Slap Fingerprint Segmentation Evaluation III

Test Plan and Application Programming Interface
Last Updated: 13 February 2019

Contents

1 Introduction
1.1 Background
1.2 What’s New Since Slap Fingerprint Segmentation EvaluationIl

2 Evaluation Data
2.1 Dataset Groundtruth e
2.2 Oirientation Determination e
2.3 Accessto EvaluationData
24 Format e e e

3 Application Programming Interface
3.1 Enumerations e e e e
3.2 Classesand Structures e e
3.3 Interface e e

4 Software and Documentation
4.1 Software Libraries and Platform Requirements
42 Usageo
4.3 Validation and Submitting oo Lo Lo
44 Speed

References

Revision History

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

1 Introduction

In 2004, the National Institute of Standards and Technology (NIST) conducted Slap Fingerprint
Segmentation Evaluation 2004 (SlapSeg04) [1] to assess the current state of slap fingerprint segmenta-
tion technologies at the time. As compute and capture technology has advanced, it’s necessary to
examine the latest generation of algorithms. Slap Fingerprint Segmentation Evaluation 111 (SlapSeg 111)
provides an opportunity for providers of slap fingerprint segmentation algorithms to submit seg-
mentation solutions on an ongoing basis and to compare the results from their latest improvements
on a fixed dataset.

1.1 Background

Fingerprint data is collected and maintained in the form of tenprint cards or Identification Flats (ID
Flats). Traditional tenprint cards are comprised of the rolled impressions of each of an individual’s
ten fingers, as well as four slap impressions: the left slap (index, middle, ring, and little fingers of
the left hand), the right slap (index, middle, ring, and little fingers of the right hand), the left thumb,
and the right thumb. Slaps are taken by pressing the associated fingers of one hand onto a scanner
or fingerprint card simultaneously. Tenprint card slaps, whether scanned inked cards or live-scan
captures, are also called Two Inch (2 in) captures, referring to the height of the typical capture area.
ID Flats are tenprint records that are constructed by capturing three discrete impressions: left slap,
right slap, and thumb slap (left and right thumbs simultaneously). ID Flats are images that were
captured on newer live-scan devices that use a larger, 3in tall platen, giving the resulting images
the name Three Inch (3 in) captures.

Several Federal agencies rely on slap segmentation algorithms, including to determine if a slap
image should be recaptured. The Federal Bureau of Investigation (FBI) receives the majority of
fingerprint submissions electronically from live-scan devices, but maintains hundreds of thousands
of digitally-converted tenprint ink cards. The Department of State (DOS) and Department of
Homeland Security (DHS)’s United States Visitor and Immigrant Status Indicator Technology (US-
VISIT) program now capture ID Flats, having previously migrated from two-finger capture.

The FBI also maintains a database of palm images. Palm images are typically captured as half palm
onab.5inplaten, or the full palm onan 8 in platen. Asthese devices often produce higher resolution
images than typical tenprint or ID Flat images, it’s useful to be able to segment fingerprints from
palm captures as well. SlapSeg III introduces palm capture images as Five and a half Inch (5.5 in) or
upper palm captures and Eight Inch (8in) or full palm captures for evaluation.

1.2 What’s New Since Slap Fingerprint Segmentation Evaluation II
The submission process for SlapSeg III has changed significantly since previous tests [2], bringing
it in line with other NIST Image Group biometric technology evaluations.

¢ Participants will submit 64-bit software libraries that implement an application program-
ming interface (API) under CentOS 7.6.1810.

¢ Addition of two size classes of palm data.

* Reporting of capture errors and hand orientation.

https://www.nist.gov/itl/iad/image-group

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

2 Evaluation Data

The segmentation process varies for the various sizes of slap images due to the groundtruth
available, as well as the sizes, rotation, and number of components within the image. Because
of the differences in the segmentation process, SlapSeg III evaluates segmentation of the different
data types as separate tests. Participants will be given the option of selecting which data types
they support. Each test will be run using data from thousands of individuals.

The two inch data consists of images where the fingerprints appear rotated uniformly. Groundtruth
data for two inch data maintains a uniform angle of rotation for all four fingerprint segments within
an image. Fingers in three inch data are assumed to be in an upright position. The slope of the
segments in the bounding rectangle generated by an implementation for three inch data should be
0 (horizontal, y =y intercept) or undefined (vertical line, x = x intercept). Fingers in upper palm
and full palm images may have varying degrees of rotation for each finger, which is reflected in the
groundtruth.

