{ "cells": [ { "cell_type": "markdown", "id": "df447d16", "metadata": {}, "source": [ "# Cubic Plus Association (CPA)\n", "\n", "The combination of a cubic EOS with association with the association term. The sum of the terms goes like:\n", "$$\n", "\\alpha^{\\rm r} = \\alpha^{\\rm r}_{\\rm cub} + \\alpha^{\\rm r}_{\\rm assoc}\n", "$$\n", "\n", "## Cubic part\n", "\n", "The residual contribution to $\\alpha$ is expressed as the sum :\n", "$$\n", "\\alpha^{\\rm r}_{\\rm assoc} = \\alpha^{\\rm r}_{\\rm cub,rep} +\\alpha^{\\rm r}_{\\rm cub,att}\n", "$$ where the cubic parts come from two separate contributions. The repulsive part of the cubic EOS contribution is:\n", "$$\n", "\\alpha^{\\rm r}_{\\rm cub,rep} = -\\ln(1 - b_{\\rm mix}\\rho) \n", "$$\n", "The attractive part of the cubic EOS contribution:\n", "$$\n", "\\alpha^{\\rm r}_{\\rm cub,att} = -\\frac{a_{\\rm mix}}{RT}\\dfrac{\\ln\\left(\\frac{\\Delta_1 b_{\\rm mix}\\rho + 1}{\\Delta_2b_{\\rm mix}\\rho + 1}\\right)}{b_{\\rm mix}\\cdot(\\Delta_1 - \\Delta_2)}\n", "$$\n", "with the coefficients depending on the cubic type:\n", "\n", "SRK: $\\Delta_1=1$, $\\Delta_2=0$\n", "\n", "PR: $\\Delta_1=1+\\sqrt{2}$, $\\Delta_2=1-\\sqrt{2}$\n", "\n", "The mixture models used for the $a_{\\rm mix}$ and $b_{\\rm mix}$ are the classical ones:\n", "\n", "$$\n", "a_{\\rm mix} = \\sum_i\\sum_jx_ix_j(1-k_{ij})a_{ij}(T)\n", "$$\n", "with $x$ the mole fraction, $k_{ij}$ a weighting parameter\n", "$$\n", "a_{ij}(T) = \\sqrt{a_ia_j}\n", "$$\n", "and\n", "$$\n", "a_{i}(T) = a_{0i}\\left[1+c_{1i}(1-\\sqrt{T/T_{{\\rm crit},i}})\\right]^2\n", "$$\n", "and for $b$:\n", "$$\n", "b_{\\rm mix} = \\sum_ix_ib_i\n", "$$\n", "so there are three cubic parameters per fluid that need to be obtained though fitting: $b_{i}$, $a_{0i}$, $c_{1i}$. The value of $a_{ij}$ depends on temperature while $b_{\\rm mix}$ does not.\n", "\n", "## Association part\n", "\n", "The residual contribution of the association to the Helmholtz energy $\\alpha^{\\rm r}_{\\rm assoc}$ is formulated as:\n", "$$\n", "\\alpha^{\\rm r}_{\\rm assoc} = \\sum_{i} x_i \\sum_{A_i} \\left(\\ln(Y_{A_i}) - \\frac{Y_{A_i}}{2} \\right) + \\frac{M_i}{2},\n", "$$\n", "where $x_i$ is the mole fraction of molecule $i$, $A_i$ is a site of type $A$ on molecule $i$ that can interact with other site types (e.g., type $B$). $Y_{A_i}$ then is the monomer mole fraction of site $A_i$ and $M_i$ is the count of association sites of molecule $i$.\n", "The monomer mole fraction $Y_{A_i}$ can be calculated with:\n", "$$\n", "Y_{A_i} = \\frac{1}{1+\\rho N_{\\rm A} \\sum_j \\sum_{B_j} x_j Y_{B_j} \\Delta_{A_i B_j}}.\n", "$$\n", "$\\rho$ is the molar density of the mixture, $N_{\\rm A}$ is the Avogadro constant, $j$ is the index for a molecule that can be the same as molecule $i$. $B_j$ is a site of type $B$ on molecule $j$ and $\\Delta_{A_i B_j}$ is the interaction strength between the sites. The calculation of $\\Delta_{A_i B_j}$, $Y_{A_i}$ and $Y_{B_j}$ is explained in more detail in the documentation about association.