innovatrics+0006

Innovatrics

Slap Fingerprint Segmentation Evaluation III

Last Updated: 17 May 2024

Contents

1 Participation Information 3
1.1 Names and Dates 3
1.2 Libraries 3
2 Tenprint Cards ("TwoInch" Data) 4
2.1 Segmentation Timing 4
2.2 Segmentation Centers and Dimensions 6
2.3 Detailed Segmentation Statistics 12
2.4 Handling Troublesome Images 15
2.5 Determining Orientation 18
3 Identification Flats ("ThreeInch" Data) 19
3.1 Segmentation Timing 19
3.2 Segmentation Centers and Dimensions 20
3.3 Detailed Segmentation Statistics 28
3.4 Handling Troublesome Images 31
3.5 Determining Orientation 34
4 Upper Palm ("FiveInch" Data) 35
4.1 Segmentation Timing 35
4.2 Segmentation Centers and Dimensions 36
4.3 Detailed Segmentation Statistics 42
4.4 Handling Troublesome Images 45
4.5 Determining Orientation 47
5 Full Palm ("EightInch" Data) 48
5.1 Segmentation Timing 48
5.2 Segmentation Centers and Dimensions 49
5.3 Detailed Segmentation Statistics 55
5.4 Handling Troublesome Images 58
5.5 Determining Orientation 60
A Tenprint Cards ("TwoInch" Data) 61
A. 1 Bootstrap Confidence for Segmentation Statistics 61
A. 2 Jaccard Index 64
B Identification Flats ("ThreeInch" Data) 68
B. 1 Bootstrap Confidence for Segmentation Statistics 68
B. 2 Jaccard Index 71
C Upper Palm ("FiveInch" Data) 75
C. 1 Bootstrap Confidence for Segmentation Statistics 75
C. 2 Jaccard Index 78
D Full Palm ("EightInch" Data) 82
D. 1 Bootstrap Confidence for Segmentation Statistics 82
D. 2 Jaccard Index 85

1 Participation Information

1.1 Names and Dates

- Organization Name: Innovatrics
- SlapSeg III Identifier: innovatrics+0006
- SlapSeg III API Version: 1.2.0
- Provided Marketing Name: "Innovatrics segmentation"
- Application Date: 16 May 2024
- First Submission Date: 16 May 2024 (as version 0006)
- Validation Date: 16 May 2024
- Completion Date: 17 May 2024

1.2 Libraries

Filename	MD5 Checksum	Size
libinnoonnxruntime.so.1.13.1	9d4419033ffb5112f5375535bbbb9c0f	17 MB
libslapsegiii_innovatrics_0006.so	d742a13dd7efd2501712fc17977c3a0b	537 MB

2 Tenprint Cards ("TwoInch" Data)

2.1 Segmentation Timing

All algorithms are run over a small fixed corpus of TwoInch images to estimate the total runtime of the evaluation. To be evaluated under SlapSeg III, algorithms must segment the timing corpus, on average, in under 1500 milliseconds. This maximum reference time is documented in the SlapSeg III test plan, and is subject to change. Times are measured by running a single process on an isolated compute node equipped with an Intel Gold 6254 CPU (submissions received prior to February 2022 were timed with a Intel Xeon E5-4650 CPU). ${ }^{*}=$

Box plots of segmentation times are separated by slap orientation and capture technology in Figure 1. Tabular representations are enumerated in Table 1. Results are reported in milliseconds.

Figure 1: Box plots of elapsed time in milliseconds when segmenting the TwoInch timing test corpus, separated by slap orientation and capture technology.

Table 1: Elapsed time in milliseconds when segmenting the TwoInch timing test corpus, separated by slap orientation and capture technology.

	Right	Left	Live Scan	Ink	Combined
Minimum	64	72	64	64	64
25\%	96	96	95	97	96
Median	100	100	99	102	100
75%	105	105	104	106	105
Maximum	130	152	152	130	152

2.2 Segmentation Centers and Dimensions

2.2.1 Segmentation Centers

The plots in this section show the distribution of segmentation position centers (x, y) for TwoInch data. At the top of each figure is a combined plot for all finger positions of a given slap orientation. These figures are isolated in plots faceted at the bottom of the figure.
Plots of segmentation centers for the right hand TwoInch data are shown in Figure 2 and plots of segmentation centers for the left hand are shown in Figure 3. Blank lines that may appear in the plots are not rendering artifacts. Rather, they are indicative of image downsampling. Centers have been normalized to 500 pixels per inch.

Points in each plot are plotted with a semi-transparent opacity. This results in points of particular color appearing "darker" to indicate a higher frequency of the observed value, while "lighter" points indicate a lower observed frequency.

Segmentation Position Centers

Participant: innovatrics/0006, FRGPs: 2, 3, 4, 5, Image Kind: Two Inch

- Right Index • Right Middle • Right Ring • Right Little

17 May 2024, 09:01:22 AM EDT
Figure 2: Segmentation centers for right hand TwoInch data.

Segmentation Position Centers

Participant: innovatrics/0006, FRGPs: 7, 8, 9, 10, Image Kind: Two Inch

- Left Index • Left Middle • Left Ring • Left Little

17 May 2024, 09:01:17 AM EDT
Figure 3: Segmentation centers for left hand TwoInch data.

2.2.2 Segmentation Dimensions

The plots in this section show the distribution of segmentation position widths and heights for TwoInch data. At the top of each figure is a combined plot for all finger positions of a given slap orientation. These figures are isolated in plots faceted at the bottom of the figure.
Plots of segmentation position dimensions for the right hand TwoInch data are shown in Figure 4 and the left hand in Figure 5. Blank lines that may appear in the plots are not rendering artifacts. Rather, they are indicative of image downsampling. Dimensions have been normalized to 500 pixels per inch.

Segmentation Position Dimensions

Participant: innovatrics/0006, FRGPs: 2, 3, 4, 5, Image Kind: Two Inch

Right Index Right Middle
Right Ring Right Little 17 May 2024, 09:01:48 AM EDT

Figure 4: Segmentation position dimensions for right hand TwoInch data.

Segmentation Position Dimensions

Participant: innovatrics/0006, FRGPs: 7, 8, 9, 10, Image Kind: Two Inch

Figure 5: Segmentation position dimensions for left hand TwoInch data.

2.3 Detailed Segmentation Statistics

This section shows detailed results of segmentation of TwoInch data. Values in each table are the percentage that the variable in the left-most column was correctly segmented.
Each table has three columns of percentages. The Standard Scoring column shows the percentage of correctlysegmented positions based on the scoring metrics defined in the SlapSeg III scoring document. The Ignoring Bottom Y column shows how the percentage would change if the threshold for the bottom Y coordinate of the segmentation position was ignored. Similarly, the Ignoring Bottom X and Y columns shows how the percentage would change if only the top, left, and right sides of the segmentation position were considered. These two supplemental columns are included because it has traditionally been difficult to determine the exact location of the distal interphalangeal joint.

Table 2 shows how successful innovatrics +0006 segmented fingers for each subject in the test corpus. Table 3 shows success for specific finger positions over the entire test corpus. Similarly, Table 4 shows success for segmenting the same finger position from both hands.
The remainder of the tables show success per subject when considering combinations of subsets of the fingers on each slap image. Table 5 shows success for combinations of all fingers, Table 6 for just the index and middle fingers, and Table 7 for all except the little finger.

Table 2: For each subject, the percentage that at least Number of Fingers fingers were correctly segmented, regardless of hand, for a maximum of eight correctly-segmented fingers. In Standard Scoring, scoring rules are followed exactly. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Number of Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
1	98.3	98.4	99.2
2	97.4	97.5	98.5
3	95.8	96.1	97.4
4	92.6	93.1	95.2
5	82.0	82.3	86.8
6	78.0	78.6	82.7
7	71.3	72.6	76.9
8	54.8	58.1	63.0

Table 3: For all subjects, percentage that a particular friction ridge generalized position was correctly segmented. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Finger	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
\quad Index	80.1	81.7	82.5
Middle	85.3	85.6	86.9
Ring	85.9	86.3	87.5
Little	85.2	85.9	89.8
Left			
Index	88.3	89.0	90.7
Middle	88.6	89.2	91.5
Ring	89.3	90.4	92.9
Little	83.2	84.3	94.1

Table 4: Percentage that a particular type of fingerprint was correctly segmented on Either or Both hands. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Index			
Either	94.8	95.2	95.9
Both	69.6	71.5	73.2
Middle			
Either	96.1	96.2	97.0
Both	74.1	74.9	77.4
Ring			
Either	96.4	96.6	97.4
Both	75.0	76.3	79.2
Little			
Either	94.3	94.7	97.8
Both	69.8	71.1	81.7

Table 5: Percentage of segmentation success by hand for combinations of all eight fingers of a TwoInch slap. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	91.6	91.8	94.0
At Least Two	88.9	89.1	90.8
At Least Three	84.7	85.1	86.7
All Four	71.4	73.6	75.2
Left			
Any	94.3	94.5	97.3
At Least Two	91.9	92.2	95.2
At Least Three	87.9	88.7	92.6
All Four	75.3	77.6	84.2

Table 6: Percentage of segmentation success by hand when only considering combinations of index and middle fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Either Index or Middle	88.9	89.2	90.5
Both Index and Middle	76.5	78.2	78.9
Left			
Either Index or Middle	92.6	92.8	94.8
Both Index and Middle	84.2	85.4	87.5

Table 7: Percentage of segmentation success by hand when only considering combinations of index, middle, and ring fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	90.6	90.7	92.1
At Least Two	86.5	86.8	88.0
All Three	74.2	76.1	76.8
Left			
Any	93.8	93.9	95.8
At Least Two	90.5	90.9	93.3
All Three	81.9	83.8	86.1

2.4 Handling Troublesome Images

2.4.1 Capture Failures

Segmentation algorithms may refuse to process an image. This may happen for a technical reason (e.g., the algorithm cannot parse the image data), or for a practical reason (e.g., the hand in the image is placed incorrectly). These failure scenarios are the result of capturing improper image data. In these types of scenarios, it is important to examine the cause of the failure. With many live scan capture setups, segmentation is performed immediately after capture. If an algorithm can detect that it won't be able to segment an image due to a technical or practical issue, it can alert the operator to perform a recapture before the subject leaves.
The SlapSeg III API encourages algorithms to identify these failure reasons by specifying pre-defined deficiencies in the image. Algorithms should attempt segmentation even if an image deficiency is encountered if at all possible. Note that SlapSeg III guarantees well-formed image data, so failures to parse are not an indicator of the data provided.

Reasons for capture-type failures reported by innovatrics+0006 are enumerated in Table 8. Note that for TwoInch data, images are expected to be rotated, so a capture failure of Rotation Detected is unacceptable.

Table 8: Count of self-reported capture-type failure reasoning.

Failure Reason	Images
Request Recapture (Attempt)	42

In situations where the algorithm feels that the presented image should be recaptured (Table 8), one or more image deficiencies must be identified. These deficiencies are enumerated in Table 9. At this point, NIST does not have a groundtruth of image deficiencies, but plans to update this table with the accuracy of deficiency observations in the future.

Table 9: Count of image deficiencies reported when requesting a recapture.

Deficiency	Count
Incomplete	42

2.4.1.1 Recovery

When encountering a segmentation failure, SlapSeg III algorithms are encouraged to provide a best-effort segmentation when possible. In some cases, that best-effort may be correct, which reduces the amount of images that need to be manually adjudicated by an operator. The result of such best-effort segmentations are shown in Table 10.
Out of 42 recovery attemptsinnovatrics+0006 attempted 24 segmentations of fingers and skipped 144 fingers. More information about skipped fingers can be found in Table 11.

Table 10: Results of best-effort segmentation when innovatrics+0006 reported segmentation failure (24 best-effort attempts).