2.1 Dataset Groundtruth

The groundtruth data for two inch and three inch data is based
on the NIST fingerprint segmentation algorithm nfseg [3].
Humans examined every slap image starting with the nfseg-
generated segmentation boxes and then hand-corrected all
errors to produce the groundtruth segmentation. The three
main errors examiners looked for were excess white space
between a segmentation box edge and the fingerprint, a box
side touching fingerprint ridges, and the bottom side correctly
placed at the distal interphalangeal joint. Figure 1 shows an
example of groundtruth segmentation boxes. Upper palm and
full palm data were groundtruthed completely by hand. Figure 1: Sample groundtruth boxes for a
three inch slap.

The groundtruth boxes were placed to capture only the distal
phalanx (i.e., the finger tip or finger joint). The left, right, and
top sides of the segmentation boxes were placed so that a small amount of white space existed
between the segmentation box and those edges of the fingerprint. If two fingers were touching,
the box sides were placed along the point of contact. Sample groundtruth information is provided
to SlapSeg III participants as part of software validation, to allow participants to view examples of
ideal slap segmentation.

The bottom side of the segmentation box was placed in the middle of the distal interphalangeal
joint of the finger. If there was not a well-defined white space at the joint, the box was still placed
in the middle of the joint cutting through any ridge information that existed. If there was a
slight slant in the fingerprint, the bottom side was placed to include the lowest part of the joint
inside the segmentation box. Groundtruth segmentation boxes do not extend past the edges of
the slap image for three inch slap images, but corners may be outside the edge of the image (i.e.,
x <0,y <0,x > w,y > h) depending on rotation angle in other size classes. Although not
strictly required by implementations, the groundtruth angle of rotation for all fingers in a slap are
identical for 2in. The groundtruth angle of individual fingers in 5.5in and 8in slap images may
differ. The current guidance from the FBI indicates that thumbs should not be present in captures

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

of the upper palm. As such, no segmentation positions have been recorded for upper palm data
that may contain the thumb. Thumbs should not be segmented in full palm captures.

Success and Tolerances

Successful segmentation is determined by comparing the segmentation positions from an imple-
mentation to the hand-marked groundtruth segmentation positions for the same data. Tolerances
between the two boxes are allowed. These tolerances are based on work completed in Slap Fin-
gerprint Segmentation Evaluation II (SlapSeg II) [2] to show that the tolerances would not impede
a fingerprint matching algorithm’s ability to correctly match a segmented fingerprint. These
calculations are provided in [2] and in supplemental information on the SlapSeg III website.

2.2 Orientation Determination

New in SlapSeg III is a method to predict the orientation of a slap image. Given an image,
implementations are asked to return whether they think the image is of a left slap, a right slap, or a
thumb slap. Although implementing a routine to predict hand orientation is optional, it is highly
encouraged. An accurate routine may be a good candidate for use in a self-service kiosk deployed
within the European Union (EU)’s Entry-Exit-System (EES).

2.3 Access to Evaluation Data

The SlapSeg 111 test datasets are protected under the Privacy Act (5 U.S.C. §552a), and will be treated
as sensitive but unclassified (SBU) and/or law enforcement sensitive. SlapSeg III participants will
not have access to SlapSeg III test data, before, during, or after the test. NIST will provide similar
publicly-available data that can be used to prepare submissions for SlapSeg III.

2.4 Format

The software library must be capable of processing fingerprint images in uncompressed raw 8 bit
(one byte per pixel) grayscale format. Images shall follow the scan sequence as defined by ISO/IEC
19794-4:2005, §6.2, paraphrased here, and visualized in Figure 2. The origin is the upper-left corner
of the image. The X-coordinate (horizontal) position shall increase positively from the origin to
the right side of the image. The Y-coordinate (vertical) position shall increase positively from the
origin to the bottom of the image.

Raw 8 bit grayscale images are canonically encoded. The minimum value that will be assigned
to a “black” pixel is zero. The maximum value that will be assigned to a “white” pixel is 255.
Intermediate gray levels will have assigned values of 1 to 254. The pixels are stored left to right, top
to bottom, with one byte per pixel. The number of bytes in an image is equal to its height multiplied
by its width as measured in pixels. The image width and height in pixels will be supplied to the
software library as supplemental information.

Images for this test will employ varying resolutions, but primarily 500 pixels per inch (PPI) and
1000 PPI. Horizontal and vertical directions will be equivalent.

