV2dx5gVK1aYkSNHmvDwcDNgwADz97//3RuH12QOQJOPWbNmGWOc0fSMjAzTvXt3Y7PZzKRJk8yuXbs8nuPkyZPmlltuMTExMSY2NtbceeedpqyszGPM5s2bzVVXXWVsNpvp1auXefLJJ5vM5bXXXjMXXXSRCQ8PN5dccol555132uy4jTn7sVdWVpqpU6earl27mrCwMNO3b19z9913N/mHKRCPvbljBjx+/7z5O+7Nfy/OdewHDhwwV199tencubOx2WwmKSnJPPzwwx73ZDEmMI/9hz/8oenbt68JDw83Xbt2NZMmTXIXO8YE73tuzNmPPZjf85ZYjDHGe+eTRERERLxPa3hEREQk6KngERERkaCngkdERESCngoeERERCXoqeERERCToqeARERGRoKeCR0RERIKeCh4REREJeip4REREJOip4BERaUPFxcWMHj2akSNHMnToUP7617/6ekoi7ZJaS4iItCG73U5NTQ1RUVFUVFQwdOhQ1q9fT5cuXXw9NZF2RWd4REQaTJgwgQcffLBVn9NqtRIVFQVATU0Nxtm0uVVfQ0TOTQWPiPilO++8k8cff9zX0wC++VyKi4sZMWIEiYmJPPzww8THx7fi7ETkfKjgERG/Y7fbefvtt7nuuut8PZVWmUvHjh3ZvHkz+fn5/O///i/Hjh1rxRmKyPlQwSMibe7jjz9mzJgxREREEB8fz7PPPnvW8atXryYsLIzLL7+82f0TJkzgpz/9KQ8++CCdOnWie/fu/PWvf6WiooI777yTDh06kJSUxLvvvut+TE1NDT/72c/o1q0bERERXHXVVaxbt+6cc288l6/zuo11796dESNGsGrVqnO+roi0LhU8ItKmli5dyne/+11+8pOfsGXLFu655x4eeugh9u3b1+JjlixZwre//W0sFkuLY1555RXi4+P57LPP+OlPf8rs2bO58cYbGTduHJ9//jlTp07l9ttvp7KyEoBHHnmEN998k1deeYXPP/+cpKQkpk2bRlFR0Vnnf+ZcLvR1jx07RllZGQAlJSWsXLmSwYMHX8iPUERagxERaSNVVVUmMTHRLFiwwL2tvr7exMTEmFdeeaXFxw0aNMi8/fbbLe6/5pprzFVXXeXxnNHR0eb22293bzt69KgBzJo1a0x5ebkJCwvzmEdtba3p2bOneeqppzye94EHHmhxLhf6usYYs3btWjNixAgzfPhwM2zYMPPnP/+5xeMSkbYT6uuCS0SCV25uLlVVVdx0003ubVarFYvFgs1ma/YxO3fu5MiRI0yaNOmszz18+HCP5+zSpQvDhg1zb+vevTsAhYWF7N27l7q6Oq688kr3/rCwMMaMGcPOnTtbfI3m5nIhrwswZswYNm3adNZjEZG2p0taItJmVqxYwciRI7Fare5te/bsoaysjEsvvbTZxyxZsoQpU6YQERFx1ucOCwvz+N5isXhsc12CcjgcX3f6zc7FG68rIq1PBY+ItJmNGzdSW1vrse1Pf/oTo0aN4qKLLmr2MW+99RZpaWmtOo+BAwcSHh7OJ5984t5WV1fHunXrSE5ObvFxbTEXEfENXdISkTazceNGjDH84x//YOzYsbz++uvMnz+f1atXNzu+sLCQ9evXs2TJkladR3R0NLNnz+bhhx+mc+fO9OnTh6eeeorKykruuusur85FRHxDBY+ItIkDBw5QVFTE22+/zaOPPsqXX37J8OHDee+991q8nPWf//yHMWPGtMmN+Z588kkcDge33347ZWVljB49mmXLltGpUyevz0VEvE+9tESkTSxZsoQ777yTkydPnvdjrrvuOq666ioeeeSRNpxZ4M1FRL45reERkTaxceNGj/TS+bjqqqu45ZZb2mhGF8af5iIi35zO8IhIm/jOd75Dnz59+MMf/uDrqYiIqOARERGR4KdLWiIiIhL0VPCIiIhI0FPBIyIiIkFPBY+IiIgEPRU8IiIiEvRU8IiIiEjQU8EjIiIiQU8Fj4iIiAQ9FTwiIiIS9FTwiIiISNBTwSMiIiJBTwWPiIiIBL3/DyV4joLYBC+DAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model = teqp.make_model({\"kind\":\"genericSAFT\", \"model\": Dufal_ammonia})\n", "anc = teqp.build_ancillaries(model, 520, 5000, 290)\n", "z = np.array([1.0])\n", "\n", "Ts = np.linspace(290, 380)\n", "for T in Ts:\n", " rhoL, rhoV = model.pure_VLE_T(T, anc.rhoL(T), anc.rhoV(T), 10)\n", " plt.plot(rhoL, T,'ko')\n", " plt.plot(rhoV, T,'kx')\n", " \n", "plt.plot(CP.PropsSI('Dmolar','T',Ts,'Q',0,'Ammonia'), Ts)\n", "plt.plot(CP.PropsSI('Dmolar','T',Ts,'Q',1,'Ammonia'), Ts)\n", "plt.title('Ammonia')\n", "plt.gca().set(xlabel=r'$\\rho$ / mol/m$^3$', ylabel=r'$T$ / K');" ] }, { "cell_type": "code", "execution_count": 6, "id": "ed5cb8d6", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:47.718613Z", "iopub.status.busy": "2024-12-12T18:08:47.718220Z", "iopub.status.idle": "2024-12-12T18:08:48.134490Z", "shell.execute_reply": "2024-12-12T18:08:48.134084Z" } }, "outputs": [ { "data": { "text/plain": [ "[{'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3009031150143573,\n", " 0.9532863025715441,\n", " -0.026505253934592687,\n", " 0.00011053503374651266],\n", " 'dt': 1e-05,\n", " 'pL / Pa': -1348980.0114703327,\n", " 'pV / Pa': 850585.1099931961,\n", " 'rhoL / mol/m^3': [35515.45114721886, 0.0],\n", " 'rhoV / mol/m^3': [487.03357583366795, 0.0],\n", " 't': 0.0,\n", " 'xL_0 / mole frac.': 1.0,\n", " 'xV_0 / mole frac.': 1.0},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.31109872729343796,\n", " 0.9503192359545914,\n", " -0.010532216621598695,\n", " 6.375045523910206e-05],\n", " 'dt': 4.5e-05,\n", " 'pL / Pa': 530725.4885882735,\n", " 'pV / Pa': 530725.4885943136,\n", " 'rhoL / mol/m^3': [35626.35313673362, 9.532863025498762e-06],\n", " 'rhoV / mol/m^3': [262.742533599565, 6.394949560729698e-10],\n", " 't': 1e-05,\n", " 'xL_0 / mole frac.': 0.9999999997324209,\n", " 'xV_0 / mole frac.': 0.9999999999975661},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3110987287489849,\n", " 0.9503192354218599,\n", " -0.010532221696140152,\n", " 6.375045478498421e-05],\n", " 'dt': 0.00020250000000000002,\n", " 'pL / Pa': 530725.4878200889,\n", " 'pV / Pa': 530725.4878138459,\n", " 'rhoL / mol/m^3': [35626.35312273521, 5.2297228631004934e-05],\n", " 'rhoV / mol/m^3': [262.74253312561655, 3.5082654315836237e-09],\n", " 't': 5.5e-05,\n", " 'xL_0 / mole frac.': 0.9999999985320634,\n", " 'xV_0 / mole frac.': 0.9999999999866476},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3110987353738346,\n", " 0.950319233256463,\n", " -0.010532221395738667,\n", " 6.375045275703689e-05],\n", " 'dt': 0.0009112500000000001,\n", " 'pL / Pa': 530725.4843104482,\n", " 'pV / Pa': 530725.4843017324,\n", " 'rhoL / mol/m^3': [35626.35305973835, 0.0002447368735843725],\n", " 'rhoV / mol/m^3': [262.7425309928432, 1.641773232019293e-08],\n", " 't': 0.0002575,\n", " 'xL_0 / mole frac.': 0.999999993130454,\n", " 'xV_0 / mole frac.': 0.999999999937514},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3110987651829838,\n", " 0.9503192235059291,\n", " -0.010532220686610062,\n", " 6.375044363083975e-05],\n", " 'dt': 0.004100625,\n", " 'pL / Pa': 530725.4684955478,\n", " 'pV / Pa': 530725.4684972229,\n", " 'rhoL / mol/m^3': [35626.352776249725, 0.001110715270445871],\n", " 'rhoV / mol/m^3': [262.74252139536407, 7.451032823686246e-08],\n", " 't': 0.00116875,\n", " 'xL_0 / mole frac.': 0.9999999688232124,\n", " 'xV_0 / mole frac.': 0.9999999997164131},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.31109889932897994,\n", " 0.9503191796398444,\n", " -0.010532216330687407,\n", " 6.375040256373021e-05],\n", " 'dt': 0.0184528125,\n", " 'pL / Pa': 530725.397386983,\n", " 'pV / Pa': 530725.3973768814,\n", " 'rhoL / mol/m^3': [35626.35150054978, 0.005007617946395683],\n", " 'rhoV / mol/m^3': [262.74247820668023, 3.359269069501529e-07],\n", " 't': 0.005269375,\n", " 'xL_0 / mole frac.': 0.9999998594406379,\n", " 'xV_0 / mole frac.': 0.9999999987214594},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3110995029837769,\n", " 0.9503189822425291,\n", " -0.010532196764242713,\n", " 6.375021776229736e-05],\n", " 'dt': 0.08303765625,\n", " 'pL / Pa': 530725.0773146152,\n", " 'pV / Pa': 530725.0773356715,\n", " 'rhoL / mol/m^3': [35626.345759893484, 0.02254367776217374],\n", " 'rhoV / mol/m^3': [262.7422838578328, 1.5122994272035906e-06],\n", " 't': 0.0237221875,\n", " 'xL_0 / mole frac.': 0.9999993672193144,\n", " 'xV_0 / mole frac.': 0.9999999942441719},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3111022194027503,\n", " 0.95031809395849,\n", " -0.01053210870630424,\n", " 6.374938616736466e-05],\n", " 'dt': 0.373669453125,\n", " 'pL / Pa': 530723.6371623278,\n", " 'pV / Pa': 530723.6371566487,\n", " 'rhoL / mol/m^3': [35626.319926807926, 0.10145590185693522],\n", " 'rhoV / mol/m^3': [262.74140929255907, 6.805933568635144e-06],\n", " 't': 0.10675984375,\n", " 'xL_0 / mole frac.': 0.9999971522286573,\n", " 'xV_0 / mole frac.': 