Standard	Ignoring Bottom Y	Ignoring Bottom X and Y
8.3	8.3	8.3

2.4.2 Segmentation Failures

Even if an algorithm accepts an image for processing, it can still fail to process one or more fingers from the image, regardless of if the algorithm requested a recapture and provided best-effort segmentation.
The SlapSeg III API allows algorithms to communicate reasons for failure to process these fingers. In some cases, the distal phalanx in question might not be present in the image due to amputation or being placed outside the platen's capture area. It is imperative that the segmentation algorithm correctly report this as failing to segment the correct friction ridge generalized position without disrupting the sequence of valid positions present in the image. This can help prompt an operator to recapture or record additional information about the subject.

In SlapSeg III, a number of images are missing fingers or otherwise have fingers that will not be able to be segmented. Reasons for segmentation failures reported by innovatrics+0006 are enumerated in Table 11.

Table 11: Count of self-reported segmentation failure reasoning.

Failure Reason	Fingers
Finger Not Found	844
Finger Not Found	144
Finger Found, but Can't Segment	0
Vendor Defined	0

2.4.3 Identifying Missing Fingers

A small portion of the test corpus in SlapSeg III are missing fingers. Table 12 shows how successful innovatrics+0006 was in correctly determining if a finger was missing. The Missed row shows when a segmentation position was returned for a missing finger. All possible failure reasons are enumerated, but are not considered Correctly Identified because the algorithm specified failure for a reason other than the finger not being found.

Table 12: Performance of innovatrics+0006 at detecting fingers missing from an image.

Result	Percentage
Missed	18.7
Correctly Identified	81.3
Other Failure: Finger Found, but Can't Segment	0.0
Other Failure: Vendor Defined	0.0
Other Failure: Segmentation Not Attempted	0.0

2.4.4 Sequence Error

Sequence error occurs when a fingerprint is segmented from an image but assigned an incorrect finger position (e.g., segmenting a right middle finger but labeling it a right index finger). Table 13 shows cases in which a segmentation position was returned that matched a ground truth segmentation position for a different finger in the same image.

Table 13: Percentage of images in the dataset where one or more segmentation positions correctly matched an incorrect finger position within the same image, indicating sequence error.

Hand	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Left	0.09	0.10	0.10
Right	0.22	0.22	0.24
Combined	0.16	0.16	0.17

2.5 Determining Orientation

An optional portion of the SlapSeg III API asked participants to determine the hand orientation of an image. Participants were provided the kind (e.g., Tenprint card) and capture technology (e.g., ink), and needed to determine whether the image was of the left or right hand.
Overall Two Inch accuracy: 99.5\%

Table 14: Percentage of accuracy when determining hand orientation of a two inch image. The first column indicates the true hand orientation. Subsequent columns indicate the percentage of the time in which the indicated hand orientation was hypothesized.

	Left	Right
Left	$\mathbf{9 9 . 6}$	0.4
Right	0.6	$\mathbf{9 9 . 4}$

3 Identification Flats ("ThreeInch" Data)

3.1 Segmentation Timing

All algorithms are run over a small fixed corpus of ThreeInch images to estimate the total runtime of the evaluation. To be evaluated under SlapSeg III, algorithms must segment the timing corpus, on average, in under 1500 milliseconds. This maximum reference time is documented in the SlapSeg III test plan, and is subject to change. Times are measured by running a single process on an isolated compute node equipped with an Intel Gold 6254 CPU (submissions received prior to February 2022 were timed with a Intel Xeon E5-4650 CPU).

Box plots of segmentation times are separated by hand in Figure 6, with tabular representations are enumerated in Table 15. Results are reported in milliseconds

Elapsed Time

Participant: innovatrics/0006, Image Kind: Three Inch

17 May 2024, 08:33:40 AM EDT

Figure 6: Box plots of elapsed time in milliseconds when segmenting the ThreeInch timing test corpus, separated by slap orientation.

Table 15: Elapsed time in milliseconds when segmenting the ThreeInch timing test corpus, separated by slap orientation.

	Right	Left	Thumbs	Combined
Minimum	98	95	56	56
25%	119	117	406	119
Median	123	121	480	124
75%	128	126	568	134
Maximum	204	189	990	990

3.2 Segmentation Centers and Dimensions

3.2.1 Segmentation Centers

The plots in this section show the distribution of segmentation position centers (x, y) for ThreeInch data. At the top of each figure is a combined plot for all finger positions of a given hand orientation. These figures are isolated in plots faceted at the bottom of the figure.
Plots of segmentation centers for the right hand ThreeInch data are shown in Figure 7, for the left hand in Figure 8, and for thumbs in Figure 9. Blank lines that may appear in the plots are not rendering artifacts. Rather, they are indicative of image downsampling. Centers have been normalized to 500 pixels per inch.

Points in each plot are plotted with a semi-transparent opacity. This results in points of particular color appearing "darker" to indicate a higher frequency of the observed value, while "lighter" points indicate a lower observed frequency.

Segmentation Position Centers

Participant: innovatrics/0006, FRGPs: 2, 3, 4, 5, Image Kind: Three Inch

- Right Index • Right Middle • Right Ring • Right Little 17 May 2024, 09:01:31 AM EDT

Figure 7: Segmentation centers for right hand ThreeInch data.

Segmentation Position Centers

Participant: innovatrics/0006, FRGPs: 7, 8, 9, 10, Image Kind: Three Inch

- Left Index • Left Middle • Left Ring • Left Little

17 May 2024, 09:01:26 AM EDT

Figure 8: Segmentation centers for left hand ThreeInch data.

Segmentation Position Centers

Participant: innovatrics/0006, FRGPs: 1, 6, Image Kind: Three Inch

- Right Thumb • Left Thumb

17 May 2024, 09:01:36 AM EDT
Figure 9: Segmentation centers for thumb ThreeInch data.

3.2.2 Segmentation Dimensions

The plots in this section show the distribution of segmentation position widths and heights for ThreeInch data. At the top of each figure is a combined plot for all finger positions of a given hand orientation. These figures are isolated in plots faceted at the bottom of the figure.
Plots of segmentation position dimensions for the right hand ThreeInch data are shown in Figure 11, for the left hand in Figure 10, and for thumbs in Figure 12. Blank lines that may appear in the plots are not rendering artifacts. Rather, they are indicative of image downsampling. Dimensions have been normalized to 500 pixels per inch.

Segmentation Position Dimensions

Participant: innovatrics/0006, FRGPs: 7, 8, 9, 10, Image Kind: Three Inch

Left Index Left Middle Left Ring Left Little
17 May 2024, 09:01:52 AM EDT
Figure 10: Segmentation position dimensions for left hand ThreeInch data.

Segmentation Position Dimensions

Participant: innovatrics/0006, FRGPs: 2, 3, 4, 5, Image Kind: Three Inch

Figure 11: Segmentation position dimensions for right hand ThreeInch data.

Segmentation Position Dimensions

Participant: innovatrics/0006, FRGPs: 1, 6, Image Kind: Three Inch

Right Thumb Left Thumb
17 May 2024, 09:02:01 AM EDT
Figure 12: Segmentation position dimensions for thumb ThreeInch data.

3.3 Detailed Segmentation Statistics

This section shows detailed results of segmentation of ThreeInch data. Values in each table are the percentage that the variable in the left-most column was correctly segmented.
Each table has three columns of percentages. The Standard Scoring column shows the percentage of correctlysegmented positions based on the scoring metrics defined in the SlapSeg III scoring document. The Ignoring Bottom Y column shows how the percentage would change if the threshold for the bottom Y coordinate of the segmentation position was ignored. Similarly, the Ignoring Bottom X and Y columns shows how the percentage would change if only the top, left, and right sides of the segmentation position were considered. These two supplemental columns are included because it has traditionally been difficult to determine the exact location of the distal interphalangeal joint.

Table 16 shows how successful innovatrics +0006 segmented fingers for each subject in the test corpus. Table 17 shows success for specific finger positions over the entire test corpus. Similarly, Table 18 shows success for segmenting the same finger position from both hands.
The remainder of the tables show success per subject when considering combinations of subsets of the fingers on each slap image. Table 19 shows success for combinations of all fingers, Table 20 for just the index and middle fingers, and Table 21 for all except the little finger.

Table 16: For each subject, the percentage that at least Number of Fingers fingers were correctly segmented, regardless of hand, for a maximum of eight correctly-segmented fingers. In Standard Scoring, scoring rules are followed exactly. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Number of Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
1	99.5	99.7	99.7
2	98.9	99.2	99.2
3	98.3	98.3	98.4
4	97.8	98.0	98.0
5	95.8	95.8	95.8
6	95.6	95.8	95.8
7	94.9	95.5	95.6
8	92.1	94.9	95.0
9	68.0	92.1	92.4
10	45.5	81.4	82.5

Table 17: For all subjects, percentage that a particular friction ridge generalized position was correctly segmented. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Finger	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Thumb	66.3	95.8	96.2
Index	98.9	99.1	99.1
Middle	98.5	99.1	99.2
Ring	97.1	97.9	98.1
Little	96.3	96.5	96.6
Left			
Thumb	62.6	95.3	95.7
Index	98.5	98.7	98.7
Middle	97.9	99.0	99.1
Ring	97.6	98.4	98.5
Little	97.2	97.4	97.6

Table 18: Percentage that a particular type of fingerprint was correctly segmented on Either or Both hands. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Thumb			
Either	75.1	98.6	98.7
Both	53.8	92.6	93.2
Index			
Either	99.7	99.7	99.8
Both	95.1	95.3	95.4
Middle			
Either	99.4	99.7	99.7
Both	94.3	95.7	95.9
Ring		99.5	
Either	99.4	94.0	99.6
Both	92.7		94.4
Little		99.2	99.3
Either	99.2	92.0	92.3
Both	91.7		

Table 19: Percentage of segmentation success by hand for combinations of all ten fingers of a ThreeInch slap. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	99.2	99.4	99.4
At Least Two	98.4	98.4	98.4
At Least Three	97.8	98.1	98.1
At Least Four	95.0	96.6	96.8
All Five	59.0	86.8	87.4
Left			
Any	99.3	99.5	99.6
At Least Two	98.3	98.4	98.4
At Least Three	97.8	98.1	98.1
At Least Four	95.0	97.0	97.1
All Five	55.6	86.7	87.3

Table 20: Percentage of segmentation success by hand when only considering combinations of index and middle fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are gnored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
\quad Either	99.7	99.8	99.8
\quad Both	97.8	98.4	98.5
Left			
\quad Either	99.7	99.8	99.8
Both	96.7	97.9	98.1

Table 21: Percentage of segmentation success by hand when only considering combinations of index, middle, and ring fingers. In Ignoring Bottom Y, the bottom left and right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	99.8	99.9	99.9
At Least Two	99.3	99.5	99.5
All Three	95.4	96.7	97.0
Left			
Any	99.8	99.9	99.9
At Least Two	99.2	99.5	99.5
All Three	94.9	96.7	97.0

3.4 Handling Troublesome Images

3.4.1 Capture Failures

Segmentation algorithms may refuse to process an image. This may happen for a technical reason (e.g., the algorithm cannot parse the image data), or for a practical reason (e.g., the hand in the image is placed incorrectly). These failure scenarios are the result of capturing improper image data. In these types of scenarios, it is important to examine the cause of the failure. With many live scan capture setups, segmentation is performed immediately after capture. If an algorithm can detect that it won't be able to segment an image due to a technical or practical issue, it can alert the operator to perform a recapture before the subject leaves.
The SlapSeg III API encourages algorithms to identify these failure reasons by specifying pre-defined deficiencies in the image. Algorithms should attempt segmentation even if an image deficiency is encountered if at all possible. Note that SlapSeg III guarantees well-formed image data, so failures to parse are not an indicator of the data provided.

Reasons for capture-type failures reported by innovatrics+0006 are enumerated in Table 22.

Table 22: Count of self-reported capture-type failure reasoning.

Failure Reason	Images
Request Recapture (Attempt)	132

In situations where the algorithm feels that the presented image should be recaptured (Table 22), one or more image deficiencies must be identified. These deficiencies are enumerated in Table 23. At this point, NIST does not have a groundtruth of image deficiencies, but plans to update this table with the accuracy of deficiency observations in the future.