SLAPSEG III Test PLAN AND APPLICATION PROGRAMMING INTERFACE

(0,0)

0,h-1)

(w_llo)
> Line O
> Line k
> Lineh —1
(w-1,h-1)

Line O

Line

Line k

h-1

Figure 2: Order of image scanlines in data passed to SlapSeg IIIl implementations.

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

3 Application Programming Interface

3.1 Enumerations

Enumeration Explanation Enumeration Explanation
Unknown Unknown Unknown Unknown
RightThumb Right thumb ScannedInkOnPaper Scanned ink on paper
RightIndex Right index OpticalTIRBright Optical sensor, black ridges on
RightMiddle Right middle white background
RightRing Right ring
RightLittle Right little Table 2: SlapSegIII::SlapImage::CaptureTechnology.
LeftThumb Left thumb
LeftIndex Left index Enumeration Explanation
LeftMiddle Left middle - Right Hand
LeftRing Left ring ERETE 1% t ag
LeftLittle Left little Left Left Han
Thumbs Both Thumbs
Table 1: SlapSegIII::FrictionRidgeGen-
EralNE el PO SR o, Table 3: SlapSegIII::SlapImage::Orientation.
Enumeration Explanation Enumeration Explanation
TwoInch Tenprint card slaps (2in) Artifacts Moisture, ghost impressions, etc.
ThreeInch ID Flats (31in) ImageQuality Low contrast, over-inked, etc.
UpperPalm Upper Palm Data (5.5in) HandGeometry Incorrect hand placement
FullPalm Full Palm Data (8 in) Incomplete Structure does not resemble slap
Table 4: SlapSegIII::SlapImage: :Kind. Table 5: SlapSegIII::SlapImage: :Deficiency.
Enumeration Explanation
Success Success
InvalidImageData Image data was not parsable
RequestRecapture Image has deficiencies preventing reliable segmentation
RequestRecaptureWithAttempt Image has deficiencies, but segmentation was attempted
UnsupportedResolution Image resolution is not supported
UnsupportedSlapType Slap type is not supported
NotImplemented Method called is not implemented
VendorDefined Vendor-defined error (described in message)

Table 6: SlapSegIII::ReturnStatus: :Code.

Enumeration Explanation

Success Success

FingerNotFound Finger not found

FailedToSegment Finger found, but could not be segmented
VendorDefined Vendor-defined failure (described in message)

Table 7: SlapSegIII::SegmentationPosition::Result: :Code.

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

3.2 Classes and Structures

Coordinate
const int32_t x; Coordinate(
const int32_t y; const int32_t x = 0,
const int32_t y = 0)
. noexcept;
Figure 3: SlapSegIII::Coordinate members.

Figure 4: SlapSegIII::Coordinate constructor.

Members
e x: X-coordinate.
e y: Y-coordinate.
Description

Storage of an (x, y) location, assuming an origin at the top left. The default constructor creates the
location (0, 0).

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

SlapImage

const
const
const
const
const
const
const

uint16_t width;

uint16_t height;

uint16_t ppi;

Kind kind;

CaptureTechnology captureTechnology;
Orientation orientation;
std::vector<uint8_t> data;

Figure 5: SlapSegIII::SlapImage members.

Members

width: Width of the image, in pixels.

¢ height: Height of the image, in pixels.

* ppi: Resolution of the image, in PPL

® kind: SlapImage::Kind of capture depicted in the image.

® captureTechnology: SlapImage::CaptureTechnology used to create the image.

* orientation: SlapImage::Orientation of the hand depicted in the image.

¢ data: Image data (Section 2.4).

Description

A container for data and properties of a slap image. Participants will never need to construct
an instance of SlapImage, but will need to access its members. SlapImage.data is stored as a
std: :vector of bytes, as described in Section 2.4.

Note

To pass SlapImage.data as an C-style array without duplicating memory, invoke the data()
method, as shown in Figure 6.

/* Given this C function declaration ... %/
void find_segmentation_positions(void *data, struct proprietary *out);

/* ... pass image data from segment() like this: =/
struct proprietary out;
find_segmentation_positions(data.data(), &out);

Figure 6: Converting image data to a C-style array in constant time without additional memory allocations.

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

SegmentationPosition
using FRGP = using FRGP =
FrictionRidgeGeneralizedPosition; FrictionRidgeGeneralizedPosition;
FRGP frgp; SegmentationPosition(
Coordinate &tl; const FRGP frgp,
Coordinate &tr; const Coordinate &tl,
Coordinate &bl; const Coordinate &tr,
Coordinate &br; const Coordinate &bl,
Result result; const Coordinate &br,
const Result result = {});

Figure 7: SlapSegIII::SegmentationPosition mem-
bers. Figure 8: SlapSegIII::SegmentationPosition con-
structor.