0.9999999740964569},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3111144427047333,\n", " 0.9503140967646987,\n", " -0.01053171245862241,\n", " 6.37456442239256e-05],\n", " 'dt': 1.6815125390625,\n", " 'pL / Pa': 530717.1564760655,\n", " 'pV / Pa': 530717.1564786778,\n", " 'rhoL / mol/m^3': [35626.20367512748, 0.456559997502588],\n", " 'rhoV / mol/m^3': [262.73747383929725, 3.062643269797513e-05],\n", " 't': 0.480429296875,\n", " 'xL_0 / mole frac.': 0.9999871848779961,\n", " 'xV_0 / mole frac.': 0.9999998834333425},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3111694357864459,\n", " 0.950296111088445,\n", " -0.010529929779497732,\n", " 6.372881021020651e-05],\n", " 'dt': 5.2777905117345005,\n", " 'pL / Pa': 530687.9960161746,\n", " 'pV / Pa': 530687.9960124324,\n", " 'rhoL / mol/m^3': [35625.680486052624, 2.054509945307028],\n", " 'rhoV / mol/m^3': [262.7197661316354, 0.0001378013783841202],\n", " 't': 2.1619418359375002,\n", " 'xL_0 / mole frac.': 0.9999423339725206,\n", " 'xV_0 / mole frac.': 0.9999994754817723},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.31134191836451947,\n", " 0.9502396771874071,\n", " -0.010524339087906304,\n", " 6.367602326602922e-05],\n", " 'dt': 11.293354277652224,\n", " 'pL / Pa': 530596.4970624149,\n", " 'pV / Pa': 530596.49704234,\n", " 'rhoL / mol/m^3': [35624.037743711626, 7.069824808594325],\n", " 'rhoV / mol/m^3': [262.6642061245047, 0.00047400935551993517],\n", " 't': 7.439732347672001,\n", " 'xL_0 / mole frac.': 0.9998015827940515,\n", " 'xV_0 / mole frac.': 0.9999981953822065},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.31171035841668493,\n", " 0.9501190124752473,\n", " -0.010512399750116204,\n", " 6.356332582580064e-05],\n", " 'dt': 20.219295337907475,\n", " 'pL / Pa': 530400.8483027518,\n", " 'pV / Pa': 530400.8483113195,\n", " 'rhoL / mol/m^3': [35620.51956784696, 17.800536659241242],\n", " 'rhoV / mol/m^3': [262.54541848241206, 0.0011924885519618762],\n", " 't': 18.733086625324226,\n", " 'xL_0 / mole frac.': 0.9995005225665227,\n", " 'xV_0 / mole frac.': 0.999995457992973},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.31236784535778556,\n", " 0.9499032908210953,\n", " -0.010491103802349255,\n", " 6.336242141344015e-05],\n", " 'dt': 32.05406109192583,\n", " 'pL / Pa': 530051.0387646854,\n", " 'pV / Pa': 530051.0387380088,\n", " 'rhoL / mol/m^3': [35614.21035243601, 37.00909203195248],\n", " 'rhoV / mol/m^3': [262.33308063405644, 0.002475661269434341],\n", " 't': 38.9523819632317,\n", " 'xL_0 / mole frac.': 0.9989619123101919,\n", " 'xV_0 / mole frac.': 0.9999905629976188},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.31340453699814785,\n", " 0.9495621263658921,\n", " -0.010457551608343767,\n", " 6.304618299002517e-05],\n", " 'dt': 46.77777988037518,\n", " 'pL / Pa': 529497.7195792794,\n", " 'pV / Pa': 529497.7196046263,\n", " 'rhoL / mol/m^3': [35604.181060955816, 67.45187959577942],\n", " 'rhoV / mol/m^3': [261.9973365749719, 0.00450160846417981],\n", " 't': 71.00644305515753,\n", " 'xL_0 / mole frac.': 0.9981090890986631,\n", " 'xV_0 / mole frac.': 0.9999828184088502},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3149051477799579,\n", " 0.9490660650485994,\n", " -0.010409042097751927,\n", " 6.258959691875612e-05],\n", " 'dt': 64.35837108709012,\n", " 'pL / Pa': 528692.9495015144,\n", " 'pV / Pa': 528692.949511752,\n", " 'rhoL / mol/m^3': [35589.48553843193, 111.85867700851091],\n", " 'rhoV / mol/m^3': [261.5092922019919, 0.007440067314551471],\n", " 't': 117.78422293553271,\n", " 'xL_0 / mole frac.': 0.9968668216991076,\n", " 'xV_0 / mole frac.': 0.9999715503201266},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3169462807598973,\n", " 0.9483870887527648,\n", " -0.010343169685654244,\n", " 6.19707783921092e-05],\n", " 'dt': 84.80807950481592,\n", " 'pL / Pa': 527590.9216072261,\n", " 'pV / Pa': 527590.9216132702,\n", " 'rhoL / mol/m^3': [35569.15292957848, 172.9171522275068],\n", " 'rhoV / mol/m^3': [260.84150827902755, 0.011448261108294243],\n", " 't': 182.14259402262283,\n", " 'xL_0 / mole frac.': 0.9951620834542673,\n", " 'xV_0 / mole frac.': 0.9999561122048983},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3195953290461591,\n", " 0.9474986005168632,\n", " -0.010257871538898754,\n", " 6.117151516063689e-05],\n", " 'dt': 108.2065363028577,\n", " 'pL / Pa': 526147.7891260535,\n", " 'pV / Pa': 526147.7891376888,\n", " 'rhoL / mol/m^3': [35542.16067078346, 253.31031427913294],\n", " 'rhoV / mol/m^3': [259.96795286894064, 0.016669863420093727],\n", " 't': 266.95067352743877,\n", " 'xL_0 / mole frac.': 0.9929233976447792,\n", " 'xV_0 / mole frac.': 0.999935881348501},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3229098929901436,\n", " 0.946375266618026,\n", " -0.010151459077644335,\n", " 6.017764829482899e-05],\n", " 'dt': 134.71777827306167,\n", " 'pL / Pa': 524321.169994995,\n", " 'pV / Pa': 524321.1700048461,\n", " 'rhoL / mol/m^3': [35507.39838710184, 355.7749759791602],\n", " 'rhoV / mol/m^3': [258.8637654924597, 0.023234992065452455],\n", " 't': 375.15720983029644,\n", " 'xL_0 / mole frac.': 0.9900796571352659,\n", " 'xV_0 / mole frac.': 0.9999102504489528},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.32693750736908667,\n", " 0.9449928092206256,\n", " -0.010022640272707873,\n", " 5.89793414726952e-05],\n", " 'dt': 164.60568268475006,\n", " 'pL / Pa': 522069.448372066,\n", " 'pV / Pa': 522069.4483732332,\n", " 'rhoL / mol/m^3': [35463.624176795005, 483.1752282585226],\n", " 'rhoV / mol/m^3': [257.50490539395713, 0.03126079809831117],\n", " 't': 509.8749881033581,\n", " 'xL_0 / mole frac.': 0.9865586022606898,\n", " 'xV_0 / mole frac.': 0.9998786158908843},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.33171556830214927,\n", " 0.9433278067268672,\n", " -0.009870536328391875,\n", " 5.757126319217159e-05],\n", " 'dt': 198.25242509299477,\n", " 'pL / Pa': 519350.9265948534,\n", " 'pV / Pa': 519350.9266029825,\n", " 'rhoL / mol/m^3': [35409.41304487993, 638.5890166367051],\n", " 'rhoV / mol/m^3': [255.86771856214293, 0.04085241912014649],\n", " 't': 674.4806707881081,\n", " 'xL_0 / mole frac.': 0.9822850371694126,\n", " 'xV_0 / mole frac.': 0.9998403632243988},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3372714396833285,\n", " 0.9413575228149944,\n", " -0.009694693540779743,\n", " 5.5952681178581764e-05],\n", " 'dt': 236.1836836727786,\n", " 'pL / Pa': 516122.8166497499,\n", " 'pV / Pa': 516122.8166443896,\n", " 'rhoL / mol/m^3': [35343.095399031896, 825.4101048154494],\n", " 'rhoV / mol/m^3': [253.928420690112, 0.05210426368686329],\n", " 't': 872.7330958811028,\n", " 'xL_0 / mole frac.': 0.9771787610984466,\n", " 'xV_0 / mole frac.': 0.999794849373997},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3436227598495491,\n", " 0.9390597634074298,\n", " -0.009495089930022167,\n", " 5.4127458679543876e-05],\n", " 'dt': 279.10501882155313,\n", " 'pL / Pa': 512340.01572176814,\n", " 'pV / Pa': 512340.0157209673,\n", " 'rhoL / mol/m^3': [35262.68179677486, 1047.4709930047038],\n", " 'rhoV / mol/m^3': [251.66246879441854, 