Table 23: Count of image deficiencies reported when requesting a recapture.

Deficiency	Count
Incomplete	132

3.4.1.1 Recovery

When encountering a segmentation failure, SlapSeg III algorithms are encouraged to provide a best-effort segmentation when possible. In some cases, that best-effort may be correct, which reduces the amount of images that need to be manually adjudicated by an operator. The result of such best-effort segmentations are shown in Table 24.

Out of 132 recovery attemptsinnovatrics +0006 attempted 110 segmentations of fingers and skipped 218 fingers. More information about skipped fingers can be found in Table 25.

Table 24: Results of best-effort segmentation when innovatrics+0006 reported segmentation failure (110 best-effort attempts).

Standard	Ignoring Bottom Y	Ignoring Bottom X and Y
28.2	33.6	35.5

3.4.2 Segmentation Failures

Even if an algorithm accepts an image for processing, it can still fail to process one or more fingers from the image, regardless of if the algorithm requested a recapture and provided best-effort segmentation.

The SlapSeg III API allows algorithms to communicate reasons for failure to process these fingers. In some cases, the distal phalanx in question might not be present in the image due to amputation or being placed outside the platen's capture area. It is imperative that the segmentation algorithm correctly report this as failing to segment the correct friction ridge generalized position without disrupting the sequence of valid positions present in the image. This can help prompt an operator to recapture or record additional information about the subject.

In SlapSeg III, a number of images are missing fingers or otherwise have fingers that will not be able to be segmented. Reasons for segmentation failures reported by innovatrics+0006 are enumerated in Table 25.

Table 25: Count of self-reported segmentation failure reasoning.

Failure Reason	Fingers
Finger Not Found	693
Finger Not Found	218
Finger Found, but Can't Segment	0
Vendor Defined	0

3.4.3 Identifying Missing Fingers

A small portion of the test corpus in SlapSeg III are missing fingers. Table 26 shows how successful innovatrics+0006 was in correctly determining if a finger was missing. The Missed row shows when a segmentation position was returned for a missing finger. All possible failure reasons are enumerated, but are not considered Correctly Identified because the algorithm specified failure for a reason other than the finger not being found.

Table 26: Performance of innovatrics+0006 at detecting fingers missing from an image.

Result	Percentage
Missed	27.7
Correctly Identified	72.3
Other Failure: Finger Found, but Can't Segment	0.0
Other Failure: Vendor Defined	0.0
Other Failure: Segmentation Not Attempted	0.0

3.4.4 Sequence Error

Sequence error occurs when a fingerprint is segmented from an image but assigned an incorrect finger position (e.g., segmenting a right middle finger but labeling it a right index finger). Table 27 shows cases in which a segmentation position was returned that matched a ground truth segmentation position for a different finger in the same image.

Table 27: Percentage of images in the dataset where one or more segmentation positions correctly matched an incorrect finger position within the same image, indicating sequence error.

Hand	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Left	0.22	0.23	0.23
Right	0.66	0.67	0.67
Thumbs	0.06	0.07	0.07
Combined	0.32	0.32	0.33

3.5 Determining Orientation

An optional portion of the SlapSeg III API asked participants to determine the hand orientation of an image. Participants were provided the kind (e.g., Identification Flat) and needed to determine whether the image was of the left hand, right hand, or thumbs.
Overall Three Inch accuracy: 98.0\%

Table 28: Percentage of accuracy when determining hand orientation of a three inch image. The first column indicates the true hand orientation. Subsequent columns indicate the percentage of the time in which the indicated hand orientation was hypothesized.

	Left	Right	Thumbs
Left	$\mathbf{9 9 . 6}$	0.4	0
Right	0.5	$\mathbf{9 9 . 5}$	0
Thumbs	3.1	2.2	$\mathbf{9 4 . 7}$

4 Upper Palm ("FiveInch" Data)

4.1 Segmentation Timing

All algorithms are run over a small fixed corpus of FiveInch images to estimate the total runtime of the evaluation. To be evaluated under SlapSeg III, algorithms must segment the timing corpus, on average, in under 1500 milliseconds. This maximum reference time is documented in the SlapSeg III test plan, and is subject to change. Times are measured by running a single process on an isolated compute node equipped with an Intel Gold 6254 CPU (submissions received prior to February 2022 were timed with a Intel Xeon E5-4650 CPU).

Box plots of segmentation times are separated by slap orientation in Figure 13. Tabular representations are enumerated in Table 29. Results are reported in milliseconds.

17 May 2024, 08:33:42 AM EDT

Figure 13: Box plots of elapsed time in milliseconds when segmenting the FiveInch timing test corpus, separated by slap orientation.

Table 29: Elapsed time in milliseconds when segmenting the FiveInch timing test corpus, separated by slap orientation.

	Right	Left	Combined
Minimum	264	289	264
25%	306	312	312
Median	333	331	332
75%	354	358	356
Maximum	395	388	395

4.2 Segmentation Centers and Dimensions

4.2.1 Segmentation Centers

The plots in this section show the distribution of segmentation position centers (x, y) for FiveInch data. At the top of each figure is a combined plot for all finger positions of a given slap orientation. These figures are isolated in plots faceted at the bottom of the figure.
Plots of segmentation centers for the right hand FiveInch data are shown in Figure 14 and plots of segmentation centers for the left hand are shown in Figure 15. Blank lines that may appear in the plots are not rendering artifacts. Rather, they are indicative of image downsampling. Centers have been normalized to 500 pixels per inch.

Points in each plot are plotted with a semi-transparent opacity. This results in points of particular color appearing "darker" to indicate a higher frequency of the observed value, while "lighter" points indicate a lower observed frequency.

Segmentation Position Centers

Participant: innovatrics/0006, FRGPs: 2, 3, 4, 5, Image Kind: Upper Palm

Right Index

Right Little

- Right Index • Right Middle • Right Ring • Right Little

Figure 14: Segmentation centers for right hand FiveInch data.

Segmentation Position Centers

17 May 2024, 09:01:39 AM EDT

Figure 15: Segmentation centers for left hand FiveInch data.

4.2.2 Segmentation Dimensions

The plots in this section show the distribution of segmentation position widths and heights for FiveInch data. At the top of each figure is a combined plot for all finger positions of a given slap orientation. These figures are isolated in plots faceted at the bottom of the figure.
Plots of segmentation position dimensions for the right hand FiveInch data are shown in Figure 16 and the left hand in Figure 17. Blank lines that may appear in the plots are not rendering artifacts. Rather, they are indicative of image downsampling. Dimensions have been normalized to 500 pixels per inch.

Segmentation Position Dimensions

Participant: innovatrics/0006, FRGPs: 2, 3, 4, 5, Image Kind: Upper Palm

Right Index

Right Index
Right Middle

Right Ring Right Little 17 May 2024, 09:02:05 AM EDT

Figure 16: Segmentation position dimensions for right hand FiveInch data.

Segmentation Position Dimensions

Figure 17: Segmentation position dimensions for left hand FiveInch data.

4.3 Detailed Segmentation Statistics

This section shows detailed results of segmentation of FiveInch data. Values in each table are the percentage that the variable in the left-most column was correctly segmented.
Each table has three columns of percentages. The Standard Scoring column shows the percentage of correctlysegmented positions based on the scoring metrics defined in the SlapSeg III scoring document. The Ignoring Bottom Y column shows how the percentage would change if the threshold for the bottom Y coordinate of the segmentation position was ignored. Similarly, the Ignoring Bottom X and Y columns shows how the percentage would change if only the top, left, and right sides of the segmentation position were considered. These two supplemental columns are included because it has traditionally been difficult to determine the exact location of the distal interphalangeal joint.

Table 30 shows how successful innovatrics +0006 segmented fingers for each subject in the test corpus. Table 31 shows success for specific finger positions over the entire test corpus. Similarly, Table 32 shows success for segmenting the same finger position from both hands.
The remainder of the tables show success per subject when considering combinations of subsets of the fingers on each slap image. Table 33 shows success for combinations of all fingers, Table 34 for just the index and middle fingers, and Table 35 for all except the little finger.

Table 30: For each subject, the percentage that at least Number of Fingers fingers were correctly segmented, regardless of hand, for a maximum of eight correctly-segmented fingers. In Standard Scoring, scoring rules are followed exactly. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Number of Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
1	99.7	99.7	99.7
2	99.3	99.5	99.5
3	98.7	98.7	98.8
4	96.8	97.1	97.1
5	90.9	91.8	92.8
6	82.9	83.9	85.9
7	68.6	69.8	72.5
8	42.2	43.2	45.8

Table 31: For all subjects, percentage that a particular friction ridge generalized position was correctly segmented. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Finger	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
\quad Index	86.3	86.8	87.6
Middle	83.9	84.6	86.3
Ring	89.8	90.6	91.6
Little	84.6	85.0	86.7
Left			
Index	86.5	86.7	87.3
Middle	85.9	86.7	87.7
Ring	89.1	89.9	90.5
Little	78.5	78.9	80.0

Table 32: Percentage that a particular type of fingerprint was correctly segmented on Either or Both hands. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Index			
Either	96.0	96.4	96.7
Both	75.4	75.8	76.8
Middle			
Either	96.0	96.6	97.0
Both	72.5	73.4	75.6
Ring			
Either	97.4	97.8	98.0
Both	80.1	81.3	82.6
Little			
Either	95.4	95.5	96.3
Both	66.4	67.1	69.0

Table 33: Percentage of segmentation success by hand for combinations of all eight fingers of a FiveInch slap. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	98.8	98.9	99.1
At Least Two	94.9	95.5	96.0
At Least Three	86.6	87.2	88.7
All Four	64.2	65.3	68.5
Left			
Any	98.7	98.8	98.8
At Least Two	95.0	95.2	95.4
At Least Three	86.1	86.9	87.9
All Four	60.3	61.4	63.3

Table 34: Percentage of segmentation success by hand when only considering combinations of index and middle fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Either Index or Middle	94.7	94.9	95.5
Both Index and Middle	75.5	76.5	78.5
Left			
Either Index or Middle	95.6	95.8	95.8
Both Index and Middle	76.8	77.7	79.2

Table 35: Percentage of segmentation success by hand when only considering combinations of index, middle, and ring fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	97.3	97.6	98.0
At Least Two	90.8	91.5	92.2
All Three	71.8	72.9	75.4
Left			
Any	98.1	98.3	98.3
At Least Two	91.9	92.7	92.8
All Three	71.5	72.4	74.3

4.4 Handling Troublesome Images

4.4.1 Capture Failures

Segmentation algorithms may refuse to process an image. This may happen for a technical reason (e.g., the algorithm cannot parse the image data), or for a practical reason (e.g., the hand in the image is placed incorrectly). These failure scenarios are the result of capturing improper image data. In these types of scenarios, it is important to examine the cause of the failure. With many live scan capture setups, segmentation is performed immediately after capture. If an algorithm can detect that it won't be able to segment an image due to a technical or practical issue, it can alert the operator to perform a recapture before the subject leaves.

The SlapSeg III API encourages algorithms to identify these failure reasons by specifying pre-defined deficiencies in the image. Algorithms should attempt segmentation even if an image deficiency is encountered if at all possible. Note that SlapSeg III guarantees well-formed image data, so failures to parse are not an indicator of the data provided.

Reasons for capture-type failures reported by innovatrics+0006 are enumerated in Table 36.

Table 36: Count of self-reported capture-type failure reasoning.

Failure Reason	Images
Request Recapture (Attempt)	176

In situations where the algorithm feels that the presented image should be recaptured (Table 36), one or more image deficiencies must be identified. These deficiencies are enumerated in Table 37. At this point, NIST does not have a groundtruth of image deficiencies, but plans to update this table with the accuracy of deficiency observations in the future.

Table 37: Count of image deficiencies reported when requesting a recapture.

Deficiency	Count
Incomplete	176

4.4.1.1 Recovery

When encountering a segmentation failure, SlapSeg III algorithms are encouraged to provide a best-effort segmentation when possible. In some cases, that best-effort may be correct, which reduces the amount of images that need to be manually adjudicated by an operator. The result of such best-effort segmentations are shown in Table 38.