Parameters

e frgp: Segmented FrictionRidgeGeneralizedPosition.
¢ tl: Top-left Coordinate of segment, where fop refers to the top of the fingerprint.
e tr: Top-right Coordinate of segment, where top refers to the top of the fingerprint.

* bl: Bottom-left Coordinate of segment, where bottom refers to the distal interphalangeal
joint of the fingerprint.

® br: Bottom-right Coordinate of segment, where bottom refers to the distal interphalangeal
joint of the fingerprint.

® result: A Result summarizing the result of the segmentation operation for only this
segment.

Description

A SlapSegIIlI::SegmentationPosition is returned to represent the segmentation positions within
animage. In failure conditions, it may be useful for participants to provide debugging information
in message.

¢ frgp shall not be Unknown. A failure to identify the friction ridge generalized position is a
failure to segment.

¢ The coordinates shall create a rectangle, where [tit;| = [bib,| and |ﬂ| = |E|.

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

SegmentationPosition::Result

Result: :Code code; Result(
std::string message; const Code code = Code: :Success,
const std::string &message = "");

Figure 9: SlapSegIII::SegmentationPosition::Result
members. Figure 10: SlapSegIII::SegmentationPosition: :Result
constructor.

Members

® code: A SegmentationPosition::Result::Code summarizing the success or failure of dis-
covering a segmentation position for an individual finger.

* message: A message providing more information about why a particular Code was chosen
(optional).

Description

SlapSegIII::SegmentationPosition::Result is a structure that allows participants to return in-
formation about the status of discovering an individual segmentation position. It consists of a
combination of a Result: :Code and an optional std: : string. Under normal operating conditions,
participants need only to indicate Result: :Code: : Success. Under failure conditions, it may be use-
tul for participants to provide debugging information in the message parameter of a Result to help
document the issue. Implementations shall always give their best-effort segmentation positions
if possible, even under failure. This helps determine if an implementation can correctly flag and
ultimately work around capture errors. Examples of using Result are shown in Figure 11.

¢ NIST will be unable to provide participants with the contents of message if it contains
information about fingerprint imagery, as the imagery and derivative information used in
this test may not be distributed. Information that is not immediately decipherable by humans
(e.g., Base64-encoded data) will be assumed sensitive.

¢ The contents of message shall match the regular expression [[:graph:1 I*.

/* Use the default arguments to indicate success %/
const SlapSegIII::SegmentationPosition::Result middle{};

/* Explicitly indicate the status code %/
const SlapSegIII::SegmentationPosition::Result ring{
SlapSegIlII::SegmentationPosition::Result::Code::Success};

/* Provide a debugging message +/

const SlapSegIII::SegmentationPosition::Result index{
SlapSegIIl::SegmentationPosition: :Result::Code::FingerNotFound,
"Finger appears to be amputated”};

Figure 11: Ways to return a SlapSegIII::SegmentationPosition: :Result.

10

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

Submissionldentification

uint16_t version; SubmissionIdentification(
std::string libraryldentifier; const std::string &librarylIdentifier,
std::string marketingIldentifier; const uint16_t version,
const std::string &marketingIdentifier = "");
Figure 12: SlapSegIII::Submission-
Identification members. Figure 13: SlapSegIII::SubmissionIdentification constructor.
Members

® version: Version number for this submission. The version number must be unique for every
submission, including bug fix submissions submitted prior to results being published. Must
be the same as the final underscore-delimited token of the filename of the core library. Refer
to Section 4.1 for complete details.

e libraryIdentifier: Identifier for this submission. Should be the same for all submissions
from the same organization. Must match the regular expression [:alnum:J+. Must be the
same as the second underscore-delimited token of the filename of the core library. Refer to
Section 4.1 for complete details.

* marketingIdentifier: Marketing name for this submission. Optional. Must match the
regular expression [[:graph:] J*.

Description

Storage for identification information about this submission. Values from this structure are used
to refer to the algorithm in publications.

11

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

ReturnStatus
ReturnStatus::Code code; ReturnStatus(
std: :set<SlapImage: :Deficiency> const Code code = Code: :Success,
imageDeficiencies; std::set<SlapImage: :Deficiency>
std::string message; imageDeficiencies = {3},
const std::string &message = "");

Figure 14: SlapSegIII::ReturnStatus members.
Figure 15: SlapSegIII::ReturnStatus constructor.