0.06510170274367937],\n", " 't': 1108.9167795538815,\n", " 'xL_0 / mole frac.': 0.971152118277521,\n", " 'xV_0 / mole frac.': 0.9997413803239149},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.35077799543634824,\n", " 0.9364127416392805,\n", " -0.009272135592351108,\n", " 5.21039382724843e-05],\n", " 'dt': 327.9559440725397,\n", " 'pL / Pa': 507953.5643131882,\n", " 'pV / Pa': 507953.5643367281,\n", " 'rhoL / mol/m^3': [35165.7679125346, 1309.1961821510356],\n", " 'rhoV / mol/m^3': [249.0437693090449, 0.07992333731136785],\n", " 't': 1388.0217983754346,\n", " 'xL_0 / mole frac.': 0.964106991887573,\n", " 'xV_0 / mole frac.': 0.9996791821104514},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3587373153874435,\n", " 0.9333949085860429,\n", " -0.00902666520824713,\n", " 4.989469660316371e-05],\n", " 'dt': 383.9925791243792,\n", " 'pL / Pa': 502908.6190921813,\n", " 'pV / Pa': 502908.6190713023,\n", " 'rhoL / mol/m^3': [35049.41032651237, 1615.8007523074207],\n", " 'rhoV / mol/m^3': [246.0436363641398, 0.09664412676029603],\n", " 't': 1715.9777424479744,\n", " 'xL_0 / mole frac.': 0.9559309573089896,\n", " 'xV_0 / mole frac.': 0.9996073615965353},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.36749389985627917,\n", " 0.9299846746614517,\n", " -0.008759920403315455,\n", " 4.751614980652829e-05],\n", " 'dt': 448.9185032596913,\n", " 'pL / Pa': 497141.6639637947,\n", " 'pV / Pa': 497141.66393197584,\n", " 'rhoL / mol/m^3': [34909.95809230483, 1973.5585359240806],\n", " 'rhoV / mol/m^3': [242.62935769177275, 0.11533984787521437],\n", " 't': 2099.9703215723534,\n", " 'xL_0 / mole frac.': 0.9464921266641476,\n", " 'xV_0 / mole frac.': 0.9995248512159307},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3770358786050042,\n", " 0.9261598910064105,\n", " -0.00847351825560286,\n", " 4.4987980666992797e-05],\n", " 'dt': 525.1019279629584,\n", " 'pL / Pa': 490576.48795980215,\n", " 'pV / Pa': 490576.4879610026,\n", " 'rhoL / mol/m^3': [34742.81490748277, 2390.1809627941643],\n", " 'rhoV / mol/m^3': [238.76212407520765, 0.13609369133517055],\n", " 't': 2548.8888248320445,\n", " 'xL_0 / mole frac.': 0.9356318846143147,\n", " 'xV_0 / mole frac.': 0.9994303277244698},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.3873492637490114,\n", " 0.9218968526894107,\n", " -0.00816939914749836,\n", " 4.233233651864648e-05],\n", " 'dt': 615.9597173718626,\n", " 'pL / Pa': 483118.0735966861,\n", " 'pV / Pa': 483118.07357594225,\n", " 'rhoL / mol/m^3': [34542.087159904426, 2875.3803659980517],\n", " 'rhoV / mol/m^3': [234.3938792016013, 0.1590064723518254],\n", " 't': 3073.9907527950027,\n", " 'xL_0 / mole frac.': 0.9231540626311079,\n", " 'xV_0 / mole frac.': 0.9993220869063497},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.39842263159141544,\n", " 0.9171683524054354,\n", " -0.007849739847433762,\n", " 3.957269140624046e-05],\n", " 'dt': 726.6967102180334,\n", " 'pL / Pa': 474642.72560726106,\n", " 'pV / Pa': 474642.7255858295,\n", " 'rhoL / mol/m^3': [34300.032133079105, 3441.760829744836],\n", " 'rhoV / mol/m^3': [229.4622219563978, 0.18421338800238815],\n", " 't': 3689.950470166865,\n", " 'xL_0 / mole frac.': 0.9088077020311407,\n", " 'xV_0 / mole frac.': 0.9991978391141751},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.41025527989717603,\n", " 0.9119397467476241,\n", " -0.007516799127303844,\n", " 3.673212135999947e-05],\n", " 'dt': 865.9077476106264,\n", " 'pL / Pa': 464980.8547209501,\n", " 'pV / Pa': 464980.8547601013,\n", " 'rhoL / mol/m^3': [34006.12542716575, 4106.342235184902],\n", " 'rhoV / mol/m^3': [223.88148960566866, 0.21191375023227818],\n", " 't': 4416.647180384899,\n", " 'xL_0 / mole frac.': 0.8922572458030225,\n", " 'xV_0 / mole frac.': 0.9990543507882929},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.42287336502017114,\n", " 0.9061603995379862,\n", " -0.007172609091803313,\n", " 3.3830314941563436e-05],\n", " 'dt': 1049.7038463535232,\n", " 'pL / Pa': 453883.6396552026,\n", " 'pV / Pa': 453883.63964834786,\n", " 'rhoL / mol/m^3': [33645.3122460024, 4893.462071944016],\n", " 'rhoV / mol/m^3': [217.52541820152535, 0.2424298133356311],\n", " 't': 5282.554927995526,\n", " 'xL_0 / mole frac.': 0.8730249687866886,\n", " 'xV_0 / mole frac.': 0.9988867511180113},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.43636811765601796,\n", " 0.8997423945778684,\n", " -0.006818235785698247,\n", " 3.087713674926759e-05],\n", " 'dt': 1315.7974418357242,\n", " 'pL / Pa': 440947.6911216527,\n", " 'pV / Pa': 440947.69114229275,\n", " 'rhoL / mol/m^3': [33194.18050173683, 5841.240509616473],\n", " 'rhoV / mol/m^3': [210.1877295865151, 0.2763434459919454],\n", " 't': 6332.258774349049,\n", " 'xL_0 / mole frac.': 0.850360509550606,\n", " 'xV_0 / mole frac.': 0.9986869804332388},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.45101552172260045,\n", " 0.8924927884947415,\n", " -0.0064514242120567835,\n", " 2.7853315742402383e-05],\n", " 'dt': 1810.2288675274342,\n", " 'pL / Pa': 425394.7748477906,\n", " 'pV / Pa': 425394.7748712937,\n", " 'rhoL / mol/m^3': [32610.123462539377, 7020.259459503709],\n", " 'rhoV / mol/m^3': [201.4659990951728, 0.31490978753200344],\n", " 't': 7648.056216184774,\n", " 'xL_0 / mole frac.': 0.8228566331717445,\n", " 'xV_0 / mole frac.': 0.9984393479577641},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.46793938060577095,\n", " 0.8837398337385057,\n", " -0.00605324184321827,\n", " 2.4603113066694497e-05],\n", " 'dt': 2459.4452407621616,\n", " 'pL / Pa': 404948.6246905178,\n", " 'pV / Pa': 404948.6246820389,\n", " 'rhoL / mol/m^3': [31777.86814093376, 8627.7583937791],\n", " 'rhoV / mol/m^3': [190.16385662179917, 0.3622535668432215],\n", " 't': 9458.285083712208,\n", " 'xL_0 / mole frac.': 0.7864713621909337,\n", " 'xV_0 / mole frac.': 0.9980986670725365},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.48476328085003006,\n", " 0.8746269025427289,\n", " -0.005687039625699997,\n", " 2.1640757729143115e-05],\n", " 'dt': 2206.2874147800967,\n", " 'pL / Pa': 381141.33540967107,\n", " 'pV / Pa': 381141.3353808051,\n", " 'rhoL / mol/m^3': [30726.240805157922, 10567.20896686408],\n", " 'rhoV / mol/m^3': [177.23257381773493, 0.4131008397780481],\n", " 't': 11664.572498492304,\n", " 'xL_0 / mole frac.': 0.7440947892412758,\n", " 'xV_0 / mole frac.': 0.9976745798028887},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.4984987778596882,\n", " 0.8668735172203932,\n", " -0.00541047473034949,\n", " 1.943023662648309e-05],\n", " 'dt': 2321.0264320528586,\n", " 'pL / Pa': 358209.79509951174,\n", " 'pV / Pa': 358209.795105216,\n", " 'rhoL / mol/m^3': [29641.07565266955, 12488.112495818637],\n", " 'rhoV / mol/m^3': [165.00381231099806, 0.45829443782398777],\n", " 't': 13870.859913272401,\n", " 'xL_0 / mole frac.': 0.7035757619680888,\n", " 'xV_0 / mole frac.': 0.9972302151421311},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5104684599811992,\n", " 0.8598808493704716,\n", " -0.005184200825426099,\n", " 1.766749921251836e-05],\n", " 