{ "cells": [ { "cell_type": "markdown", "id": "1afc4517", "metadata": {}, "source": [ "# Thermodynamic Derivatives\n", "\n", "## Helmholtz energy derivatives\n", "Thermodynamic derivatives are at the very heart of teqp. All models are defined in the form $\\alpha^r(T, \\rho, z)$, where $\\rho$ is the molar density, and z are mole fractions. There are exceptions for models for which the independent variables are in simulation units (Lennard-Jones and its ilk).\n", "\n", "Thereofore, to obtain the residual pressure, it is obtained as a derivative:\n", "\n", "$$ p^r = \\rho R T \\left( \\rho \\left(\\frac{\\partial \\alpha^r}{\\partial \\rho}\\right)_{T}\\right)$$\n", "\n", "and other residual thermodynamic properties are defined likewise.\n", "\n", "We can define the concise derivative\n", "\n", "$$ \\Lambda^r_{xy} = (1/T)^x(\\rho)^y\\left(\\frac{\\partial^{x+y}(\\alpha^r)}{\\partial (1/T)^x\\partial \\rho^y}\\right)$$\n", "\n", "so we can re-write the derivative above as \n", "\n", "$$ p^r = \\rho R T \\Lambda^r_{01}$$\n", "\n", "Similar definitions apply for all the other thermodynamic properties, with the tot superscript indicating it is the sum of the residual and ideal-gas (not included in teqp) contributions:\n", "\n", "$$\n", "\\frac{p}{\\rho R T} = 1 + \\Lambda^r_{01}\n", "$$\n", "Internal energy ($u= a+Ts$):\n", "$$\n", "\t\\frac{u}{RT} = \\Lambda^{\\rm tot}_{10}\n", "$$\n", "Enthalpy ($h= u+p/\\rho$):\n", "$$\n", "\\frac{h}{RT} = 1+\\Lambda^r_{01} + \\Lambda^{\\rm tot}_{10}\n", "$$\n", "Entropy ($s\\equiv -(\\partial a/\\partial T)_v$):\n", "$$\n", "\\frac{s}{R} = \\Lambda^{\\rm tot}_{10}-\\Lambda^{\\rm tot}_{00}\n", "$$\n", "Gibbs energy ($g= h-Ts$):\n", "$$\n", "\t\\frac{g}{RT} = 1+\\Lambda^r_{01}+\\Lambda^{\\rm tot}_{00}\n", "$$\n", "Derivatives of pressure:\n", "$$\n", "\t\\left(\\frac{\\partial p}{\\partial \\rho}\\right)_{T} = RT\\left(1+2\\Lambda^r_{01}+\\Lambda^r_{02}\\right)\n", "$$\n", "$$\n", "\t\\left(\\frac{\\partial p}{\\partial T}\\right)_{\\rho} = R\\rho\\left(1+\\Lambda^r_{01}-\\Lambda^r_{11}\\right)\n", "$$\n", "Isochoric specific heat ($c_v\\equiv (\\partial u/\\partial T)_v$):\n", "$$\n", "\\frac{c_v}{R} = -\\Lambda^{\\rm tot}_{20}\n", "$$\n", "Isobaric specific heat ($c_p\\equiv (\\partial h/\\partial T)_p$; see Eq. 3.56 from Span for the derivation):\n", "$$\n", "\\frac{c_p}{R} = -\\Lambda^{\\rm tot}_{20}+\\frac{(1+\\Lambda^r_{01}-\\Lambda^r_{11})^2}{1+2\\Lambda^r_{01}+\\Lambda^r_{02}}\n", "$$" ] }, { "cell_type": "raw", "id": "4e621170", "metadata": { "raw_mimetype": "text/restructuredtext" }, "source": [ "In teqp, these derivatives are obtained from methods like \n", "\n", "* :py:meth:`~teqp.teqp.AbstractModel.get_Arxy`\n", "* :py:meth:`~teqp.teqp.AbstractModel.get_Ar06n`" ] }, { "cell_type": "markdown", "id": "7622b9b7", "metadata": { "raw_mimetype": "text/restructuredtext" }, "source": [ "where the ``A`` in this context indicates the variable $\\Lambda$ above. This naming is perhaps not ideal, since $A$ is sometimes the total Helmholtz energy, but it was a close visual mnemonic to the character $\\Lambda$." ] }, { "cell_type": "code", "execution_count": 1, "id": "2ced52fd", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:11:06.372355Z", "iopub.status.busy": "2024-12-12T18:11:06.372201Z", "iopub.status.idle": "2024-12-12T18:11:06.388127Z", "shell.execute_reply": "2024-12-12T18:11:06.387651Z" } }, "outputs": [ { "data": { "text/plain": [ "'0.22.0'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import teqp\n", "teqp.