\n", "\n", "The important thing to understand is whether a site is an electron acceptor (positively charged) or electron donor (negatively charged) and how many sites are present on a molecule. For example, water is usually considered a molecule with two electron acceptor (labeled as \"H\" in teqp) and two electron donor (labeled as \"e\" in teqp) sites. The site types have to be specified. " ] }, { "cell_type": "code", "execution_count": 1, "id": "1a9a8a1f-ee6f-46eb-b8ce-84c18593139e", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:38.786189Z", "iopub.status.busy": "2024-12-12T18:08:38.786034Z", "iopub.status.idle": "2024-12-12T18:08:38.843837Z", "shell.execute_reply": "2024-12-12T18:08:38.843351Z" } }, "outputs": [], "source": [ "import teqp, numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "id": "e33af4ac-8922-4cea-8dec-a775091f3e55", "metadata": { "execution": { "iopub.execute_input": "2024-12-12T18:08:38.846094Z", "iopub.status.busy": "2024-12-12T18:08:38.845880Z", "iopub.status.idle": "2024-12-12T18:08:38.854457Z", "shell.execute_reply": "2024-12-12T18:08:38.854021Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "D: [[0 2]\n", " [2 0]]\n", "∆: [[1.24389806e-27 1.24389806e-27]\n", " [1.24389806e-27 1.24389806e-27]]\n", "X_A: [0.54879025 0.54879025]\n", "siteid->(component, name): [[0, [0, 'H']], [1, [0, 'e']]]\n", "(component, name)->siteid: [[[0, 'H'], 0], [[0, 'e'], 1]]\n", "multiplicities: [2 2]\n", "pressure in Pa: 84414.03871039051\n" ] } ], "source": [ "water = {\n", " \"a0i / Pa m^6/mol^2\": 0.12277,\n", " \"bi / m^3/mol\": 0.0000145,\n", " \"c1\": 0.6736,\n", " \"Tc / K\": 647.13,\n", " \"epsABi / J/mol\": 16655.0,\n", " \"betaABi\": 0.0692,\n", "# here the site types are declared. \"e\" for electron donor, \"H\" for electron acceptor\n", " \"sites\": [\"e\",\"e\",\"H\",\"H\"]\n", "}\n", "\n", "jCPA = {\n", " \"cubic\": \"SRK\",\n", " \"radial_dist\": \"CS\",\n", "# \"combining\": \"CR1\", # No other option is implemented yet\n", " \"pures\": [water],\n", " \"R_gas / J/mol/K\": 8.31446261815324\n", "}\n", "\n", "model = teqp.make_model({\"kind\": \"CPA\", \"model\": jCPA, \"validate\": False}, False)\n", "\n", "T = 303.15 # K\n", "rhomolar = 1000 # mol/m^3\n", "molefracs = np.array([1.0])\n", "\n", "# Note: passing data back and forth in JSON format is done for convenience and flexibility, not speed\n", "res = model.get_assoc_calcs(T, rhomolar, molefracs)\n", "\n", "print('D:', np.array(res['D']))\n", "print('∆:', np.array(res['Delta']))\n", "print('X_A:', np.array(res['X_A']))\n", "print('siteid->(component, name):', res['to_CompSite'])\n", "print('(component, name)->siteid:', res['to_siteid'])\n", "print('multiplicities:', np.array(res['counts']))\n", "\n", "\n", "print('pressure in Pa: ',T*rhomolar*model.get_R(molefracs) * ( 1+ model.get_Ar01(T,rhomolar,molefracs)))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 5 }