'dt': 2523.6579591870377,\n", " 'pL / Pa': 334752.5148013532,\n", " 'pV / Pa': 334752.51479479263,\n", " 'rhoL / mol/m^3': [28469.729496492895, 14491.827733172784],\n", " 'rhoV / mol/m^3': [152.71892297899666, 0.50125314305867],\n", " 't': 16191.88634532526,\n", " 'xL_0 / mole frac.': 0.662679179534816,\n", " 'xV_0 / mole frac.': 0.9967285434872534},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5213013565024214,\n", " 0.8533580870020493,\n", " -0.004987062647628024,\n", " 1.6219954851094346e-05],\n", " 'dt': 2771.7257970835303,\n", " 'pL / Pa': 309799.3171932399,\n", " 'pV / Pa': 309799.31721945724,\n", " 'rhoL / mol/m^3': [27167.396150654396, 16653.430851867437],\n", " 'rhoV / mol/m^3': [139.89292776711616, 0.5439256459113281],\n", " 't': 18715.544304512296,\n", " 'xL_0 / mole frac.': 0.6199653910933937,\n", " 'xV_0 / mole frac.': 0.9961269023572351},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5312095080671894,\n", " 0.8472268671963656,\n", " -0.004805602279398599,\n", " 1.5045884341440156e-05],\n", " 'dt': 3068.9101490427965,\n", " 'pL / Pa': 282878.16349698603,\n", " 'pV / Pa': 282878.16347593884,\n", " 'rhoL / mol/m^3': [25708.34129075812, 19009.985952968265],\n", " 'rhoV / mol/m^3': [126.32777166410042, 0.5871684609990446],\n", " 't': 21487.270101595826,\n", " 'xL_0 / mole frac.': 0.5748949675742799,\n", " 'xV_0 / mole frac.': 0.9953735276522979},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.540336662731652,\n", " 0.841436211745165,\n", " -0.004625178064250846,\n", " 1.4136510118179204e-05],\n", " 'dt': 3452.0033673988805,\n", " 'pL / Pa': 253545.28763389587,\n", " 'pV / Pa': 253545.28759547582,\n", " 'rhoL / mol/m^3': [24063.670912221663, 21600.92552998882],\n", " 'rhoV / mol/m^3': [111.8596745017751, 0.6318537775909859],\n", " 't': 24556.180250638623,\n", " 'xL_0 / mole frac.': 0.5269655879402054,\n", " 'xV_0 / mole frac.': 0.9943830990008259},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5488569384171296,\n", " 0.8359045847560193,\n", " -0.0044256245429127655,\n", " 1.3514716090899735e-05],\n", " 'dt': 3588.80797336189,\n", " 'pL / Pa': 221126.4276919216,\n", " 'pV / Pa': 221126.42768445628,\n", " 'rhoL / mol/m^3': [22183.26016050455, 24495.754740354692],\n", " 'rhoV / mol/m^3': [96.23612551347789, 0.6794664580814603],\n", " 't': 28008.183618037503,\n", " 'xL_0 / mole frac.': 0.4752298266709183,\n", " 'xV_0 / mole frac.': 0.9929890903593628},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5544805551145389,\n", " 0.8321857692839582,\n", " -0.004261364148907681,\n", " 1.3293987312150658e-05],\n", " 'dt': 2933.0738963534163,\n", " 'pL / Pa': 196495.4253091663,\n", " 'pV / Pa': 196495.4253299148,\n", " 'rhoL / mol/m^3': [20707.463176092035, 26726.6015965729],\n", " 'rhoV / mol/m^3': [84.61502342792586, 0.7152717963763382],\n", " 't': 30683.03250867915,\n", " 'xL_0 / mole frac.': 0.436552576198893,\n", " 'xV_0 / mole frac.': 0.9916176101993301},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5590691963034844,\n", " 0.8291108859905518,\n", " -0.004095399862930065,\n", " 1.3285368425688106e-05],\n", " 'dt': 2552.654271119634,\n", " 'pL / Pa': 174249.54183493555,\n", " 'pV / Pa': 174249.54185104975,\n", " 'rhoL / mol/m^3': [19333.154199314868, 28776.699848563694],\n", " 'rhoV / mol/m^3': [74.29877521089828, 0.7480341834772921],\n", " 't': 33151.17957230288,\n", " 'xL_0 / mole frac.': 0.4018543515030135,\n", " 'xV_0 / mole frac.': 0.9900324318979862},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5627997877197536,\n", " 0.8265839069520551,\n", " -0.003929825677336374,\n", " 1.3439587663380614e-05],\n", " 'dt': 2225.746134706672,\n", " 'pL / Pa': 154688.08371832967,\n", " 'pV / Pa': 154688.08365607422,\n", " 'rhoL / mol/m^3': [18084.591254220744, 30619.238374126016],\n", " 'rhoV / mol/m^3': [65.36460636209489, 0.7777468228450236],\n", " 't': 35376.92570700955,\n", " 'xL_0 / mole frac.': 0.37131764364778186,\n", " 'xV_0 / mole frac.': 0.9882413191337422},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5662078522799722,\n", " 0.8242539868277932,\n", " -0.0037460680557439463,\n", " 1.3751776391058605e-05],\n", " 'dt': 2225.746134706672,\n", " 'pL / Pa': 135714.69520623982,\n", " 'pV / Pa': 135714.69513252738,\n", " 'rhoL / mol/m^3': [16828.094374759086, 32456.377826371307],\n", " 'rhoV / mol/m^3': [56.81868770349085, 0.8079775818862941],\n", " 't': 37602.67184171622,\n", " 'xL_0 / mole frac.': 0.34144820109026375,\n", " 'xV_0 / mole frac.': 0.9859791022457217},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.568630426855959,\n", " 0.8225852768820584,\n", " -0.0035916168580053622,\n", " 1.410044566813708e-05],\n", " 'dt': 1827.9191062504974,\n", " 'pL / Pa': 121676.63196499646,\n", " 'pV / Pa': 121676.63199552287,\n", " 'rhoL / mol/m^3': [15861.911531940847, 33858.42688010262],\n", " 'rhoV / mol/m^3': [50.5698423984294, 0.8316763046156722],\n", " 't': 39305.40258364675,\n", " 'xL_0 / mole frac.': 0.31902259796563875,\n", " 'xV_0 / mole frac.': 0.9838200052138459},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5710797678491014,\n", " 0.8208874844559244,\n", " -0.0034112174333109377,\n", " 1.4582999929112178e-05],\n", " 'dt': 1827.9191062504974,\n", " 'pL / Pa': 107147.19667124748,\n", " 'pV / Pa': 107147.19678234181,\n", " 'rhoL / mol/m^3': [14820.240462494312, 35360.480862333374],\n", " 'rhoV / mol/m^3': [44.167158485013566, 0.8578746465464361],\n", " 't': 41133.321689897246,\n", " 'xL_0 / mole frac.': 0.2953373341638629,\n", " 'xV_0 / mole frac.': 0.980946718150328},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5729255768224042,\n", " 0.8196009247178587,\n", " -0.003256900057296907,\n", " 1.5045361597673408e-05],\n", " 'dt': 1530.5811627154353,\n", " 'pL / Pa': 96085.23140747845,\n", " 'pV / Pa': 96085.23146224619,\n", " 'rhoL / mol/m^3': [13991.558393493582, 36548.78073284068],\n", " 'rhoV / mol/m^3': [39.3357970837063, 0.8793277882479742],\n", " 't': 42582.043466376665,\n", " 'xL_0 / mole frac.': 0.27683942441540166,\n", " 'xV_0 / mole frac.': 0.9781344011476335},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5747982464642494,\n", " 0.8182893579672108,\n", " -0.003082572885297835,\n", " 1.5608993129366956e-05],\n", " 'dt': 1530.5811627154353,\n", " 'pL / Pa': 84888.33696313202,\n", " 'pV / Pa': 84888.33696551636,\n", " 'rhoL / mol/m^3': [13113.206864275073, 37802.237037662606],\n", " 'rhoV / mol/m^3': [34.48276228634632, 0.9027776300758239],\n", " 't': 44112.6246290921,\n", " 'xL_0 / mole frac.': 0.25754870937648894,\n", " 'xV_0 / mole frac.': 0.9744873857454736},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.576284316992878,\n", " 0.8172440248290407,\n", " -0.0029308035141548255,\n", " 1.6125870431254637e-05],\n", " 'dt': 1306.6388934396384,\n", " 'pL / Pa': 76119.12222644687,\n", " 'pV / Pa': 76119.12237624887,\n", " 'rhoL / mol/m^3': [12390.702962699213, 38828.809251438026],\n", " 'rhoV / mol/m^3': [30.707517517546734, 0.9226917161367534],\n", " 't': 45367.9640601762,\n", " 'xL_0 / mole frac.': 0.2419137244200311,\n", " 