Members

* code: A ReturnStatus::Code summarizing the success or failure of an operation.

¢ imageDeficiencies: A set of Deficiency indicating why an image is not suitable for seg-
mentation (required when code is RequestRecapture or RequestRecaptureWithAttempt).

* message: A message providing more information about why a particular Code was chosen
(optional).

Description

SlapSegIII::ReturnStatus is a structure that allows participants to return information about the
status of calling SlapSeg III API methods. Under normal operating conditions, participants need
only to indicate ReturnStatus::Code: :Success. Under failure conditions, it may be useful for
participants to provide debugging information in the message parameter of a ReturnStatus: : Code
to help resolve the issue. When code is RequestRecapture or RequestRecaptureWithAttempt, one or
more Deficiency shall be specified. Examples of using ReturnStatus are shown in Figure 16.

e NIST will be unable to provide participants with the contents of message if it contains
information about fingerprint imagery, as the imagery and derivative information used in
this test may not be distributed. Information that is not immediately decipherable by humans
(e.g., Base64-encoded data) will be assumed sensitive.

¢ The contents of message shall match the regular expression [[:graph:1 1*.

/* Use the default arguments to indicate success »/
const SlapSegIII::ReturnStatus rsi{};

/* Provide a debugging message %/
const SlapSegIII::ReturnStatus rs2{ReturnStatus::Code: :UnsupportedResolution,
{3}, "1000 ppi not supported”};

/* Refuse to process an image */
const SlapSegIII::ReturnStatus rs3{ReturnStatus::Code: :RequestRecaptureWithAttempt,
{SlapImage: :Deficiency::Artifacts, SlapImage::Deficiency::HandGeometry}};

Figure 16: Ways to return a SlapSegIII::ReturnStatus.

12

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

3.3 Interface

Participants in SlapSeg III must submit a software library that fully implements the pure abstract
C+ class SlapSeglIII::Interface. Since the SlapSeg III test driver will not know the name of the
SlapSegIII::Interface class at compile time, the software library must also implement a factory
method to return an instance of their implementation. NIST’s declaration of the factory method is
shown in Figure 17.

Obtain SlapSeg III Implementation

std: :shared_ptr<SlapSegIII::Interface>
getImplementation();

Figure 17: Declaration of a function to obtain an instance of the participant’s SlapSegIII::Interface implementation.

Description

Obtain a managed pointer to an object implementing SlapSegIII::Interface.

Return

A managed pointer to the participant’s implementation of SlapSegIII::Interface. A sufficient
implementation of this method for an implementation whose constructor has no arguments could
be the return statement shown in Figure 18.

return (std::make_shared<Implementation>());

Figure 18: A sufficient implementation of SlapSegIII::Interface::getImplementation().

Speed

This method shall return in <10s.

13

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

Identification

SubmissionIdentification
SlapSegIIl::Interface::getldentification()
const;

Figure 19: Declaration of a method to obtain identification information for this submission.

Description

This function allows for the retrieval of identification and version information of the library at

runtime.

¢ The returned value’s uint16_t member shall be identical to the four hexadecimal characters
prior to the extension of the submitted software library’s name (Section 4.1).

¢ The std: :string member of the returned value shall be identical to the string surrounded
by underscores, just prior to the four hexadecimal digit version, in the submitted software

library’s name (Section 4.1).

Return

This method shall immediately return a SlapSegIII::SubmissionIdentification of the identifier
and version number for this software library. A marketing name to be printed in publications may
optionally be provided. A sufficientimplementation for thelibrary libslapsegiii_initech_101D.so

is shown in Figure 20.

/* A sufficient implementation of getldentification +/
return {"initech”, 0x101D};

/* A more verbose implementation of getldentification %/
SlapSegIII::SubmissionIdentification id;

id.libraryldentifier = "initech”;
id.version = 0x101D;
id.marketingldentifier = "Initech Fingerprint Segmenter (version 2.0)";

return (id);

Figure 20: Two sufficient implementations of SlapSegIII::Interface::getIdentification() for the library

libslapsegiii_initech_101D.so.

Speed

This method shall return immediately (<~0.001s).

14

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

Declare Supported Imagery

std::tuple<std::set<SlapImage::Kind>, bool>
getSupported()
const;

Figure 21: Declaration of a method to obtain information about the SlapImage: :Kind supported by this implementation.

Description

Determine the kinds of slap imagery supported by this software library at runtime, and whether
or not the software library contains an orientation determination routine. Participants will not
be evaluated on features not returned by this method. While support of all image types are

encouraged, at least one SlapImage type is required.