Out of 176 recovery attemptsinnovatrics+0006 attempted 73 segmentations of fingers and skipped 643 fingers. More information about skipped fingers can be found in Table 39.

Table 38: Results of best-effort segmentation when innovatrics+0006 reported segmentation failure (73 best-effort attempts).

Standard	Ignoring Bottom Y	Ignoring Bottom X and Y
47.2	48.6	48.6

4.4.2 Segmentation Failures

Even if an algorithm accepts an image for processing, it can still fail to process one or more fingers from the image, regardless of if the algorithm requested a recapture and provided best-effort segmentation.

The SlapSeg III API allows algorithms to communicate reasons for failure to process these fingers. In some cases, the distal phalanx in question might not be present in the image due to amputation or being placed outside the platen's capture area. It is imperative that the segmentation algorithm correctly report this as failing to segment the correct friction ridge generalized position without disrupting the sequence of valid positions present in the image. This can help prompt an operator to recapture or record additional information about the subject.

In SlapSeg III, a number of images are missing fingers or otherwise have fingers that will not be able to be segmented. Reasons for segmentation failures reported by innovatrics+0006 are enumerated in Table 39.

Table 39: Count of self-reported segmentation failure reasoning.

Failure Reason	Fingers
Finger Not Found	318
Finger Not Found	643
Finger Found, but Can't Segment	0
Vendor Defined	0

4.4.3 Identifying Missing Fingers

A small portion of the test corpus in SlapSeg III are missing fingers. Table 40 shows how successful innovatrics+0006 was in correctly determining if a finger was missing. The Missed row shows when a segmentation position was returned for a missing finger. All possible failure reasons are enumerated, but are not considered Correctly Identified because the algorithm specified failure for a reason other than the finger not being found.

Table 40: Performance of innovatrics+0006 at detecting fingers missing from an image.

Result	Percentage
Missed	17.0
Correctly Identified	83.0
Other Failure: Finger Found, but Can't Segment	0.0
Other Failure: Vendor Defined	0.0
Other Failure: Segmentation Not Attempted	0.0

4.4.4 Sequence Error

Sequence error occurs when a fingerprint is segmented from an image but assigned an incorrect finger position (e.g., segmenting a right middle finger but labeling it a right index finger). Table 41 shows cases in which a segmentation position was returned that matched a ground truth segmentation position for a different finger in the same image.

Table 41: Percentage of images in the dataset where one or more segmentation positions correctly matched an incorrect finger position within the same image, indicating sequence error.

Hand	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Left	2.39	2.65	2.65
Right	2.53	2.53	2.66
Combined	2.46	2.59	2.66

4.5 Determining Orientation

An optional portion of the SlapSeg III API asked participants to determine the hand orientation of an image. Participants were provided the kind (e.g., upper palm) and needed to determine whether the image was of the left or right hand.
Overall Upper Palm accuracy: 92.7\%

Table 42: Percentage of accuracy when determining hand orientation of an upper palm image. The first column indicates the true hand orientation. Subsequent columns indicate the percentage of the time in which the indicated hand orientation was hypothesized.

	Left	Right
Left	$\mathbf{9 1 . 1}$	8.9
Right	5.5	$\mathbf{9 4 . 5}$

5 Full Palm ("EightInch" Data)

5.1 Segmentation Timing

All algorithms are run over a small fixed corpus of EightInch images to estimate the total runtime of the evaluation. To be evaluated under SlapSeg III, algorithms must segment the timing corpus, on average, in under 1500 milliseconds. This maximum reference time is documented in the SlapSeg III test plan, and is subject to change. Times are measured by running a single process on an isolated compute node equipped with an Intel Gold 6254 CPU (submissions received prior to February 2022 were timed with a Intel Xeon E5-4650 CPU).

Box plots of segmentation times are separated by slap orientation in Figure 18. Tabular representations are enumerated in Table 43. Results are reported in milliseconds.

Figure 18: Box plots of elapsed time in milliseconds when segmenting the EightInch timing test corpus, separated by slap orientation.

Table 43: Elapsed time in milliseconds when segmenting the EightInch timing test corpus, separated by slap orientation and capture technology.

	Right	Left	Combined
Minimum	554	558	554
25%	594	586	592
Median	604	608	607
75%	621	617	620
Maximum	649	676	676

5.2 Segmentation Centers and Dimensions

5.2.1 Segmentation Centers

The plots in this section show the distribution of segmentation position centers (x, y) for EightInch data. At the top of each figure is a combined plot for all finger positions of a given slap orientation. These figures are isolated in plots faceted at the bottom of the figure.
Plots of segmentation centers for the right hand EightInch data are shown in Figure 19 and plots of segmentation centers for the left hand are shown in Figure 20. Blank lines that may appear in the plots are not rendering artifacts. Rather, they are indicative of image downsampling. Centers have been normalized to 500 pixels per inch.

Points in each plot are plotted with a semi-transparent opacity. This results in points of particular color appearing "darker" to indicate a higher frequency of the observed value, while "lighter" points indicate a lower observed frequency.

Segmentation Position Centers

Participant: innovatrics/0006, FRGPs: 2, 3, 4, 5, Image Kind: Full Palm

- Right Index • Right Middle • Right Ring • Right Little 17 May 2024, 09:01:43 AM EDT

Figure 19: Segmentation centers for right hand EightInch data.

Segmentation Position Centers

Figure 20: Segmentation centers for left hand EightInch data.

5.2.2 Segmentation Dimensions

The plots in this section show the distribution of segmentation position widths and heights for EightInch data. At the top of each figure is a combined plot for all finger positions of a given slap orientation. These figures are isolated in plots faceted at the bottom of the figure.
Plots of segmentation position dimensions for the right hand EightInch data are shown in Figure 21 and the left hand in Figure 22. Blank lines that may appear in the plots are not rendering artifacts. Rather, they are indicative of image downsampling. Dimensions have been normalized to 500 pixels per inch.

Segmentation Position Dimensions

Participant: innovatrics/0006, FRGPs: 2, 3, 4, 5, Image Kind: Full Palm

Right Index

Right Index Right Middle

Right Middle

Right Little

Right Ring Right Little 17 May 2024, 09:02:08 AM EDT

Figure 21: Segmentation position dimensions for right hand EightInch data.

Segmentation Position Dimensions

Left Index Left Middle Left Ring Left Little
17 May 2024, 09:02:06 AM EDT
Figure 22: Segmentation position dimensions for left hand EightInch data.

5.3 Detailed Segmentation Statistics

NOTE: The following segmentation statistics are based on a limited subset (approximately 15\%) of the anticipated Full Palm dataset. This analysis will be updated as soon as NIST can obtain the remainder of the dataset.
This section shows detailed results of segmentation of EightInch data. Values in each table are the percentage that the variable in the left-most column was correctly segmented.

Each table has three columns of percentages. The Standard Scoring column shows the percentage of correctlysegmented positions based on the scoring metrics defined in the SlapSeg III scoring document. The Ignoring Bottom Y column shows how the percentage would change if the threshold for the bottom Y coordinate of the segmentation position was ignored. Similarly, the Ignoring Bottom X and Y columns shows how the percentage would change if only the top, left, and right sides of the segmentation position were considered. These two supplemental columns are included because it has traditionally been difficult to determine the exact location of the distal interphalangeal joint.

Table 44 shows how successful innovatrics+0006 segmented fingers for each subject in the test corpus. Table 45 shows success for specific finger positions over the entire test corpus. Similarly, Table 46 shows success for segmenting the same finger position from both hands.
The remainder of the tables show success per subject when considering combinations of subsets of the fingers on each slap image. Table 47 shows success for combinations of all fingers, Table 48 for just the index and middle fingers, and Table 49 for all except the little finger.

Table 44: For each subject, the percentage that at least Number of Fingers fingers were correctly segmented, regardless of hand, for a maximum of eight correctly-segmented fingers. In Standard Scoring, scoring rules are followed exactly. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Number of Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
1	99.8	99.8	99.8
2	99.1	99.3	99.3
3	97.9	98.3	98.4
4	96.8	97.4	97.5
5	94.5	95.4	96.1
6	91.0	92.4	92.4
7	84.4	86.3	87.4
8	62.4	65.5	67.5

Table 45: For all subjects, percentage that a particular friction ridge generalized position was correctly segmented. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Finger	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
\quad Index	92.9	93.2	93.6
Middle	92.3	93.1	93.4
Ring	91.4	93.0	93.6
Little	89.4	90.9	91.3
Left			
Index	90.3	91.0	91.6
Middle	90.8	92.1	92.6
Ring	89.9	91.1	91.7
Little	88.9	89.9	90.5

Table 46: Percentage that a particular type of fingerprint was correctly segmented on Either or Both hands. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Index			
Either	97.9	98.2	98.2
Both	85.3	86.1	87.0
Middle			
Either	97.6	98.0	98.2
Both	85.5	87.1	87.9
Ring			
Either	96.1	97.1	97.4
Both	85.2	87.0	87.9
Little			
Either	96.3	97.2	97.4
Both	82.0	83.6	84.4

Table 47: Percentage of segmentation success by hand for combinations of all eight fingers of a EightInch slap. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
\quad Any	99.0	99.4	99.4
At Least Two	96.1	96.6	96.6
At Least Three	92.8	93.6	93.9
\quad All Four	78.2	80.7	82.0
Left			
Any	98.7	99.0	99.0
At Least Two	95.9	96.3	96.7
At Least Three	91.3	91.8	92.6
All Four	74.0	77.0	78.2

Table 48: Percentage of segmentation success by hand when only considering combinations of index and middle fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
\quad Either Index or Middle	97.1	97.4	97.4
\quad Both Index and Middle	88.0	89.0	89.7
Left			
Either Index or Middle	96.4	96.8	97.0
Both Index and Middle	84.7	86.3	87.2

Table 49: Percentage of segmentation success by hand when only considering combinations of index, middle, and ring fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	98.0	98.5	98.5
At Least Two	95.1	95.4	95.5
All Three	83.4	85.4	86.6
Left			
Any	98.4	98.5	98.5
At Least Two	92.4	93.2	93.7
All Three	80.2	82.5	83.8

5.4 Handling Troublesome Images

5.4.1 Capture Failures

Segmentation algorithms may refuse to process an image. This may happen for a technical reason (e.g., the algorithm cannot parse the image data), or for a practical reason (e.g., the hand in the image is placed incorrectly). These failure scenarios are the result of capturing improper image data. In these types of scenarios, it is important to examine the cause of the failure. With many live scan capture setups, segmentation is performed immediately after capture. If an algorithm can detect that it won't be able to segment an image due to a technical or practical issue, it can alert the operator to perform a recapture before the subject leaves.
The SlapSeg III API encourages algorithms to identify these failure reasons by specifying pre-defined deficiencies in the image. Algorithms should attempt segmentation even if an image deficiency is encountered if at all possible. Note that SlapSeg III guarantees well-formed image data, so failures to parse are not an indicator of the data provided.
Reasons for capture-type failures reported by innovatrics+0006 are enumerated in Table 50.

Table 50: Count of self-reported capture-type failure reasoning.

Failure Reason	Images
Request Recapture (Attempt)	19

In situations where the algorithm feels that the presented image should be recaptured (Table 50), one or more image deficiencies must be identified. These deficiencies are enumerated in Table 51. At this point, NIST does not have a groundtruth of image deficiencies, but plans to update this table with the accuracy of deficiency observations in the future.

Table 51: Count of image deficiencies reported when requesting a recapture.

Deficiency	Count
Incomplete	19

5.4.1.1 Recovery

When encountering a segmentation failure, SlapSeg III algorithms are encouraged to provide a best-effort segmentation when possible. In some cases, that best-effort may be correct, which reduces the amount of images that need to be manually adjudicated by an operator. The result of such best-effort segmentations are shown in Table 52.

Out of 19 recovery attemptsinnovatrics+0006 attempted 13 segmentations of fingers and skipped 63 fingers. More information about skipped fingers can be found in Table 53.