'xV_0 / mole frac.': 0.9708287824048232},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5777924022256987,\n", " 0.8161790842220344,\n", " -0.0027644401756335554,\n", " 1.6710865051459888e-05],\n", " 'dt': 1306.6388934396384,\n", " 'pL / Pa': 67424.03183662891,\n", " 'pV / Pa': 67424.03183428312,\n", " 'rhoL / mol/m^3': [11636.718375156595, 39895.95408650465],\n", " 'rhoV / mol/m^3': [26.985778773349434, 0.944139751182783],\n", " 't': 46674.60295361584,\n", " 'xL_0 / mole frac.': 0.22581243741655282,\n", " 'xV_0 / mole frac.': 0.9661961150959499},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5790363994090189,\n", " 0.8152974877491066,\n", " -0.0026180780033082853,\n", " 1.723377832738404e-05],\n", " 'dt': 1098.5955261059848,\n", " 'pL / Pa': 60480.21010826528,\n", " 'pV / Pa': 60480.21032255881,\n", " 'rhoL / mol/m^3': [11001.273185363889, 40792.11956218289],\n", " 'rhoV / mol/m^3': [24.028640475516468, 0.9627832006939437],\n", " 't': 47773.198479721825,\n", " 'xL_0 / mole frac.': 0.21240688438748725,\n", " 'xV_0 / mole frac.': 0.9614754560137193},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5802645490580942,\n", " 0.8144243190678709,\n", " -0.002466029442374356,\n", " 1.7777256033330482e-05],\n", " 'dt': 1098.5955261059848,\n", " 'pL / Pa': 53893.377753704786,\n", " 'pV / Pa': 53893.37767332391,\n", " 'rhoL / mol/m^3': [10364.470586774372, 41687.3215211975],\n", " 'rhoV / mol/m^3': [21.2354451199009, 0.9820132210012396],\n", " 't': 48871.79400582781,\n", " 'xL_0 / mole frac.': 0.1991184196938923,\n", " 'xV_0 / mole frac.': 0.9557999296799238},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5814828756769346,\n", " 0.8135553669398291,\n", " -0.0023086536900913013,\n", " 1.833090360490782e-05],\n", " 'dt': 1098.5955261059848,\n", " 'pL / Pa': 47683.3625022769,\n", " 'pV / Pa': 47683.362665243796,\n", " 'rhoL / mol/m^3': [9726.32471187713, 42581.56693668965],\n", " 'rhoV / mol/m^3': [18.612255346043536, 1.0018469985041134],\n", " 't': 49970.3895319338,\n", " 'xL_0 / mole frac.': 0.18594373440290685,\n", " 'xV_0 / mole frac.': 0.9489221081390652},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5824629936847492,\n", " 0.8128543020213433,\n", " -0.0021781461556445027,\n", " 1.877548702934184e-05],\n", " 'dt': 927.893912938704,\n", " 'pL / Pa': 42960.57706159353,\n", " 'pV / Pa': 42960.57708306347,\n", " 'rhoL / mol/m^3': [9210.499328719796, 43302.34225294272],\n", " 'rhoV / mol/m^3': [16.62362274657052, 1.0182919317538874],\n", " 't': 50856.728594329,\n", " 'xL_0 / mole frac.': 0.1753951805178279,\n", " 'xV_0 / mole frac.': 0.942279965053623},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5834904846317246,\n", " 0.8121174165668954,\n", " -0.0020385492984598035,\n", " 1.9227709785354956e-05],\n", " 'dt': 927.893912938704,\n", " 'pL / Pa': 38301.98604781926,\n", " 'pV / Pa': 38301.98588687364,\n", " 'rhoL / mol/m^3': [8669.559028395444, 44056.24328139755],\n", " 'rhoV / mol/m^3': [14.66708258579654, 1.0359249222914786],\n", " 't': 51784.622507267704,\n", " 'xL_0 / mole frac.': 0.16442725664859556,\n", " 'xV_0 / mole frac.': 0.9340301581236643},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.584401169050494,\n", " 0.8114626377499636,\n", " -0.001913312298252704,\n", " 1.960450976314546e-05],\n", " 'dt': 818.3689242394056,\n", " 'pL / Pa': 34442.99701240659,\n", " 'pV / Pa': 34442.997054111256,\n", " 'rhoL / mol/m^3': [8191.676303595749, 44720.5874022834],\n", " 'rhoV / mol/m^3': [13.049921865298842, 1.051816273272517],\n", " 't': 52602.99143150711,\n", " 'xL_0 / mole frac.': 0.1548162132909381,\n", " 'xV_0 / mole frac.': 0.9254122957796552},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5853190607637178,\n", " 0.8108010884119935,\n", " -0.0017865437754182344,\n", " 1.99485461349882e-05],\n", " 'dt': 818.3689242394056,\n", " 'pL / Pa': 30823.744954302907,\n", " 'pV / Pa': 30823.744899385994,\n", " 'rhoL / mol/m^3': [7713.045549640369, 45384.393046053934],\n", " 'rhoV / mol/m^3': [11.535910509428605, 1.068003448454717],\n", " 't': 53421.36035574651,\n", " 'xL_0 / mole frac.': 0.14526210215846125,\n", " 'xV_0 / mole frac.': 0.9152641431841324},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5862469722354562,\n", " 0.8101306904595141,\n", " -0.0016587677517761067,\n", " 2.0245906537262914e-05],\n", " 'dt': 818.3689242394056,\n", " 'pL / Pa': 27448.577561572194,\n", " 'pV / Pa': 27448.57769463682,\n", " 'rhoL / mol/m^3': [7233.659708147388, 46047.65381622256],\n", " 'rhoV / mol/m^3': [10.126093780763757, 1.0844541031840274],\n", " 't': 54239.72927998591,\n", " 'xL_0 / mole frac.': 0.13576353940371305,\n", " 'xV_0 / mole frac.': 0.9032648435731816},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5870225207044815,\n", " 0.8095691126309268,\n", " -0.0015529461496279627,\n", " 2.044473096525421e-05],\n", " 'dt': 700.2979896392686,\n", " 'pL / Pa': 24848.002737656236,\n", " 'pV / Pa': 24848.00263228073,\n", " 'rhoL / mol/m^3': [6837.26959819625, 46594.87195433976],\n", " 'rhoV / mol/m^3': [9.041008036503161, 1.0982041870741426],\n", " 't': 54915.43189420111,\n", " 'xL_0 / mole frac.': 0.12796173612980966,\n", " 'xV_0 / mole frac.': 0.8916874247369609},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5878366900094536,\n", " 0.8089783322008688,\n", " -0.001443427900327403,\n", " 2.0594342442742822e-05],\n", " 'dt': 700.2979896392686,\n", " 'pL / Pa': 22331.643412306905,\n", " 'pV / Pa': 22331.643465697063,\n", " 'rhoL / mol/m^3': [6425.894476773186, 47161.60526110292],\n", " 'rhoV / mol/m^3': [7.991853886257107, 1.1125776844197839],\n", " 't': 55615.72988384038,\n", " 'xL_0 / mole frac.': 0.11991405660285562,\n", " 'xV_0 / mole frac.': 0.8777982265248585},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5886624070839611,\n", " 0.808377875107855,\n", " -0.0013345766443252026,\n", " 2.06738186008332e-05],\n", " 'dt': 700.2979896392686,\n", " 'pL / Pa': 19997.534533560276,\n", " 'pV / Pa': 19997.53448201051,\n", " 'rhoL / mol/m^3': [6013.945193514779, 47727.921491631685],\n", " 'rhoV / mol/m^3': [7.019193550542683, 1.1270321760059827],\n", " 't': 56316.02787347965,\n", " 'xL_0 / mole frac.': 0.11190428551260116,\n", " 'xV_0 / mole frac.': 0.861649773301399},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.589365086817681,\n", " 0.8078658590547146,\n", " -0.0012441007454177069,\n", " 2.067633313466759e-05],\n", " 'dt': 588.1190181574497,\n", " 'pL / Pa': 18177.53083077073,\n", " 'pV / Pa': 18177.53098006429,\n", " 'rhoL / mol/m^3': [5667.535419477732, 48203.193677733165],\n", " 'rhoV / mol/m^3': [6.260961113801422, 1.1391946867163212],\n", " 't': 56904.1468916371,\n", " 'xL_0 / mole frac.': 0.10520621336404305,\n", " 'xV_0 / mole frac.': 0.8460580131790444},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5900759848650045,\n", " 0.8073468882062945,\n", " -0.0011548871740025197,\n", " 2.0611251305620783e-05],\n", " 'dt': 588.1190181574497,\n", " 'pL / Pa': 16484.359288066626,\n", " 'pV / Pa': 16484.35932466689,\n", " 'rhoL / mol/m^3': [5320.709946377388, 