Return

This method shall immediately return a tuple whose first member is the set of SlapImage: :Kind that
are supported and whose second member is a boolean indicating whether or not is determineOrien-
tation() is implemented. An example of how to return this information is shown in Fig-

ure 22.

/* Support all types of images and implement an orientation determination routine. =/
const std::set<SlapImage::Kind> kinds{

SlapImage: :Kind::TwoInch, SlapImage: :Kind::Threelnch,

SlapImage: :Kind: :UpperPalm, SlapImage::Kind::FullPalm};
return (std::make_tuple(kinds, true));

/* Support only those types present in SlapSegll and do not implement determineOrientation =/
const std::set<SlapImage: :Kind> kinds{

SlapImage: :Kind: :TwoInch, SlapImage::Kind::Threelnch};
return (std::make_tuple(kinds, false));

/* Support only those types present in SlapSeg04 and do not implement determineOrientation =/
const std::set<SlapImage::Kind> kinds{SlapImage: :Kind::TwoInch};
return (std::make_tuple(kinds, false));

Figure 22: Example implementations of SlapSegIII::Interface: :getSupported().

Speed

This method shall return immediately (<~0.001s).

15

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

Segmentation

std: :tuple<ReturnStatus, std::vector<SegmentationPosition>>
segment (
const SlapImage &image);

Figure 23: Declaration of a method that performs slap fingerprint segmentation.

Parameters

e image: SlapImage data and metadata.

Description

This method takes raw image data and metadata as input and returns a collection of Segmentation-
Positions, each identifying the segmentation position of a finger within an image.

e If successful, the collection of SegmentationPositions shall contain four entries for Orienta-
tion::Left and Orientation: :Right, and two entries for Orientation: : Thumbs.

e SegmentationPositions for SlapImage: :Kind: : ThreeInch data shall not be rotated.

e Groundtruth SegmentationPositions for SlapImage: :Kind: : TwoInch data have identical ro-
tation angles for all fingers. Other SlapImage: :Kinds may have different groundtruth rotation
angles.

¢ Corners of rotated rectangles may be outside of the image.

¢ Fail without any segmentation positions only as a last resort. Make use of Code: :Request-
RecaptureWithAttempt to perform best-effort segmentation while demonstrating that you
understand the image should be recaptured in a live capture scenario.

Return

The ReturnStatus member in the return of this method shall be set to Code: : Success when suc-
cessful, or another approved Code with an optional message on failure. If returning Code: : Success
or Code: :RequestRecaptureWithAttempt, the std::vector member shall contain the appropriate
number of entries for the SlapImage: :Kind of image provided, even if there were failures to seg-
ment individual fingers. Other ReturnStatus: :Codes will ignore SegmentationPositions and be
treated as failures to segment.

SlapImage::Kind Mean

TwoInch <15s
Speed ThreeInch <1.5s
The runtime maximums for this method differ UpperPalm <15s
based on the kind of image data provided, as FullPalm <L5s

shown in Table 8. Values are averages computed

over a fixed subset of the dataset. Table 8: Maximum mean times to return from

SlapSegIIl::Interface::segment().

16

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

Orientation Determination

std: :tuple<ReturnStatus, SlapImage::Orientation>
determineOrientation(
const SlapImage &image);

Figure 24: Declaration of a method that detects the orientation of a slap fingerprint image.

Parameters

e image: SlapImage data and metadata.

Description

This method takes raw image data and metadata as input and returns a hypothesized hand
orientation (Left, Right, or Thumbs).

¢ Alllibraries mustimplement this method, but may return Code: :NotImplemented if noroutine
is available (as seen in Figure 25). Libraries must also indicate failure to supply an orientation
determination routine in getSupported().

* The field for orientation in image will be default initialized and implementations should
not refer to this field.

/+ Do not support determining slap fingerprint image orientations =/
return (std::make_tuple(ReturnStatus: :Code::NotImplemented,
SlapImage::Orientation{}));

Figure 25: Example implementation of SlapSegIII::Interface::determineOrientation() when no orientation deter-
mination algorithm is present.

Return

The ReturnStatus member in the return of this method shall be set to Code: : Success when success-
ful, or another approved Code with an optional message on failure. Orientations are considered
only when Code: : Success is set. Other ReturnStatus: :Codes will result in the Orientation being
marked incorrect, so long as a valid slap image was passed to the method.