Table 52: Results of best-effort segmentation when innovatrics+0006 reported segmentation failure (13 best-effort attempts).

Standard	Ignoring Bottom Y	Ignoring Bottom X and Y
66.7	66.7	66.7

5.4.2 Segmentation Failures

Even if an algorithm accepts an image for processing, it can still fail to process one or more fingers from the image, regardless of if the algorithm requested a recapture and provided best-effort segmentation.

The SlapSeg III API allows algorithms to communicate reasons for failure to process these fingers. In some cases, the distal phalanx in question might not be present in the image due to amputation or being placed outside the platen's capture area. It is imperative that the segmentation algorithm correctly report this as failing to segment the correct friction ridge generalized position without disrupting the sequence of valid positions present in the image. This can help prompt an operator to recapture or record additional information about the subject.

In SlapSeg III, a number of images are missing fingers or otherwise have fingers that will not be able to be segmented. Reasons for segmentation failures reported by innovatrics+0006 are enumerated in Table 53.

Table 53: Count of self-reported segmentation failure reasoning.

Failure Reason	Fingers
Finger Not Found	308
Finger Not Found	63
Finger Found, but Can't Segment	0
Vendor Defined	0

5.4.3 Identifying Missing Fingers

A small portion of the test corpus in SlapSeg III are missing fingers. Table 54 shows how successful innovatrics+0006 was in correctly determining if a finger was missing. The Missed row shows when a segmentation position was returned for a missing finger. All possible failure reasons are enumerated, but are not considered Correctly Identified because the algorithm specified failure for a reason other than the finger not being found.

Table 54: Performance of innovatrics+0006 at detecting fingers missing from an image.

Result	Percentage
Missed	0.0
Correctly Identified	100.0
Other Failure: Finger Found, but Can't Segment	0.0
Other Failure: Vendor Defined	0.0
Other Failure: Segmentation Not Attempted	0.0

5.4.4 Sequence Error

Sequence error occurs when a fingerprint is segmented from an image but assigned an incorrect finger position (e.g., segmenting a right middle finger but labeling it a right index finger). Table 55 shows cases in which a segmentation position was returned that matched a ground truth segmentation position for a different finger in the same image.

Table 55: Percentage of images in the dataset where one or more segmentation positions correctly matched an incorrect finger position within the same image, indicating sequence error.

Hand	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Left	0.34	0.34	0.34
Right	0.34	0.34	0.34
Combined	0.34	0.34	0.34

5.5 Determining Orientation

An optional portion of the SlapSeg III API asked participants to determine the hand orientation of an image. Participants were provided the kind (e.g., full palm) and needed to determine whether the image was of the left or right hand.
Overall Full Palm accuracy: 95.7\%

Table 56: Percentage of accuracy when determining hand orientation of an full palm image. The first column indicates the true hand orientation. Subsequent columns indicate the percentage of the time in which the indicated hand orientation was hypothesized.

	Left	Right
Left	$\mathbf{9 6 . 5}$	3.5
Right	5.2	$\mathbf{9 4 . 8}$

A Tenprint Cards ("TwoInch" Data)

A. 1 Bootstrap Confidence for Segmentation Statistics

This section shows the same detailed results of segmentation of TwoInch data from Section 2.3, but with an added bootstrap confidence interval. For each observation, a bootstrap routine with 1000 replicates was run, and a 95% confidence interval extracted. The lower and upper confidence from that confidence interval are printed in each column within square brackets.
In Table 57, results are shown of how successful innovatrics+0006 segmented fingers for each subject in the test corpus. Table 58 shows success for specific finger positions over the entire test corpus. Similarly, Table 59 shows success for segmenting the same finger position from both hands.

The remainder of the tables show success per subject when considering combinations of subsets of the fingers in each slap image. Table 60 shows success for combinations of all fingers, Table 62 for the all except the little finger, and Table 61 for just the index and middle fingers.

Table 57: For each subject, the percentage that at least Number of Fingers fingers were correctly segmented, regardless of hand, for a maximum of eight correctly-segmented fingers. In Standard Scoring, scoring rules are followed exactly. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Number of Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
1	$98.3[98.1,98.5]$	$98.4[98.2,98.6]$	$99.2[99.0,99.3]$
2	$97.4[97.0,97.6]$	$97.5[97.2,97.8]$	$98.5[98.3,98.7]$
3	$95.8[95.5,96.2]$	$96.1[95.8,96.4]$	$97.4[97.1,97.7]$
4	$92.6[92.1,93.0]$	$93.1[92.6,93.5]$	$95.2[94.9,95.6]$
5	$82.0[81.4,82.7]$	$82.3[81.7,83.0]$	$86.8[86.2,87.3]$
6	$78.0[77.4,78.8]$	$78.6[78.0,79.4]$	$82.7[82.0,83.3]$
7	$71.3[70.4,72.0]$	$72.6[71.9,73.4]$	$76.9[76.2,77.6]$
8	$54.8[53.9,55.6]$	$58.1[57.2,58.9]$	$63.0[62.2,63.9]$

Table 58: For all subjects, Percentage that a particular friction ridge generalized position was correctly segmented. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Finger	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Index	$80.1[79.6,80.6]$	$81.7[81.2,82.2]$	$82.5[82.1,83.1]$
Middle	$85.3[84.9,85.8]$	$85.6[85.2,86.1]$	$86.9[86.4,87.3]$
Ring	$85.9[85.5,86.3]$	$86.3[85.9,86.7]$	$87.5[87.0,87.9]$
Little	$85.2[84.7,85.6]$	$85.9[85.5,86.4]$	$89.8[89.4,90.2]$
Left			
Index	$88.3[87.8,88.7]$	$89.0[88.6,89.5]$	$90.7[90.3,91.2]$
Middle	$88.6[88.1,89.0]$	$89.2[88.7,89.6]$	$91.5[91.1,91.9]$
Ring	$89.3[88.9,89.8]$	$90.4[90.0,90.8]$	$92.9[92.6,93.3]$
Little	$83.2[82.7,83.8]$	$84.3[83.8,84.8]$	$94.1[93.7,94.4]$

Table 59: Percentage that a particular type of fingerprint was correctly segmented on Either or Both hands. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Index			
\quad Either	$94.8[94.4,95.2]$	$95.2[94.9,95.6]$	$95.9[95.6,96.3]$
Both	$69.6[68.8,70.4]$	$71.5[70.8,72.4]$	$73.2[72.5,74.0]$
Middle			
\quad Either	$96.1[95.7,96.4]$	$96.2[95.9,96.5]$	$97.0[96.7,97.3]$
\quad Both	$74.1[73.3,74.9]$	$74.9[74.1,75.7]$	$77.4[76.6,78.1]$
Ring			
\quad Either	$96.4[96.1,96.7]$	$96.6[96.3,96.9]$	$97.4[97.1,97.7]$
\quad Both	$75.0[74.2,75.7]$	$76.3[75.6,77.1]$	$79.2[78.5,79.9]$
Little			
\quad Either	$94.3[93.9,94.7]$	$94.7[94.3,95.1]$	$97.8[97.6,98.1]$
Both	$69.8[69.0,70.6]$	$71.1[70.4,71.9]$	$81.7[81.0,82.3]$

Table 60: Percentage of segmentation success by hand for combinations of all eight fingers of a TwoInch slap. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	$91.6[92.6,93.1]$	$91.8[92.8,93.3]$	$94.0[95.3,95.7]$
At Least Two	$88.9[90.0,90.6]$	$89.1[90.3,90.8]$	$90.8[92.6,93.1]$
At Least Three	$84.7[85.9,86.5]$	$85.1[86.4,87.1]$	$86.7[89.1,89.7]$
All Four	$71.4[72.7,73.6]$	$73.6[75.0,75.9]$	$75.2[79.0,79.7]$
Left			
Any	$94.3[92.6,93.1]$	$94.5[92.8,93.3]$	$97.3[95.3,95.7]$
At Least Two	$91.9[90.0,90.6]$	$92.2[90.3,90.8]$	$95.2[92.6,93.1]$
At Least Three	$87.9[85.9,86.5]$	$88.7[86.4,87.1]$	$92.6[89.1,89.7]$
All Four	$75.3[72.7,73.6]$	$77.6[75.0,75.9]$	$84.2[79.0,79.7]$

Table 61: Percentage of segmentation success by hand when only considering combinations of index and middle fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
\quad Either Index or Middle	$88.9[90.4,90.9]$	$89.2[90.6,91.1]$	$90.5[92.2,92.7]$
\quad Both Index and Middle	$76.5[79.7,80.5]$	$78.2[81.1,81.9]$	$78.9[82.6,83.3]$
Left			
\quad Either Index or Middle	$92.6[90.4,90.9]$	$92.8[90.6,91.1]$	$94.8[92.2,92.7]$
Both Index and Middle	$84.2[79.7,80.5]$	$85.4[81.1,81.9]$	$87.5[82.6,83.3]$

Table 62: Percentage of segmentation success by hand when only considering combinations of index, middle, and ring fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	$90.6[91.8,92.3]$	$90.7[91.9,92.4]$	$92.1[93.6,94.0]$
At Least Two	$86.5[88.1,88.7]$	$86.8[88.4,89.0]$	$88.0[90.2,90.7]$
All Three	$74.2[77.4,78.2]$	$76.1[79.3,80.1]$	$76.8[80.7,81.5]$
Left			
Any	$93.8[91.8,92.3]$	$93.9[91.9,92.4]$	$95.8[93.6,94.0]$
At Least Two	$90.5[88.1,88.7]$	$90.9[88.4,89.0]$	$93.3[90.2,90.7]$
All Three	$81.9[77.4,78.2]$	$83.8[79.3,80.1]$	$86.1[80.7,81.5]$

A. 2 Jaccard Index

Jaccard Similarity by Traditional Success Metric
Participant: innovatrics/0006, Image Kind: Two Inch

Figure 23: Boxplot of Jaccard similarity indices as compared to the traditional success metrics. Outliers have been removed for clarity.

Jaccard Similarity by Friction Ridge Generalized Position

Participant: innovatrics/0006, Image Kind: Two Inch

Figure 24: Boxplot of Jaccard similarity indices for each friction ridge generalized position. Outliers have been removed for clarity.

Table 63: For each subject, the percentage that at least Number of Fingers fingers were segmented with a Jaccard index in the indicated range.

Number of Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95	≥ 0.98
1	99.9	99.9	99.7	97.8	54.6	4.1	0.1
2	99.8	99.7	99.4	96.0	30.0	0.3	0.0
3	99.5	99.4	98.9	92.4	13.8	0.0	0.0
4	99.1	98.8	97.6	84.3	5.3	0.0	0.0
5	95.4	95.1	93.0	73.9	1.7	0	0
6	95.0	94.5	90.9	62.9	0.5	0	0
7	93.8	92.1	85.3	45.0	0.1	0	0
8	89.7	83.9	66.9	20.6	0.0	0	0

Table 64: For all subjects, percentage that a particular friction ridge generalized position was segmented with a Jaccard index in the indicated range.

Finger	$0-0.5$	$0.5-0.6$	$0.6-0.7$	$0.7-0.8$	$0.8-0.9$	$0.9-1.0$
Right						
\quad Index	1.7	1.4	5.1	17.5	56.6	17.7
Middle	0.7	0.6	3.4	19.6	61.7	14.0
Ring	1.1	1.5	3.5	17.8	63.0	13.1
Little	2.2	1.5	3.8	23.4	58.8	10.3
Left						
\quad Index	0.8	0.7	2.9	13.8	65.0	16.8
Middle	0.7	0.6	3.8	24.3	61.2	9.4
Ring	0.9	0.8	2.9	17.5	64.1	13.8
Little	2.0	1.5	5.5	30.6	50.6	9.8

Table 65: Percentage of segmentation obtaining a Jaccard index in the indicated ranges, by hand, for combinations of all eight fingers of a TwoInch slap.

Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95	≥ 0.98
Right							
\quad Any	99.9	99.8	98.6	90.2	35.6	2.0	0.0
At Least Two	99.7	99.3	97.6	85.2	14.7	0.1	0.0
At Least Three	98.8	97.9	94.8	73.8	4.0	0.0	0.0
All Four	95.9	92.3	82.5	46.0	0.7	0.0	0.0
Left							
Any	99.8	99.8	99.0	92.0	33.0	1.9	0.1
At Least Two	99.6	99.4	98.2	86.2	12.9	0.1	0.0
At Least Three	99.1	98.5	95.9	72.4	3.5	0.0	0.0
All Four	97.0	94.2	83.8	40.1	0.4	0.0	0.0

Table 66: Percentage of segmentation obtaining a Jaccard index in the indicated ranges, by hand, for combinations of index and middle fingers of a TwoInch slap.

Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95	≥ 0.98
Right							
\quad Either Index or Middle	99.7	99.5	98.1	87.1	26.7	1.4	0.0
\quad Both Index and Middle	97.8	96.0	88.9	62.9	4.9	0.0	0.0
Left							
\quad Either Index or Middle	99.7	99.6	98.5	88.9	22.6	1.1	0.1
\quad Both Index and Middle	98.8	97.6	91.9	63.4	3.6	0.0	0.0

Table 67: Percentage of segmentation obtaining a Jaccard index in the indicated ranges, by hand, for combinations of index, middle, and ring fingers of a TwoInch slap.

Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95	≥ 0.98
Right							
\quad Any	99.8	99.7	98.4	89.2	32.1	1.8	0.0
At Least Two	99.4	98.9	96.5	80.7	10.8	0.1	0.0
All Three	97.2	94.5	86.1	56.2	1.9	0.0	0.0
Left							
Any	99.8	99.7	98.8	91.2	29.3	1.4	0.1
At Least Two	99.5	99.1	97.4	82.0	9.2	0.1	0.0
All Three	98.3	96.6	89.6	57.1	1.5	0.0	0.0

B Identification Flats ("ThreeInch" Data)

B. 1 Bootstrap Confidence for Segmentation Statistics

This section shows the same detailed results of segmentation of ThreeInch data from Section 3.3, but with an added bootstrap confidence interval. For each observation, a bootstrap routine with 1000 replicates was run, and a 95% confidence interval extracted. The lower and upper confidence from that confidence interval are printed in each column within square brackets.
In Table 68, results are shown of how successful innovatrics+0006 segmented fingers for each subject in the test corpus. Table 69 shows success for specific finger positions over the entire test corpus. Similarly, Table 70 shows success for segmenting the same finger position from both hands.

The remainder of the tables show success per subject when considering combinations of subsets of the fingers in each slap image. Table 71 shows success for combinations of all fingers, Table 73 for the all except the little finger, and Table 72 for just the index and middle fingers.

Table 68: For each subject, the percentage that at least Number of Fingers fingers were correctly segmented, regardless of hand, for a maximum of eight correctly-segmented fingers. In Standard Scoring, scoring rules are followed exactly. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Number of Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
1	$99.5[99.4,99.6]$	$99.7[99.6,99.8]$	$99.7[99.7,99.8]$
2	$98.9[98.8,99.0]$	$99.2[99.1,99.3]$	$99.2[99.1,99.3]$
3	$98.3[98.1,98.4]$	$98.3[98.2,98.5]$	$98.4[98.2,98.5]$
4	$97.8[97.6,98.0]$	$98.0[97.8,98.2]$	$98.0[97.8,98.2]$
5	$95.8[95.5,96.0]$	$95.8[95.6,96.1]$	$95.8[95.6,96.1]$
6	$95.6[95.3,95.8]$	$95.8[95.5,96.0]$	$95.8[95.5,96.0]$
7	$94.9[94.6,95.2]$	$95.5[95.3,95.8]$	$95.6[95.3,95.8]$
8	$92.1[91.8,92.4]$	$94.9[94.7,95.2]$	$95.0[94.7,95.3]$
9	$68.0[67.4,68.6]$	$92.1[91.7,92.4]$	$92.4[92.1,92.8]$
10	$45.5[44.9,46.2]$	$81.4[80.9,81.9]$	$82.5[81.9,82.9]$

Table 69: For all subjects, Percentage that a particular friction ridge generalized position was correctly segmented. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Finger	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Thumb	$66.3[65.7,66.9]$	$95.8[95.5,96.1]$	$96.2[95.9,96.4]$
Index	$98.9[98.8,99.1]$	$9.1[99.0,99.2]$	$99.1[99.0,99.2]$
Middle	$98.5[98.4,98.7]$	$99.1[99.0,99.2]$	$99.2[99.1,99.3]$
Ring	$97.1[96.9,97.3]$	$97.9[97.7,98.0]$	$98.1[97.9,98.3]$
Little	$96.3[96.0,96.5]$	$96.5[96.2,96.7]$	$96.6[96.4,96.8]$
Left			
Thumb	$62.6[62.0,63.2]$	$95.3[95.0,95.6]$	$95.7[95.4,95.9]$
Index	$98.5[98.4,98.7]$	$98.7[98.5,98.8]$	$98.7[98.6,98.9]$
Middle	$97.9[97.7,98.1]$	$99.0[98.9,99.1]$	$99.1[99.0,99.2]$
Ring	$97.6[97.4,97.8]$	$98.4[98.2,98.5]$	$98.5[98.4,98.7]$
Little	$97.2[96.9,97.4]$	$97.4[97.2,97.6]$	$97.6[97.4,97.8]$

Table 70: Percentage that a particular type of fingerprint was correctly segmented on Either or Both hands. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Thumb			
Either	75.1 [74.6, 75.6]	98.6 [98.4, 98.7]	98.7 [98.5, 98.8]
Both	53.8 [53.1, 54.5]	92.6 [92.3, 93.0]	93.2 [92.9, 93.6]
Index			
Either	99.7 [99.6, 99.8]	99.7 [99.7, 99.8]	99.8 [99.7, 99.8]
Both	95.1 [94.8, 95.4]	95.3 [95.1, 95.6]	95.4 [95.2, 95.7]
Middle			
Either	99.4 [99.3, 99.5]	99.7 [99.6, 99.8]	99.7 [99.6, 99.8]
Both	94.3 [94.0, 94.6]	95.7 [95.5, 95.9]	95.9 [95.6, 96.2]
Ring			
Either	99.4 [99.3, 99.5]	99.5 [99.5, 99.6]	99.6 [99.5, 99.7]
Both	92.7 [92.4, 93.0]	94.0 [93.7, 94.3]	94.4 [94.1, 94.6]
Little			
Either	99.2 [99.1, 99.3]	99.2 [99.1, 99.3]	99.3 [99.2, 99.4]
Both	91.7 [91.3, 92.0]	92.0 [91.6, 92.3]	92.3 [91.9, 92.6]

Table 71: Percentage of segmentation success by hand for combinations of all ten fingers of a ThreeInch slap. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	$99.2[99.2,99.3]$	$99.4[99.4,99.5]$	$99.4[99.4,99.6]$
At Least Two	$98.4[98.2,98.4]$	$98.4[98.3,98.5]$	$98.4[98.3,98.5]$
At Least Three	$97.8[97.6,97.9]$	$98.1[98.0,98.2]$	$98.1[98.0,98.2]$
At Least Four	$95.0[94.8,95.2]$	$96.6[96.7,96.9]$	$96.8[96.8,97.1]$
All Five	$59.0[56.8,57.7]$	$86.8[86.4,87.0]$	$87.4[87.1,87.7]$
Left			
Any	$99.3[99.2,99.3]$	$99.5[99.4,99.5]$	$99.6[99.4,99.6]$
At Least Two	$98.3[98.2,98.4]$	$98.4[98.3,98.5]$	$98.4[98.3,98.5]$
At Least Three	$97.8[97.6,97.9]$	$98.1[98.0,98.2]$	$98.1[98.0,98.2]$
At Least Four	$95.0[94.8,95.2]$	$97.0[96.7,96.9]$	$97.1[96.8,97.1]$
All Five	$55.6[56.8,57.7]$	$86.7[86.4,87.0]$	$87.3[87.1,87.7]$

Table 72: Percentage of segmentation success by hand when only considering combinations of index and middle fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
\quad Either Index or Middle	$99.7[99.7,99.8]$	$99.8[99.7,99.8]$	$99.8[99.8,99.8]$
\quad Both Index and Middle	$97.8[97.1,97.4]$	$98.4[98.0,98.3]$	$98.5[98.2,98.4]$
Left			
Either Index or Middle	$99.7[99.7,99.8]$	$99.8[99.7,99.8]$	$99.8[99.8,99.8]$
Both Index and Middle	$96.7[97.1,97.4]$	$97.9[98.0,98.3]$	$98.1[98.2,98.4]$

Table 73: Percentage of segmentation success by hand when only considering combinations of index, middle, and ring fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	$99.8[99.8,99.9]$	$99.9[99.8,99.9]$	$99.9[99.9,99.9]$
At Least Two	$99.3[99.2,99.4]$	$99.5[99.4,99.5]$	$99.5[99.5,99.6]$
All Three	$95.4[95.0,95.4]$	$96.7[96.5,96.8]$	$97.0[96.9,97.2]$
Left			
Any	$99.8[99.8,99.9]$	$99.9[99.8,99.9]$	$99.9[99.9,99.9]$
At Least Two	$99.2[99.2,99.4]$	$99.5[99.4,99.5]$	$99.5[99.5,99.6]$
All Three	$94.9[95.0,95.4]$	$96.7[96.5,96.8]$	$97.0[96.9,97.2]$

B. 2 Jaccard Index

Jaccard Similarity by Traditional Success Metric
Participant: innovatrics/0006, Image Kind: Three Inch

Figure 25: Boxplot of Jaccard similarity indices as compared to the traditional success metrics. Outliers have been removed for clarity.

Jaccard Similarity by Friction Ridge Generalized Position

Participant: innovatrics/0006, Image Kind: Three Inch

Figure 26: Boxplot of Jaccard similarity indices for each friction ridge generalized position. Outliers have been removed for clarity.

Table 74: For each subject, the percentage that at least Number of Fingers fingers were segmented with a Jaccard index in the indicated range.

Number of Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95	≥ 0.98
1	99.9	99.8	99.7	99.4	86.4	24.7	1.4
2	99.7	99.5	99.3	98.7	67.4	5.7	0.1
3	98.4	98.4	98.3	97.8	45.7	0.8	0.0
4	98.1	98.1	97.9	96.8	27.3	0.1	0.0
5	95.9	95.9	95.8	94.0	13.8	0.0	0
6	95.9	95.8	95.7	91.3	6.0	0	0
7	95.8	95.7	95.2	85.8	2.4	0	0
8	95.5	95.3	93.3	72.6	0.7	0	0
9	94.2	89.5	75.8	45.6	0.1	0	0
10	90.5	78.5	55.5	22.2	0.0	0	0

Table 75: For all subjects, percentage that a particular friction ridge generalized position was segmented with a Jaccard index in the indicated range.

Finger	$0-0.5$	$0.5-0.6$	$0.6-0.7$	$0.7-0.8$	$0.8-0.9$	$0.9-1.0$
Right						
\quad Thumb	1.8	7.6	15.5	15.8	24.9	34.4
Index	0.2	0.1	0.5	5.1	64.2	29.9
Middle	0.3	0.1	0.8	6.7	63.8	28.3
Ring	0.9	0.1	1.4	9.2	63.7	24.7
Little	1.5	0.3	1.6	15.2	62.8	18.6
Left						
Thumb	2.5	8.9	17.2	16.7	23.6	31.1
Index	0.2	0.1	0.4	6.4	71.1	21.8
Middle	0.3	0.2	1.3	8.0	67.9	22.3
Ring	0.6	0.2	1.3	8.5	66.1	23.3
Little	1.1	0.3	1.3	14.5	62.1	20.7

Table 76: Percentage of segmentation obtaining a Jaccard index in the indicated ranges, by hand, for combinations of all ten fingers of a ThreeInch slap.

Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95	≥ 0.98
Right							
\quad Any	99.8	99.7	99.5	98.8	70.1	14.6	0.8
At Least Two	98.5	98.5	98.4	96.5	38.7	1.3	0.0
At Least Three	98.3	98.2	97.8	92.5	17.8	0.2	0.0
At Least Four	97.5	97.4	95.8	80.8	5.8	0.0	0.0
All Five	92.0	84.4	67.5	39.7	1.0	0.0	0.0
Left							
Any	99.8	99.7	99.5	99.0	65.8	13.9	0.7
At Least Two	98.5	98.4	98.4	97.0	32.7	1.1	0.0
At Least Three	98.3	98.2	98.0	92.7	13.8	0.1	0.0
At Least Four	97.9	97.6	96.0	78.8	4.1	0.0	0.0
All Five	91.6	82.8	64.2	35.3	0.6	0.0	0.0

Table 77: Percentage of segmentation obtaining a Jaccard index in the indicated ranges, by hand, for combinations of index and middle fingers of a ThreeInch slap.

Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95	≥ 0.98
Right							
\quad Either Index or Middle	99.9	99.9	99.7	97.5	45.3	3.8	0.1
\quad Both Index and Middle	99.6	99.4	98.2	88.7	13.0	0.2	0.0
Left							
\quad Either Index or Middle	99.9	99.9	99.8	97.9	35.7	3.0	0.1
\quad Both Index and Middle	99.6	99.4	97.8	85.2	8.4	0.1	0.0

Table 78: Percentage of segmentation obtaining a Jaccard index in the indicated ranges, by hand, for combinations of index, middle, and ring fingers of a ThreeInch slap.

Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95	≥ 0.98
Right							
\quad Any	99.9	99.9	99.8	98.4	53.7	5.0	0.2
At Least Two	99.8	99.7	99.4	94.6	23.1	0.4	0.0
All Three	99.0	98.7	96.4	81.6	6.3	0.0	0.0
Left							
Any	99.9	99.9	99.8	99.1	45.8	4.7	0.2
At Least Two	99.8	99.7	99.4	94.9	17.4	0.3	0.0
All Three	99.3	98.9	96.3	78.6	4.2	0.0	0

C Upper Palm ("FiveInch" Data)

C. 1 Bootstrap Confidence for Segmentation Statistics

This section shows the same detailed results of segmentation of FiveInch data from Section 4.3, but with an added bootstrap confidence interval. For each observation, a bootstrap routine with 1000 replicates was run, and a 95% confidence interval extracted. The lower and upper confidence from that confidence interval are printed in each column within square brackets.
In Table 79, results are shown of how successful innovatrics+0006 segmented fingers for each subject in the test corpus. Table 80 shows success for specific finger positions over the entire test corpus. Similarly, Table 81 shows success for segmenting the same finger position from both hands.

The remainder of the tables show success per subject when considering combinations of subsets of the fingers in each slap image. Table 82 shows success for combinations of all fingers, Table 84 for the all except the little finger, and Table 83 for just the index and middle fingers.

Table 79: For each subject, the percentage that at least Number of Fingers fingers were correctly segmented, regardless of hand, for a maximum of eight correctly-segmented fingers. In Standard Scoring, scoring rules are followed exactly. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Number of Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
1	$99.7[99.3,100.0]$	$99.7[99.2,100.0]$	$99.7[99.3,100.0]$
2	$99.3[98.8,99.9]$	$99.5[98.9,99.9]$	$99.5[98.9,99.9]$
3	$98.7[97.8,99.5]$	$98.7[97.8,99.5]$	$98.8[97.9,99.6]$
4	$96.8[95.5,98.0]$	$97.1[95.9,98.3]$	$97.1[95.9,98.3]$
5	$90.9[88.8,92.9]$	$91.8[90.0,93.7]$	$92.8[90.9,94.6]$
6	$82.9[80.2,85.4]$	$83.9[81.2,86.4]$	$85.9[83.5,88.3]$
7	$68.6[65.2,71.9]$	$69.8[66.5,73.0]$	$72.5[69.2,75.5]$
8	$42.2[38.7,45.5]$	$43.2[39.7,46.9]$	$45.8[42.3,49.3]$

Table 80: For all subjects, Percentage that a particular friction ridge generalized position was correctly segmented. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Finger	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Index	$86.3[83.6,88.8]$	$86.8[84.3,89.2]$	$87.6[85.2,89.9]$
Middle	$83.9[81.1,86.6]$	$84.6[81.9,87.0]$	$86.3[83.8,88.6]$
Ring	$89.8[87.5,91.9]$	$90.6[88.4,92.7]$	$91.6[89.6,93.5]$
Little	$84.6[82.0,87.2]$	$85.0[82.3,87.5]$	$86.7[84.4,89.1]$
Left			
Index	$86.5[83.8,88.7]$	$86.7[84.2,89.3]$	$87.3[85.0,89.8]$
Middle	$85.9[83.4,88.3]$	$86.7[84.2,89.1]$	$87.7[85.3,90.2]$
Ring	$89.1[86.6,91.4]$	$89.9[87.8,92.0]$	$90.5[88.3,92.6]$
Little	$78.5[75.5,81.4]$	$78.9[76.0,81.8]$	$80.0[76.9,82.9]$

Table 81: Percentage that a particular type of fingerprint was correctly segmented on Either or Both hands. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Index			
Either	$96.0[94.6,97.4]$	$96.4[95.0,97.6]$	$96.7[95.3,98.0]$
Both	$75.4[72.3,78.4]$	$75.8[72.5,78.9]$	$76.8[74.0,80.0]$
Middle			
Either	$96.0[94.5,97.4]$	$96.6[95.3,97.8]$	$97.0[95.8,98.3]$
\quad Both	$72.5[69.4,75.5]$	$73.4[70.4,76.4]$	$75.6[72.5,78.8]$
Ring			
Either	$97.4[96.2,98.4]$	$97.8[96.6,98.8]$	$98.0[96.8,98.9]$
Both	$80.1[77.3,82.7]$	$81.3[78.7,83.9]$	$82.6[80.0,85.4]$
Little			
Either	$95.4[93.8,96.7]$	$95.5[94.2,97.0]$	$96.3[95.0,97.8]$
Both	$66.4[62.8,69.6]$	$67.1[63.9,70.4]$	$69.0[65.9,72.3]$

Table 82: Percentage of segmentation success by hand for combinations of all eight fingers of a FiveInch slap. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	$98.8[98.2,99.3]$	$98.9[98.3,99.4]$	$99.1[98.4,99.4]$
At Least Two	$94.9[93.8,96.1]$	$95.5[94.2,96.4]$	$96.0[94.6,96.7]$
At Least Three	$86.6[84.6,88.0]$	$87.2[85.4,88.6]$	$88.7[86.6,89.9]$
All Four	$64.2[59.8,64.9]$	$65.3[60.9,65.8]$	$68.5[63.4,68.2]$
Left			
Any	$98.7[98.2,99.3]$	$98.8[98.3,99.4]$	$98.8[98.4,99.4]$
At Least Two	$95.0[93.8,96.1]$	$95.2[94.2,96.4]$	$95.4[94.6,96.7]$
At Least Three	$86.1[84.6,88.0]$	$86.9[85.4,88.6]$	$87.9[86.6,89.9]$
All Four	$60.3[59.8,64.9]$	$61.4[60.9,65.8]$	$63.3[63.4,68.2]$

Table 83: Percentage of segmentation success by hand when only considering combinations of index and middle fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
\quad Either Index or Middle	$94.7[94.0,96.2]$	$94.9[94.3,96.3]$	$95.5[94.6,96.6]$
\quad Both Index and Middle	$75.5[74.2,78.3]$	$76.5[75.0,79.2]$	$78.5[76.8,80.8]$
Left			
Either Index or Middle	$95.6[94.0,96.2]$	$95.8[94.3,96.3]$	$95.8[94.6,96.6]$
Both Index and Middle	$76.8[74.2,78.3]$	$77.7[75.0,79.2]$	$79.2[76.8,80.8]$

Table 84: Percentage of segmentation success by hand when only considering combinations of index, middle, and ring fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	$97.3[96.9,98.5]$	$97.6[97.2,98.6]$	$98.0[97.4,98.8]$
At Least Two	$90.8[89.9,92.9]$	$91.5[90.8,93.5]$	$92.2[91.1,93.8]$
All Three	$71.8[69.4,73.9]$	$72.9[70.4,74.8]$	$75.4[72.6,77.1]$
Left			
Any	$98.1[96.9,98.5]$	$98.3[97.2,98.6]$	$98.3[97.4,98.8]$
At Least Two	$91.9[89.9,92.9]$	$92.7[90.8,93.5]$	$92.8[91.1,93.8]$
All Three	$71.5[69.4,73.9]$	$72.4[70.4,74.8]$	$74.3[72.6,77.1]$

C. 2 Jaccard Index

Jaccard Similarity by Traditional Success Metric
Participant: innovatrics/0006, Image Kind: Upper Palm

Figure 27: Boxplot of Jaccard similarity indices as compared to the traditional success metrics. Outliers have been removed for clarity.

Jaccard Similarity by Friction Ridge Generalized Position

Participant: innovatrics/0006, Image Kind: Upper Palm

Figure 28: Boxplot of Jaccard similarity indices for each friction ridge generalized position. Outliers have been removed for clarity.

Table 85: For each subject, the percentage that at least Number of Fingers fingers were segmented with a Jaccard index in the indicated range.

Number of Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95	≥ 0.98
1	99.7	99.7	99.7	99.7	89.7	44.8	27.9
2	99.6	99.6	99.6	98.7	73.1	24.8	20.6
3	99.3	99.3	99.1	97.0	51.0	17.3	16.5
4	98.7	98.3	97.4	93.8	33.3	13.3	12.8
5	95.9	95.0	92.9	86.3	16.1	8.6	8.6
6	91.4	90.6	87.7	74.0	9.7	7.0	7.0
7	84.6	82.7	78.9	54.5	6.3	5.5	5.5
8	71.8	68.2	58.5	27.5	3.3	3.0	2.9

Table 86: For all subjects, percentage that a particular friction ridge generalized position was segmented with a Jaccard index in the indicated range.

Finger	$0-0.5$	$0.5-0.6$	$0.6-0.7$	$0.7-0.8$	$0.8-0.9$	$0.9-1.0$
Right						
\quad Index	7.8	0.7	1.2	7.5	41.6	41.2
Middle	7.9	0.8	4.0	13.0	41.1	33.2
Ring	6.4	1.2	1.3	6.5	42.8	41.8
\quad Little	4.4	1.1	3.2	15.7	51.4	24.2
Left						
\quad Index	6.5	0.9	1.6	9.3	43.9	37.8
Middle	8.1	0.9	3.3	10.5	41.4	35.8
\quad Ring	6.2	0.7	1.5	4.9	37.9	48.8
\quad Little	5.7	1.3	3.9	15.5	51.6	22.0

Table 87: Percentage of segmentation obtaining a Jaccard index in the indicated ranges, by hand, for combinations of all ten fingers of a FiveInch slap.

Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95	≥ 0.98
Right							
\quad Any	99.3	99.3	99.1	97.3	74.1	31.2	21.5
At Least Two	97.3	97.1	96.1	92.3	41.8	16.0	14.5
At Least Three	93.0	92.3	89.9	79.3	16.8	9.8	9.6
All Four	83.9	81.1	75.0	48.5	7.8	6.6	6.6
Left							
Any	99.3	99.2	98.7	98.0	74.5	31.0	21.9
At Least Two	97.5	96.8	96.0	92.7	44.3	15.9	14.1
At Least Three	93.4	92.0	90.5	80.2	18.0	9.3	9.2
All Four	83.3	81.6	74.3	48.3	7.6	5.3	5.2

Table 88: Percentage of segmentation obtaining a Jaccard index in the indicated ranges, by hand, for combinations of index and middle fingers of a FiveInch slap.

Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95	≥ 0.98
Right							
\quad Either Index or Middle	96.7	96.4	95.9	92.7	56.4	25.7	19.5
\quad Both Index and Middle	87.6	86.4	81.8	64.5	18.1	9.7	9.3
Left							
\quad Either Index or Middle	97.6	96.8	96.3	92.7	55.7	24.9	19.8
\quad Both Index and Middle	87.8	86.7	82.4	66.2	17.9	9.7	9.4

Table 89: Percentage of segmentation obtaining a Jaccard index in the indicated ranges, by hand, for combinations of index, middle, and ring fingers of a FiveInch slap.

Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95	≥ 0.98
Right							
\quad Any	98.3	98.1	97.9	96.3	70.3	29.5	21.0
At Least Two	93.9	93.6	92.2	86.3	33.9	14.6	13.7
All Three	85.8	83.5	78.7	59.2	12.0	8.4	8.4
Left							
Any	99.1	98.8	98.3	97.5	71.5	30.4	21.6
At Least Two	95.2	94.3	93.2	87.9	38.2	14.9	13.3
All Three	84.9	83.6	78.8	60.2	12.7	8.2	8.2

D Full Palm ("EightInch" Data)

D. 1 Bootstrap Confidence for Segmentation Statistics

NOTE: The following segmentation statistics are based on a limited subset (approximately 15\%) of the anticipated Full Palm dataset. This analysis will be updated as soon as NIST can obtain the remainder of the dataset.
This section shows the same detailed results of segmentation of EightInch data from Section 5.3, but with an added bootstrap confidence interval. For each observation, a bootstrap routine with 1000 replicates was run, and a 95% confidence interval extracted. The lower and upper confidence from that confidence interval are printed in each column within square brackets.

In Table 90, results are shown of how successful innovatrics+0006 segmented fingers for each subject in the test corpus. Table 91 shows success for specific finger positions over the entire test corpus. Similarly, Table 92 shows success for segmenting the same finger position from both hands.

The remainder of the tables show success per subject when considering combinations of subsets of the fingers in each slap image. Table 93 shows success for combinations of all fingers, Table 95 for the all except the little finger, and Table 94 for just the index and middle fingers.

Table 90: For each subject, the percentage that at least Number of Fingers fingers were correctly segmented, regardless of hand, for a maximum of eight correctly-segmented fingers. In Standard Scoring, scoring rules are followed exactly. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Number of Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
1	$99.8[99.4,100.0]$	$99.8[99.4,100.0]$	$99.8[99.4,100.0]$
2	$99.1[98.4,99.7]$	$99.3[98.6,99.8]$	$99.3[98.7,99.8]$
3	$97.9[97.0,98.9]$	$98.3[97.4,99.1]$	$98.4[97.5,99.2]$
4	$96.8[95.5,97.8]$	$97.4[96.3,98.4]$	$97.5[96.4,98.4]$
5	$94.5[92.8,96.0]$	$95.4[93.9,96.8]$	$96.1[94.7,97.4]$
6	$91.0[89.1,92.9]$	$92.4[90.6,94.1]$	$92.4[90.7,94.1]$
7	$84.4[81.8,86.8]$	$86.3[84.0,88.6]$	$87.4[85.1,89.5]$
8	$62.4[59.4,65.5]$	$65.5[62.3,68.5]$	$67.5[64.4,70.8]$

Table 91: For all subjects, Percentage that a particular friction ridge generalized position was correctly segmented. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Finger	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
\quad Index	$92.9[91.3,94.6]$	$93.2[91.5,94.9]$	$93.6[91.8,95.2]$
Middle	$92.3[90.5,94.0]$	$93.1[91.4,94.8]$	$93.4[91.6,95.1]$
Ring	$91.4[89.4,93.1]$	$93.0[91.3,94.6]$	$93.6[91.8,95.2]$
Little	$89.4[87.2,91.5]$	$90.9[89.0,92.8]$	$91.3[89.3,93.0]$
Left			
Index	$90.3[88.3,92.3]$	$91.0[89.1,93.0]$	$91.6[89.8,93.3]$
Middle	$90.8[88.7,92.5]$	$92.1[90.1,93.9]$	$92.6[90.8,94.3]$
Ring	$89.9[87.8,92.1]$	$91.1[89.3,92.9]$	$91.7[90.0,93.6]$
Little	$88.9[87.0,91.0]$	$89.9[87.7,91.8]$	$90.5[88.4,92.4]$

Table 92: Percentage that a particular type of fingerprint was correctly segmented on Either or Both hands. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Index			
Either	$97.9[96.9,98.9]$	$98.2[97.1,99.0]$	$98.2[97.2,99.0]$
Both	$85.3[83.0,87.7]$	$86.1[83.8,88.2]$	$87.0[84.9,89.4]$
Middle			
Either	$97.6[96.6,98.6]$	$98.0[97.0,98.9]$	$98.2[97.2,99.0]$
Both	$85.5[83.1,87.8]$	$87.1[84.7,89.3]$	$87.9[85.6,90.2]$
Ring			
Either	$96.1[94.7,97.4]$	$97.1[96.0,98.2]$	$97.4[96.2,98.4]$
Both	$85.2[82.9,87.6]$	$87.0[84.7,89.1]$	$87.9[85.9,90.2]$
Little			
Either	$96.3[94.9,97.5]$	$97.2[96.1,98.3]$	$97.4[96.2,98.4]$
Both	$82.0[79.4,84.5]$	$83.6[81.0,85.9]$	$84.4[81.8,87.0]$

Table 93: Percentage of segmentation success by hand for combinations of all eight fingers of a EightInch slap. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	$99.0[98.3,99.3]$	$99.4[98.8,99.6]$	$99.4[98.8,99.6]$
At Least Two	$96.1[95.1,96.8]$	$96.6[95.5,97.2]$	$96.6[95.7,97.4]$
At Least Three	$92.8[90.8,93.4]$	$93.6[91.6,93.9]$	$93.9[92.2,94.4]$
All Four	$78.2[74.0,77.9]$	$80.7[77.1,80.7]$	$82.0[78.2,82.0]$
Left			
Any	$98.7[98.3,99.3]$	$99.0[98.8,99.6]$	$99.0[98.8,99.6]$
At Least Two	$95.9[95.1,96.8]$	$96.3[95.5,97.2]$	$96.7[95.7,97.4]$
At Least Three	$91.3[90.8,93.4]$	$91.8[91.6,93.9]$	$92.6[92.2,94.4]$
All Four	$74.0[74.0,77.9]$	$77.0[77.1,80.7]$	$78.2[78.2,82.0]$

Table 94: Percentage of segmentation success by hand when only considering combinations of index and middle fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
\quad Either Index or Middle	$97.1[95.9,97.6]$	$97.4[96.3,97.9]$	$97.4[96.4,97.9]$
\quad Both Index and Middle	$88.0[84.8,88.0]$	$89.0[86.1,89.2]$	$89.7[87.0,89.8]$
Left			
Either Index or Middle	$96.4[95.9,97.6]$	$96.8[96.3,97.9]$	$97.0[96.4,97.9]$
Both Index and Middle	$84.7[84.8,88.0]$	$86.3[86.1,89.2]$	$87.2[87.0,89.8]$

Table 95: Percentage of segmentation success by hand when only considering combinations of index, middle, and ring fingers. In Ignoring Bottom Y, the bottom left and bottom right Y coordinates are ignored. Ignoring Bottom X and Y only checks the locations of the top left and top right coordinates. Values in square brackets represent a 95% confidence interval after bootstrapping with 1000 replicates.

Fingers	Standard Scoring	Ignoring Bottom Y	Ignoring Bottom X and Y
Right			
Any	$98.0[97.5,98.8]$	$98.5[97.9,99.0]$	$98.5[97.9,99.0]$
At Least Two	$95.1[92.6,94.9]$	$95.4[93.2,95.4]$	$95.5[93.4,95.7]$
All Three	$83.4[80.1,83.6]$	$85.4[82.1,85.7]$	$86.6[83.6,86.7]$
Left			
Any	$98.4[97.5,98.8]$	$98.5[97.9,99.0]$	$98.5[97.9,99.0]$
At Least Two	$92.4[92.6,94.9]$	$93.2[93.2,95.4]$	$93.7[93.4,95.7]$
All Three	$80.2[80.1,83.6]$	$82.5[82.1,85.7]$	$83.8[83.6,86.7]$

D. 2 Jaccard Index

Jaccard Similarity by Traditional Success Metric
Participant: innovatrics/0006, Image Kind: Full Palm

Figure 29: Boxplot of Jaccard similarity indices as compared to the traditional success metrics. Outliers have been removed for clarity.

Jaccard Similarity by Friction Ridge Generalized Position

Participant: innovatrics/0006, Image Kind: Full Palm

Figure 30: Boxplot of Jaccard similarity indices for each friction ridge generalized position. Outliers have been removed for clarity.

Table 96: For each subject, the percentage that at least Number of Fingers fingers were segmented with a Jaccard index in the indicated range.

Number of Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95
1	99.9	99.8	99.8	99.1	54.5	1.6
2	99.8	99.8	99.4	97.8	24.1	0
3	99.7	99.3	98.4	95.1	9.0	0
4	99.4	98.9	97.4	91.3	3.1	0
5	98.4	97.1	95.1	85.2	1.1	0
6	97.0	94.6	91.7	73.3	0.1	0
7	93.2	90.8	86.8	59.3	0	0
8	86.8	82.3	70.2	32.0	0	0

Table 97: For all subjects, percentage that a particular friction ridge generalized position was segmented with a Jaccard index in the indicated range.

Finger	$0-0.5$	$0.5-0.6$	$0.6-0.7$	$0.7-0.8$	$0.8-0.9$	$0.9-1.0$
Right						
\quad Index	1.7	1.0	3.9	15.4	67.4	10.6
Middle	2.6	1.6	2.5	13.5	67.7	12.1
Ring	3.7	2.2	3.1	11.6	68.4	11.0
Little	4.1	1.3	2.8	13.4	71.6	6.8
Left						
Index	2.8	1.3	2.4	13.8	67.2	12.5
Middle	3.2	1.3	3.2	12.3	66.1	13.9
Ring	3.8	1.6	3.6	13.4	63.7	13.9
Little	3.9	1.4	2.3	12.3	69.0	11.1

Table 98: Percentage of segmentation obtaining a Jaccard index in the indicated ranges, by hand, for combinations of all ten fingers of a EightInch slap.

Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95
Right						
\quad Any	99.9	99.8	99.4	96.7	32.1	0.5
At Least Two	99.0	97.9	96.0	90.2	7.4	0.0
At Least Three	96.4	94.8	92.8	77.6	1.0	0.0
All Four	92.5	89.2	81.3	51.0	0.0	0.0
Left						
Any	99.5	99.4	99.0	96.3	37.2	1.1
At Least Two	98.5	97.9	96.6	91.3	11.5	0.0
At Least Three	96.6	95.5	93.3	78.9	2.2	0.0
All Four	91.7	87.9	80.5	51.0	0.6	0.0

Table 99: Percentage of segmentation obtaining a Jaccard index in the indicated ranges, by hand, for combinations of index and middle fingers of a EightInch slap.

Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95
Right						
\quad Either Index or Middle	99.2	98.7	97.0	90.5	20.6	0
\quad Both Index and Middle	96.4	94.3	89.5	67.2	2.1	0
Left \quad Either Index or Middle 98.9 98.9 97.5 91.0 23.6 0.5 \quad Both Index and Middle 95.2 92.6 88.4 68.7 $\mathbf{2 . 9}$	0					

Table 100: Percentage of segmentation obtaining a Jaccard index in the indicated ranges, by hand, for combinations of index, middle, and ring fingers of a EightInch slap.

Fingers	≥ 0.5	≥ 0.6	≥ 0.7	≥ 0.8	≥ 0.9	≥ 0.95
Right						
\quad Any	99.4	99.2	98.3	94.0	27.1	0.2
At Least Two	98.4	96.7	94.6	82.9	6.1	0
All Three	94.1	91.3	84.7	60.2	0.5	0
Left						
\quad Any	99.3	99.2	98.5	94.1	31.1	0.7
At Least Two	97.5	96.9	94.4	84.4	8.3	0
\quad All Three	93.4	90.0	84.0	58.9	0.9	0