48678.16267721589],\n", " 'rhoV / mol/m^3': [5.555587697342731, 1.1513392134363094],\n", " 't': 57492.26590979455,\n", " 'xL_0 / mole frac.': 0.09853372279577285,\n", " 'xV_0 / mole frac.': 0.8283358043478998},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5907943244193828,\n", " 0.8068214961008987,\n", " -0.0010673538880648045,\n", " 2.0470232153995936e-05],\n", " 'dt': 588.1190181574497,\n", " 'pL / Pa': 14916.260550364852,\n", " 'pV / Pa': 14916.260495803293,\n", " 'rhoL / mol/m^3': [4973.464138267606, 49152.82453387771],\n", " 'rhoV / mol/m^3': [4.902209715743894, 1.1634235342451755],\n", " 't': 58080.384927952,\n", " 'xL_0 / mole frac.': 0.09188629518629955,\n", " 'xV_0 / mole frac.': 0.8081942171087789},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5915186125567283,\n", " 0.8062907455482635,\n", " -0.0009819533129046937,\n", " 2.0245491113598573e-05],\n", " 'dt': 588.1190181574497,\n", " 'pL / Pa': 13470.793446987867,\n", " 'pV / Pa': 13470.793543688173,\n", " 'rhoL / mol/m^3': [4625.794018364758, 49627.17575464354],\n", " 'rhoV / mol/m^3': [4.29970757309739, 1.175400658672856],\n", " 't': 58668.50394610945,\n", " 'xL_0 / mole frac.': 0.08526342498334834,\n", " 'xV_0 / mole frac.': 0.7853191920750727},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5921332591737858,\n", " 0.8058395445288328,\n", " -0.0009118411990735065,\n", " 1.998552888805086e-05],\n", " 'dt': 496.7351732153197,\n", " 'pL / Pa': 12343.137283086777,\n", " 'pV / Pa': 12343.137278281123,\n", " 'rhoL / mol/m^3': [4331.813327983636, 50027.57674450092],\n", " 'rhoV / mol/m^3': [3.8294339540987687, 1.185395477737439],\n", " 't': 59165.23911932477,\n", " 'xL_0 / mole frac.': 0.07968840934762986,\n", " 'xV_0 / mole frac.': 0.7636219748149241},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5927484331028696,\n", " 0.8053872251863022,\n", " -0.0008439042339889487,\n", " 1.9658203159165452e-05],\n", " 'dt': 496.7351732153197,\n", " 'pL / Pa': 11298.375736564398,\n", " 'pV / Pa': 11298.375862191437,\n", " 'rhoL / mol/m^3': [4037.5270934310056, 50427.7532583139],\n", " 'rhoV / mol/m^3': [3.3934602927354747, 1.1952445270945293],\n", " 't': 59661.974292540086,\n", " 'xL_0 / mole frac.': 0.07413029121223748,\n", " 'xV_0 / mole frac.': 0.7395246427860642},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5933614696147844,\n", " 0.8049357489890477,\n", " -0.0007784632279775192,\n", " 1.9262061156515676e-05],\n", " 'dt': 496.7351732153197,\n", " 'pL / Pa': 10333.76201364398,\n", " 'pV / Pa': 10333.76170494049,\n", " 'rhoL / mol/m^3': [3742.9356868037476, 50827.70520677238],\n", " 'rhoV / mol/m^3': [2.9906268989822196, 1.2049139144789054],\n", " 't': 60158.709465755404,\n", " 'xL_0 / mole frac.': 0.06858881672478861,\n", " 'xV_0 / mole frac.': 0.7128108227161046},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5939689978789415,\n", " 0.8044876113192161,\n", " -0.0007158486142284715,\n", " 1.8797588848958302e-05],\n", " 'dt': 496.7351732153197,\n", " 'pL / Pa': 9446.127312988043,\n", " 'pV / Pa': 9446.127204369412,\n", " 'rhoL / mol/m^3': [3448.040976475608, 51227.43360529587],\n", " 'rhoV / mol/m^3': [2.6196122051581026, 1.2143694859828689],\n", " 't': 60655.44463897072,\n", " 'xL_0 / mole frac.': 0.06306375944334587,\n", " 'xV_0 / mole frac.': 0.6832615323153827},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5944864340857634,\n", " 0.8041053650449482,\n", " -0.0006642721170611382,\n", " 1.8343348426760118e-05],\n", " 'dt': 429.2827633222733,\n", " 'pL / Pa': 8738.28260448575,\n", " 'pV / Pa': 8738.282535776452,\n", " 'rhoL / mol/m^3': [3192.9489500786876, 51572.70401351609],\n", " 'rhoV / mol/m^3': [2.3234696061742564, 1.222343161792193],\n", " 't': 61084.727402293,\n", " 'xL_0 / mole frac.': 0.05830203379846828,\n", " 'xV_0 / mole frac.': 0.655271374496963},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5949935408624705,\n", " 0.8037302454480025,\n", " -0.0006152768697421899,\n", " 1.7843952976915478e-05],\n", " 'dt': 429.2827633222733,\n", " 'pL / Pa': 8082.675639808178,\n", " 'pV / Pa': 8082.675690617889,\n", " 'rhoL / mol/m^3': [2937.6368941159735, 51917.81176970256],\n", " 'rhoV / mol/m^3': [2.048921700560312, 1.230111981870446],\n", " 't': 61514.01016561528,\n", " 'xL_0 / mole frac.': 0.05355232644471242,\n", " 'xV_0 / mole frac.': 0.6248553381865354},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5954867441579178,\n", " 0.8033649316339588,\n", " -0.0005690812790141342,\n", " 1.7305058409753774e-05],\n", " 'dt': 429.2827633222733,\n", " 'pL / Pa': 7476.492448240519,\n", " 'pV / Pa': 7476.492468389912,\n", " 'rhoL / mol/m^3': [2682.10999490346, 52262.76049664153],\n", " 'rhoV / mol/m^3': [1.7948134702063887, 1.2376577022545092],\n", " 't': 61943.29292893755,\n", " 'xL_0 / mole frac.': 0.04881456578037048,\n", " 'xV_0 / mole frac.': 0.5918649735258222},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5959620706143997,\n", " 0.8030124118198367,\n", " -0.0005259013629096971,\n", " 1.673447729949607e-05],\n", " 'dt': 429.2827633222733,\n", " 'pL / Pa': 6916.686007678509,\n", " 'pV / Pa': 6916.686050498669,\n", " 'rhoL / mol/m^3': [2426.375060467933, 52607.5550348037],\n", " 'rhoV / mol/m^3': [1.559896587213542, 1.2449649632637534],\n", " 't': 62372.57569225983,\n", " 'xL_0 / mole frac.': 0.04408871138709392,\n", " 'xV_0 / mole frac.': 0.5561403153564206},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5963430331615601,\n", " 0.802729558594662,\n", " -0.0004922340469304709,\n", " 1.6239848472378133e-05],\n", " 'dt': 359.2916336455405,\n", " 'pL / Pa': 6481.430113852024,\n", " 'pV / Pa': 6481.4299440179775,\n", " 'rhoL / mol/m^3': [2212.1819317823333, 52896.01949662502],\n", " 'rhoV / mol/m^3': [1.3770623504700419, 1.2508890152860224],\n", " 't': 62731.86732590537,\n", " 'xL_0 / mole frac.': 0.040142517346646533,\n", " 'xV_0 / mole frac.': 0.5240060255353545},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5967058054134059,\n", " 0.8024599485732479,\n", " -0.0004609491272396289,\n", " 1.5737257076995896e-05],\n", " 'dt': 359.2916336455405,\n", " 'pL / Pa': 6074.334722459316,\n", " 'pV / Pa': 6074.334989852812,\n", " 'rhoL / mol/m^3': [1997.8551135894254, 53184.384649636544],\n", " 'rhoV / mol/m^3': [1.2059000999186014, 1.2566336885326235],\n", " 't': 63091.15895955091,\n", " 'xL_0 / mole frac.': 0.03620467603637969,\n", " 'xV_0 / mole frac.': 0.48969890507656133},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5970476786624347,\n", " 0.8022056359844706,\n", " -0.00043216483421677375,\n", " 1.5235007009136372e-05],\n", " 'dt': 359.2916336455405,\n", " 'pL / Pa': 5693.261197209358,\n", " 'pV / Pa': 5693.261236022131,\n", " 'rhoL / mol/m^3': [1783.401627541154, 53472.655620456964],\n", " 'rhoV / mol/m^3': [1.0455325220901805, 1.2621975816840945],\n", " 't': 63450.450593196445,\n", " 'xL_0 / mole frac.': 0.03227522404533786,\n", " 'xV_0 / mole frac.': 0.45305667260665367},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.597331231263129,\n", " 