SlapImage::Kind Mean

TwoInch <Is
Speed ThreeInch <ls
The runtime maximums for this method differ UpperPalm <1s
based on the kind of image data provided, as FullPalm <1ls

shown in Table 9. Values are averages computed

over a fixed subset of the dataset. Table 9: Maximum mean times to return from

SlapSegIIl::Interface::segment().

17

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

4 Software and Documentation

4.1 Software Libraries and Platform Requirements

The functions specified in Section 3 shall be implemented exactly as defined in a software library.
The header file used by the SlapSeg III test driver executable is provided on the SlapSeg III website
in the SlapSeg III validation package.

Restrictions

Participants shall provide NIST with binary code in the form of a software library only (i.e., no
source code or headers). Software libraries must be submitted in the form of a dynamic/shared
library file (i.e., . so file). This library shall be know as the core library, and shall be named according
to the guidelines in Naming in Section 4.1. Static libraries (i.e., . a files) are not allowed. Multiple
shared libraries are permitted if technically required and are compatible with the validation pack-
age (Section 4.3). Any required libraries that are not standard to CentOS 7.6.1810 must be built and
submitted alongside the core library. All submitted software libraries will be placed in a single
directory, and NIST will add this directory to the runtime library search path list (RPATH).

Individual software libraries provided must not include multiple modes of operation or algorithm
variations. No configurations or options will be tolerated within one library. For example, the use
of two different downsampling algorithms would be split across two separate software libraries
(though the SlapSeg III application indicates that NIST will only accept one submission every 90
days). No external configuration, training, model, or other separate files will be permitted. Such
supplemental information, if necessary, shall be encoded into the submitted shared library.

The software library shall not make use of threading, forking, OpenMP, or any other multipro-
cessing techniques. The NIST test driver operates as a Message Passing Interface (MPI) job over
multiple compute nodes, and then forks itself into many processes. In the test environment, there
is no advantage to threading. It limits the usefulness of NIST’s batch processing and makes it
impossible to compare timing statistics across SlapSeg III participants.

The software library shall remain stateless and deterministic. It shall not acknowledge the existence
of other processes running on the test hardware, such as through semaphores or pipes. It shall not
read from or write to any file system or file handle, including standard streams.

External Dependencies

It is preferred that the API specified by this document be implemented in a single core library.
Additional libraries may be submitted that support this core library file (i.e., the core library file
may have dependencies implemented in other libraries if a single library is not feasible).

One required dependency shall be the NIST-provided libslapsegiii.so. Participants shall not
alter the provided header file for 1ibslapsegiii.so. NIST will build and supply libslapsegiii. so,
and so this library shall not be included in submissions.

18

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

Hardware Dependencies

Use of intrinsic functions and inline assembly is allowed and encouraged, but software libraries
shall be able to run and are required to pass validation (Section 4.3) on the Intel Xeon E5-2680 and
Intel Xeon E5-4650 CPUs.

Naming

The core software library submitted for SlapSeg III shall be named in a predefined format. The
first part of the software library’s name shall be libslapsegiii_. The second piece of the software
library’s name shall be a non-infringing and case-sensitive unique identifier that matches the
regular expression [:alnum:]+ (likely your organization’s name), followed by an underscore. The
final part of the software library’s name shall be a four hexadecimal digit version number, followed
by a file extension. Be cognizant of the name you provide, as this will be name NIST uses to refer
to your submission in reports. Supplemental libraries may have any name, but the core library
must be dependent on supplemental libraries in order to be linked correctly. The only library
that will be explicitly linked to the SlapSeg III test driver is the core library, as demonstrated in
Section 4.1.

The version number shall match the hexadecimal version number with leading 0s, as returned by
getIdentification(). With this naming scheme, every core library received by NIST shall have
a unique filename. Incorrectly named or versioned software libraries will be rejected.

Example

Initech submits a SlapSeg III shared library named libslapsegiii_initech_101C.so with build
4124 of their algorithm. This library returns {"initech”, @x101C} from getIdentification().
NIST determines that Initech’s segment () method is too slow and rejects the library. Initech submits
build 4 125 to correct the defects in 4 124. Initech updates getIdentification() in their implemen-
tation to return {"initech”, 0x101D} and renames their library to libslapsegiii_initech_101D-
.so. In reports, NIST refers to Initech’s library as initech+101D.

Operating Environment

The software library will be tested in non-interactive “batch” mode (i.e., without terminal support)
in an isolated environment (i.e., no Internet connectivity). Thus, the software library shall not
use any interactive functions, such as graphical user interface calls, or any other calls that require
terminal interaction (e.g., writes to stdout) or network connectivity. Any messages for debugging
failure conditions shall be provided via the message parameter of ReturnStatus.