__version__" ] }, { "cell_type": "code", "execution_count": 2, "id": "ca35cc29", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:11:06.389785Z", "iopub.status.busy": "2024-12-12T18:11:06.389392Z", "iopub.status.idle": "2024-12-12T18:11:06.436438Z", "shell.execute_reply": "2024-12-12T18:11:06.435998Z" } }, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 3, "id": "8d254c40", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:11:06.438521Z", "iopub.status.busy": "2024-12-12T18:11:06.438292Z", "iopub.status.idle": "2024-12-12T18:11:06.442029Z", "shell.execute_reply": "2024-12-12T18:11:06.441590Z" } }, "outputs": [], "source": [ "Tc_K = [300]\n", "pc_Pa = [4e6]\n", "acentric = [0.01]\n", "model = teqp.canonical_PR(Tc_K, pc_Pa, acentric)" ] }, { "cell_type": "code", "execution_count": 4, "id": "49ee3453", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:11:06.444231Z", "iopub.status.busy": "2024-12-12T18:11:06.443903Z", "iopub.status.idle": "2024-12-12T18:11:06.448964Z", "shell.execute_reply": "2024-12-12T18:11:06.448517Z" } }, "outputs": [ { "data": { "text/plain": [ "-0.06836660379313926" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "z = np.array([1.0])\n", "model.get_Ar01(300,300,z)" ] }, { "cell_type": "markdown", "id": "498a2350", "metadata": {}, "source": [ "And there are additional methods to obtain all the derivatives up to a given order:\n" ] }, { "cell_type": "code", "execution_count": 5, "id": "3ae755e1", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:11:06.450838Z", "iopub.status.busy": "2024-12-12T18:11:06.450668Z", "iopub.status.idle": "2024-12-12T18:11:06.455945Z", "shell.execute_reply": "2024-12-12T18:11:06.455495Z" } }, "outputs": [ { "data": { "text/plain": [ "array([-6.96613834e-02, -6.83666038e-02, 2.53578225e-03, -1.57011622e-04,\n", " 1.68186288e-05, -2.23059409e-06, 3.82592585e-07])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.get_Ar06n(300,300,z) # derivatives 00, 01, 02, ... 06" ] }, { "cell_type": "markdown", "id": "cd644a3e", "metadata": {}, "source": [ "But more derivatives are slower than fewer:" ] }, { "cell_type": "code", "execution_count": 6, "id": "4e0609ae", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:11:06.457956Z", "iopub.status.busy": "2024-12-12T18:11:06.457789Z", "iopub.status.idle": "2024-12-12T18:11:20.083575Z", "shell.execute_reply": "2024-12-12T18:11:20.083031Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "567 ns ± 0.747 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "1.11 μs ± 4.12 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)\n" ] } ], "source": [ "%timeit model.get_Ar01(300,300,z)\n", "%timeit model.get_Ar04n(300,300,z)" ] }, { "cell_type": "markdown", "id": "d05e9070", "metadata": {}, "source": [ "Note: calling overhead is usually on the order of 1 microsecond" ] }, { "cell_type": "markdown", "id": "502e9830", "metadata": {}, "source": [ "## Virial coefficients\n", "\n", "Virial coefficients represent the thermodynamics of the interaction of two-, three-, ... bodies interacting with each other. They can be obtained rigorously if the potential energy surface of interaction is fully known. In general, such a surface can only be constructed for small rigid molecules. Many simple thermodynamic models do a poor job of predicting the thermodynamics captured by the virial coefficients. \n", "\n", "The i-th virial coefficient is defined by \n", "$$\n", "\tB_i = \\frac{(\\alpha^r)^{(i-1)}}{(i-2)!}\n", "$$\n", "with the concise derivative term\n", "$$\n", "\t(\\alpha^r)^{(i)} = \\lim_{\\rho \\to 0} \\left(\\frac{\\partial^{i}\\alpha^r}{\\partial \\rho^{i}}\\right)_{T,\\vec{x}}\n", "$$\n", "\n", "teqp supports the virial coefficient directly, there is the ``get_B2vir`` method for the second virial coefficient:" ] }, { "cell_type": "code", "execution_count": 7, "id": "720e120c", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:11:20.085342Z", "iopub.status.busy": "2024-12-12T18:11:20.085169Z", "iopub.status.idle": "2024-12-12T18:11:20.089129Z", "shell.execute_reply": "2024-12-12T18:11:20.088764Z" } }, "outputs": [ { "data": { "text/plain": [ "-0.00023661263734465424" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.get_B2vir(300, z)" ] }, { "cell_type": "markdown", "id": "2fba4369", "metadata": {}, "source": [ "And the ``get_Bnvir`` method that allows for the calculation of higher virial coefficients:" ] }, { "cell_type": "code", "execution_count": 8, "id": "92d01992", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:11:20.090673Z", "iopub.status.busy": "2024-12-12T18:11:20.090476Z", "iopub.status.idle": "2024-12-12T18:11:20.093822Z", "shell.execute_reply": "2024-12-12T18:11:20.093423Z" } }, "outputs": [ { "data": { "text/plain": [ "{2: -0.0002366126373446542,\n", " 3: 3.001768410777936e-08,\n", " 4: -3.2409760373816364e-12,\n", " 5: 3.961781646633723e-16,\n", " 6: -4.5529239838367004e-20,\n", " 7: 5.375927851118494e-24}" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.get_Bnvir(7, 300, z)" ] }, { "cell_type": "markdown", "id": "d50998b1", "metadata": {}, "source": [ "The ``get_Bnvir`` method was implemented because when doing automatic differentiation, all the intermediate derivatives are also retained.\n", "\n", "There is also a method to calculate temperature derivatives of a given virial coefficient" ] }, { "cell_type": "code", "execution_count": 9, "id": "fa4ff386", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:11:20.095282Z", "iopub.status.busy": "2024-12-12T18:11:20.095127Z", "iopub.status.idle": "2024-12-12T18:11:20.098604Z", "shell.execute_reply": "2024-12-12T18:11:20.098083Z" } }, "outputs": [ { "data": { "text/plain": [ "1.0095625628421257e-10" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.get_dmBnvirdTm(2, 3, 300, z) # third temperature derivative of the second virial coefficient" ] }, { "cell_type": "markdown", "id": "c9a9823b", "metadata": {}, "source": [ "## Isochoric Thermodynamics Derivatives\n", "\n", "In the isochoric thermodynamics formalism, the EOS is expressed in the Helmholtz energy density $\\Psi$ as a function of temperature and molar densities $\\vec\\rho$. This formalism is handy because it allows for a concise mathematical structure, well suited to implementation in teqp. For instance the pressure is obtained from (see https://doi.org/10.1002/aic.16074):\n", "$$\n", "p=-\\Psi + \\sum_{i=1}^N\\rho_i\\mu_i\n", "$$\n", "with the chemical potential $\\mu_i$ obtained from\n", "$$\n", "\\mu_i = \\left(\\frac{\\partial \\Psi}{\\partial \\rho_i}\\right)_{T,\\rho_{j\\neq i}}\n", "$$\n", "The molar densities $\\rho_i$ are related to the total density and the mole fractions:\n", "$$\n", "\\rho_i = x_i\\rho\n", "$$\n", "\n", "In teqp, the isochoric derivative functions like ``get_fugacity_coefficients``, ``get_partial_molar_volumes`` take as arguments the temperature ``T`` and the vector of molar concentrations ``rhovec``=$\\vec\\rho$, which are obtained by multiplying the mole fractions by the total density.\n", "\n", "Example:" ] }, { "cell_type": "code", "execution_count": 10, "id": "d56640d3", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:11:20.100127Z", "iopub.status.busy": "2024-12-12T18:11:20.099872Z", "iopub.status.idle": "2024-12-12T18:11:20.144915Z", "shell.execute_reply": "2024-12-12T18:11:20.144518Z" } }, "outputs": [ { "data": { "text/plain": [ "array([0.97884567, 0.99866748])" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "array([0.00470644, 0.00480351])" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model = teqp.build_multifluid_model([\"CO2\",\"Argon\"], teqp.get_datapath())\n", "T, rhovec = 300, np.array([0.3,0.4])*300 # K, mol/m^3\n", "display(model.get_fugacity_coefficients(T, rhovec))\n", "display(model.get_partial_molar_volumes(T, rhovec))" ] } ], "metadata": { "celltoolbar": "Raw Cell Format", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 5 }