0.8019945341484637,\n", " -0.00040882111206281337,\n", " 1.4797332581000133e-05],\n", " 'dt': 318.6535554277305,\n", " 'pL / Pa': 5375.26165702939,\n", " 'pV / Pa': 5375.261526934074,\n", " 'rhoL / mol/m^3': [1593.1045673389226, 53728.2472835487],\n", " 'rhoV / mol/m^3': [0.9115966147326319, 1.2669822446024368],\n", " 't': 63769.104148624174,\n", " 'xL_0 / mole frac.': 0.028797281954225446,\n", " 'xV_0 / mole frac.': 0.4184363631486185},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5975944261863354,\n", " 0.8017984480784519,\n", " -0.00038761242200711037,\n", " 1.4374308917810372e-05],\n", " 'dt': 318.6535554277305,\n", " 'pL / Pa': 5074.345160841942,\n", " 'pV / Pa': 5074.345257201041,\n", " 'rhoL / mol/m^3': [1402.720349122222, 53983.774035211456],\n", " 'rhoV / mol/m^3': [0.7847611337132065, 1.271629581732322],\n", " 't': 64087.7577040519,\n", " 'xL_0 / mole frac.': 0.02532603597166799,\n", " 'xV_0 / mole frac.': 0.3816206364962038},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5978109500924023,\n", " 0.8016370316157951,\n", " -0.00037053396451016383,\n", " 1.4014890369475072e-05],\n", " 'dt': 284.64959855936456,\n", " 'pL / Pa': 4818.616696089506,\n", " 'pV / Pa': 4818.6167159779325,\n", " 'rhoL / mol/m^3': [1232.5840885128623, 54211.982349348174],\n", " 'rhoV / mol/m^3': [0.6769005687474493, 1.2756695859631866],\n", " 't': 64372.40730261127,\n", " 'xL_0 / mole frac.': 0.02223092663001106,\n", " 'xV_0 / mole frac.': 0.3466715739326475},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5980088238284309,\n", " 0.8014894386193131,\n", " -0.000355271630599715,\n", " 1.367857727952581e-05],\n", " 'dt': 284.64959855936456,\n", " 'pL / Pa': 4573.9446603655815,\n", " 'pV / Pa': 4573.944759384499,\n", " 'rhoL / mol/m^3': [1062.388825308243, 54440.1466656901],\n", " 'rhoV / mol/m^3': [0.5736441206828529, 1.2796104398183135],\n", " 't': 64657.05690117063,\n", " 'xL_0 / mole frac.': 0.019141266536923274,\n", " 'xV_0 / mole frac.': 0.30953336519928765},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5981624092599351,\n", " 0.8013748273012176,\n", " -0.00034370971153424985,\n", " 1.3413703936996936e-05],\n", " 'dt': 243.17623978680837,\n", " 'pL / Pa': 4372.724250763655,\n", " 'pV / Pa': 4372.724192672445,\n", " 'rhoL / mol/m^3': [916.9483197805537, 54635.03569959995],\n", " 'rhoV / mol/m^3': [0.48868421662025785, 1.2829040820296262],\n", " 't': 64900.23314095744,\n", " 'xL_0 / mole frac.': 0.01650613089643489,\n", " 'xV_0 / mole frac.': 0.2758452497076668},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5983012737341763,\n", " 0.8012711616082543,\n", " -0.00033354083955404966,\n", " 1.317306012463299e-05],\n", " 'dt': 243.17623978680837,\n", " 'pL / Pa': 4177.838901132345,\n", " 'pV / Pa': 4177.838755951931,\n", " 'rhoL / mol/m^3': [771.4722479843001, 54829.89818751441],\n", " 'rhoV / mol/m^3': [0.4063671288334522, 1.286136192361151],\n", " 't': 65143.40938074425,\n", " 'xL_0 / mole frac.': 0.01387505814949758,\n", " 'xV_0 / mole frac.': 0.24009827558071203},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5984068466070299,\n", " 0.8011923236341043,\n", " -0.00032605957543965433,\n", " 1.2991083419320323e-05],\n", " 'dt': 213.3302311660754,\n", " 'pL / Pa': 4017.5714841485023,\n", " 'pV / Pa': 4017.5715708503826,\n", " 'rhoL / mol/m^3': [648.5840921341025, 54994.45236593453],\n", " 'rhoV / mol/m^3': [0.3386513728354025, 1.2888225935562065],\n", " 't': 65348.78606184022,\n", " 'xL_0 / mole frac.': 0.011656159214511259,\n", " 'xV_0 / mole frac.': 0.2080840491637793},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5985050269088932,\n", " 0.8011189865405807,\n", " -0.0003193814382442753,\n", " 1.2824762024168966e-05],\n", " 'dt': 213.3302311660754,\n", " 'pL / Pa': 3854.715685456991,\n", " 'pV / Pa': 3854.715706358888,\n", " 'rhoL / mol/m^3': [520.9151402370015, 55165.36293158016],\n", " 'rhoV / mol/m^3': [0.26982529209167955, 1.2915758154582782],\n", " 't': 65562.1162930063,\n", " 'xL_0 / mole frac.': 0.009354461427017813,\n", " 'xV_0 / mole frac.': 0.17280972249025153},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5985695414891407,\n", " 0.8010707861893661,\n", " -0.0003152041679566672,\n", " 1.2718627563624435e-05],\n", " 'dt': 175.0822876441897,\n", " 'pL / Pa': 3737.354094028473,\n", " 'pV / Pa': 3737.35418530178,\n", " 'rhoL / mol/m^3': [427.3203599544485, 55290.63198241553],\n", " 'rhoV / mol/m^3': [0.22021743227561605, 1.2935727760690747],\n", " 't': 65718.48867059078,\n", " 'xL_0 / mole frac.': 0.007669347885017275,\n", " 'xV_0 / mole frac.': 0.1454742084218003},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5986261802879954,\n", " 0.8010284632489095,\n", " -0.00031173610938668814,\n", " 1.2629061834096407e-05],\n", " 'dt': 151.8566574926822,\n", " 'pL / Pa': 3624.767089366913,\n", " 'pV / Pa': 3624.766963622027,\n", " 'rhoL / mol/m^3': [336.4192148913085, 55412.27664515368],\n", " 'rhoV / mol/m^3': [0.17262228359771087, 1.2954972116042496],\n", " 't': 65870.34532808347,\n", " 'xL_0 / mole frac.': 0.006034566543688777,\n", " 'xV_0 / mole frac.': 0.11758054038643785},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5986714005912873,\n", " 0.800994668133984,\n", " -0.0003091556364410519,\n", " 1.2561353645979331e-05],\n", " 'dt': 134.38597339973077,\n", " 'pL / Pa': 3526.0984677672386,\n", " 'pV / Pa': 3526.0984779669084,\n", " 'rhoL / mol/m^3': [255.9691631934155, 55519.921325842064],\n", " 'rhoV / mol/m^3': [0.1309078750282962, 1.2971897071720977],\n", " 't': 66004.7313014832,\n", " 'xL_0 / mole frac.': 0.004589243864133991,\n", " 'xV_0 / mole frac.': 0.09166591741342708},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5987055212488839,\n", " 0.800969165572253,\n", " -0.0003073629793045707,\n", " 1.2513594414259717e-05],\n", " 'dt': 118.68594064338866,\n", " 'pL / Pa': 3444.669177979231,\n", " 'pV / Pa': 3444.6693267816872,\n", " 'rhoL / mol/m^3': [189.09931506789962, 55609.38605807262],\n", " 'rhoV / mol/m^3': [0.09648019263811494, 1.298589992990837],\n", " 't': 66116.42515131703,\n", " 'xL_0 / mole frac.': 0.003388968603777291,\n", " 'xV_0 / mole frac.': 0.0691579489204107},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5987303486088862,\n", " 0.800950607564598,\n", " -0.0003061711913715325,\n", " 1.2481370729208965e-05],\n", " 'dt': 100.85252843928974,\n", " 'pL / Pa': 3380.4697770774364,\n", " 'pV / Pa': 3380.469645429877,\n", " 'rhoL / mol/m^3': [136.11974422943103, 55680.26165868538],\n", " 'rhoV / mol/m^3': [0.06933637589306775, 1.2996958375454208],\n", " 't': 66204.91349194372,\n", " 'xL_0 / mole frac.': 0.002438706000069053,\n", " 'xV_0 / mole frac.': 0.050646270564314276},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.598748378904232,\n", " 0.8009371294589044,\n", " -0.00030538244770142274,\n", " 1.2459734191089584e-05],\n", " 'dt': 84.04659194652139,\n", " 'pL / Pa': 3330.551507741213,\n", " 'pV / Pa': 3330.551580557254,\n", " 'rhoL / mol/m^3': [94.79143045663648, 55735.54723561499],\n", " 'rhoV / mol/m^3': [0.04823067819379914, 1.3005566063879195],\n", " 