NIST will link the provided library files to a C+ language test driver application using the compiler
g++ (version 4.8.5-36, via mpicxx) under CentOS 7.6.1810, as seen in Figure 26.

mpicxx -std=c++11 -0 slapsegiii slapsegiii.cpp -L. -lslapsegiii_initech_101D

Figure 26: Example compilation and link command for the SlapSeg III test driver.

Participants are required to provide their software libraries in a format that is linkable using g++
with the NIST test driver. All compilation and testing will be performed on 64-bit hardware running

19

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

CentOS 7.6.1810. Thus, participants are strongly encouraged to verify library-level compatibility
with g++ on CentOS 7.6.1810 prior to submitting their software to NIST to avoid unexpected
problems.

4.2 Usage
Software Libraries

The software library shall be executable on any number of machines without requiring additional
machine-specific license control procedures, activation, hardware dongles, or any other form of
rights management.

The software library usage shall be unlimited. No usage controls or limits based on licenses,
execution date/time, number of executions, etc., shall be enforced by the software library. Should
alimitation be encountered, the software library shall have SlapSeg I1I testing status revoked.

4.3 Validation and Submitting

NIST shall provide a wvalidation package that will link the participant core software library to a
sample test driver. Once the validation successfully completes on the participant’s system, a file
with validation data and the participant’s software library will be created. After being signed
and encrypted, only this file and a public key shall be submitted to NIST. Any software library
submissions not generated by an unmodified copy of the latest version of NIST’s SlapSeg III
validation package will be rejected. Any software library submissions that generate errors while
running the validation package on NIST’s hardware will be rejected. Validation packages that
have recorded errors while running on the participant’s system will be rejected. Any software
library submissions not generated with the latest version of NIST’s SlapSeg III validation package
will be rejected. Any submissions of successful validation runs not created on CentOS 7.6.1810
will be rejected. Any submissions not signed and encrypted with the key recorded on the SlapSeg
III application will be rejected.

Participants may resubmit a new validation package immediately upon being notified of a vali-
dation rejection. NIST may impose a “cool down” period of several months for participants with
excessive repeated rejections, in order to most efficiently make use of test hardware.

44 Speed

Timing tests will be run and reported on a fixed sample of the SlapSeg III dataset using a Intel
Xeon E5-4650 CPU prior to completing the entire test. Submissions that do not meet the timing
requirements listed for each method in Section 3.3 will be rejected. Participants may resubmit a
faster submission immediately with a new version number. To avoid the appearance of SlapSeg
III as an algorithm speed-checking service, NIST may require that participants with excessive
repeated failures exceedingly distant from published timing requirements wait several months
before their next submission.

20

SLAPSEG III TeST PLAN AND APPLICATION PROGRAMMING INTEREACE

References

[1] Ulery B, Hicklin RA, Watson CI, Indovina MD, Kwong KK (2008) Slap Fingerprint Segmenta-
tion Evaluation 2004 Analysis Report. NIST Interagency Report 7209 https://doi.org/10.6028/
NIST.IR.7209

[2] Watson C, Flanagan P (2010) SlapSegll Analysis: Matching Segmented Fingerprint Images.
NIST Interagency Report 7747 https://doi.org/10.6028/NIST.IR.7747

[3] Watson C, et al. (2007) User’s Guide to Export Controlled Distribution of NIST Biometric Image
Software (NBIS-EC). NIST Interagency Report 7391 https://doi.org/10.6028/NIST.IR.7391

Disclaimer

Certain commercial equipment, instruments, or materials are identified in this document in order
to specify the experimental procedure adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and Technology, nor is it
intended to imply that the materials or equipment identified are necessarily the best available for
the purpose.

Revision History

13 February 2019 Final revision posted.

21

https://doi.org/10.6028/NIST.IR.7209
https://doi.org/10.6028/NIST.IR.7209
https://doi.org/10.6028/NIST.IR.7747
https://doi.org/10.6028/NIST.IR.7391

	Introduction
	Background
	What's New Since Slap Fingerprint Segmentation Evaluation II

	Evaluation Data
	Dataset Groundtruth
	Orientation Determination
	Access to Evaluation Data
	Format

	Application Programming Interface
	Enumerations
	Classes and Structures
	Interface

	Software and Documentation
	Software Libraries and Platform Requirements
	Usage
	Validation and Submitting
	Speed

	References
	Revision History