't': 66273.93903056675,\n", " 'xL_0 / mole frac.': 0.0016978480288933246,\n", " 'xV_0 / mole frac.': 0.03575855047355097},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.598760915900108,\n", " 0.8009277573434599,\n", " -0.00030488086559883083,\n", " 1.2445782926194323e-05],\n", " 'dt': 68.74699062993632,\n", " 'pL / Pa': 3293.868843704462,\n", " 'pV / Pa': 3293.868769611463,\n", " 'rhoL / mol/m^3': [64.35632567600956, 55776.25916935826],\n", " 'rhoV / mol/m^3': [0.032720915705049224, 1.3011895813427565],\n", " 't': 66324.7697043097,\n", " 'xL_0 / mole frac.': 0.0011525002922242605,\n", " 'xV_0 / mole frac.': 0.024530068379750178},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5987691375597636,\n", " 0.800921611010999,\n", " -0.00030457642494638866,\n", " 1.2437210373139627e-05],\n", " 'dt': 55.66159312590773,\n", " 'pL / Pa': 3268.795155584812,\n", " 'pV / Pa': 3268.7954705178795,\n", " 'rhoL / mol/m^3': [43.52580878173467, 55804.12264395807],\n", " 'rhoV / mol/m^3': [0.022119762011454568, 1.3016224079167458],\n", " 't': 66359.55883714577,\n", " 'xL_0 / mole frac.': 0.0007793669024143012,\n", " 'xV_0 / mole frac.': 0.016710022928901887},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5987741145939516,\n", " 0.8009178902213783,\n", " -0.0003044027001973449,\n", " 1.2432271064655064e-05],\n", " 'dt': 45.4810505639417,\n", " 'pL / Pa': 3253.182819068432,\n", " 'pV / Pa': 3253.1826000225255,\n", " 'rhoL / mol/m^3': [30.544649062974667, 55821.48630399166],\n", " 'rhoV / mol/m^3': [0.015518556951712599, 1.3018919881882367],\n", " 't': 66381.2384875347,\n", " 'xL_0 / mole frac.': 0.000546885199011803,\n", " 'xV_0 / mole frac.': 0.011779590659086498},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5987767904525727,\n", " 0.8009158897502964,\n", " -0.00030431284824197855,\n", " 1.242969974050692e-05],\n", " 'dt': 38.61500710567866,\n", " 'pL / Pa': 3244.6435896754265,\n", " 'pV / Pa': 3244.643458111622,\n", " 'rhoL / mol/m^3': [23.441780195920483, 55830.98704016519],\n", " 'rhoV / mol/m^3': [0.011908169852298632, 1.3020394484816478],\n", " 't': 66393.10081222428,\n", " 'xL_0 / mole frac.': 0.00041969420672645103,\n", " 'xV_0 / mole frac.': 0.00906289541998478},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5987785146110021,\n", " 0.8009146007620732,\n", " -0.0003042563294337783,\n", " 1.2428075658500058e-05],\n", " 'dt': 33.80646798965863,\n", " 'pL / Pa': 3239.0852141082287,\n", " 'pV / Pa': 3239.085350244617,\n", " 'rhoL / mol/m^3': [18.817419525363256, 55837.17250973514],\n", " 'rhoV / mol/m^3': [0.009558180545270495, 1.3021354367735272],\n", " 't': 66400.82381364542,\n", " 'xL_0 / mole frac.': 0.0003368917022005125,\n", " 'xV_0 / mole frac.': 0.007286900247946734},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5987800124560969,\n", " 0.800913480961625,\n", " -0.00030420813084009146,\n", " 1.2426686210185342e-05],\n", " 'dt': 29.498269206230304,\n", " 'pL / Pa': 3234.2202512025833,\n", " 'pV / Pa': 3234.220197763738,\n", " 'rhoL / mol/m^3': [14.768897118156282, 55842.58772470796],\n", " 'rhoV / mol/m^3': [0.007501177789942682, 1.3022194619277228],\n", " 't': 66407.58510724334,\n", " 'xL_0 / mole frac.': 0.0002644037958714533,\n", " 'xV_0 / mole frac.': 0.005727311277281009},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5987813105759471,\n", " 0.8009125104734987,\n", " -0.0003041670528011221,\n", " 1.2425498555073355e-05],\n", " 'dt': 25.291391174424174,\n", " 'pL / Pa': 3229.9757429659367,\n", " 'pV / Pa': 3229.975664314794,\n", " 'rhoL / mol/m^3': [11.23629848432973, 55847.31283413535],\n", " 'rhoV / mol/m^3': [0.0057065767436762565, 1.3022927715600088],\n", " 't': 66413.48476108459,\n", " 'xL_0 / mole frac.': 0.0002011562895708667,\n", " 'xV_0 / mole frac.': 0.004362828430363507},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5987833487181318,\n", " 0.800910986729722,\n", " -0.00030410388945649756,\n", " 1.2423665605005284e-05],\n", " 'dt': 18.25272963869183,\n", " 'pL / Pa': 3223.2575092315674,\n", " 'pV / Pa': 3223.2575689504474,\n", " 'rhoL / mol/m^3': [5.6440597032461985, 55854.79283062047],\n", " 'rhoV / mol/m^3': [0.0028661503950271425, 1.3024088090568002],\n", " 't': 66422.82411277913,\n", " 'xL_0 / mole frac.': 0.00010103858862270868,\n", " 'xV_0 / mole frac.': 0.0021958211748969976},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5987847223137074,\n", " 0.8009099598054206,\n", " -0.00030406226163505684,\n", " 1.2422452740469986e-05],\n", " 'dt': 10.349278087152271,\n", " 'pL / Pa': 3218.691937506199,\n", " 'pV / Pa': 3218.6919741077236,\n", " 'rhoL / mol/m^3': [1.842934382687733, 55859.87706949802],\n", " 'rhoV / mol/m^3': [0.0009358091145513153, 1.302487671540504],\n", " 't': 66429.17218669238,\n", " 'xL_0 / mole frac.': 3.29910067674197e-05,\n", " 'xV_0 / mole frac.': 0.0007179624492271769},\n", " {'T / K': 298.15,\n", " 'c': -1.0,\n", " 'drho/dt': [-0.5987851977662909,\n", " 0.8009096043477506,\n", " -0.00030404803280780325,\n", " 1.2422037222127023e-05],\n", " 'dt': 5.045830245584106,\n", " 'pL / Pa': 3217.1044620871544,\n", " 'pV / Pa': 3217.1043947750622,\n", " 'rhoL / mol/m^3': [0.5210595290886416, 55861.64515415611],\n", " 'rhoV / mol/m^3': [0.00026457842924539255, 1.3025150948292565],\n", " 't': 66431.3797819755,\n", " 'xL_0 / mole frac.': 9.327592616001912e-06,\n", " 'xV_0 / mole frac.': 0.00020308762462007955}]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# ammonia+water VLE at constant temperature\n", "\n", "ammonia = teqp.make_model({\"kind\":\"genericSAFT\", \"model\": Dufal_ammonia})\n", "\n", "Dufal_ammoniawater = {\n", " \"nonpolar\": {\n", " \"kind\": \"SAFT-VR-Mie\",\n", " \"model\": {\n", " \"coeffs\": [\n", " {\n", " \"name\": \"Ammonia\",\n", " \"BibTeXKey\": \"Dufal-2015\",\n", " \"m\": 1.0,\n", " \"sigma_Angstrom\": 3.3309,\n", " \"epsilon_over_k\": 323.70,\n", " \"lambda_r\": 36.832,\n", " \"lambda_a\": 6.0\n", " },\n", " {\n", " \"name\": \"Water\",\n", " \"BibTeXKey\": \"Dufal-2015\",\n", " \"m\": 1.0,\n", " \"sigma_Angstrom\": 3.0555,\n", " \"epsilon_over_k\": 418.00,\n", " \"lambda_r\": 35.823,\n", " \"lambda_a\": 6.0\n", " }\n", " ]\n", " }\n", " },\n", " \"association\": {\n", " \"kind\": \"Dufal\",\n", " \"model\": {\n", " \"sigma / m\": [3.3309e-10, 3.0555e-10],\n", " \"epsilon / J/mol\": [323.70*8.31446261815324, 3475.445374388054],\n", " \"lambda_r\": [36.832, 35.823],\n", " \"epsilon_HB / J/mol\": [1105.0*8.31446261815324, 13303.140189045183],\n", " \"K_HB / m^3\": [560.73e-30, 496.66e-30],\n", " \"kmat\": [[0.0,0.0],[0,0]],\n", " \"Delta_rule\": \"Dufal\",\n", " \"molecule_sites\": [[\"e\",\"H\",\"H\",\"H\"],[\"e\",\"e\",\"H\",\"H\"]]\n", " }\n", " }\n", "}\n", "\n", "T = 298.15\n", "rhoL0, rhoV0 = ammonia.pure_VLE_T(T, anc.rhoL(T), anc.rhoV(T), 10)\n", "\n", "ammoniawater = teqp.make_model({\"kind\":\"genericSAFT\", \"model\": Dufal_ammoniawater})\n", "ammoniawater.trace_VLE_isotherm_binary(T, np.array([rhoL0, 0]), np.array([rhoV0, 0]))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 5 }