""" Common Grid Handling ==================== A common problem is when multiple inputs into a workflow share a common dimension like frequency, but those frequency grids aren't aligned properly. This often results in having to manually trim down arrays based on a known frequency list. The RME offers an automatic common grid handling feature to do that for you. It acts on any RMEMeas input into a propagating function. """ # %% # Creating an Objects # ------------------- # First lets create 2 RMEMeas objects with slightly different # coordinates on dimension 'd1'. from rmellipse.uobjects import RMEMeas from rmellipse.propagators import RMEProp import xarray as xr import numpy as np def make_measurement(d1_coords): """Make a sample measurement with length 4 coordinate set.""" nom = xr.DataArray( np.zeros((4, 2)), dims=('d1', 'd2'), coords={'d1': d1_coords, 'd2': np.arange(2)}, ) meas = RMEMeas.from_nom(name='meas', nom=nom) meas.add_umech( name='mymechanisms', value=meas.nom + np.ones(meas.nom.shape) * 0.01, dof=np.inf, category={'Type': 'B', 'Origin': 'Data Sheet'}, add_uid=True, ) for i in range(100): meas.add_mc_sample(meas.nom + np.random.rand(*meas.nom.shape) * 0.01) return meas m1 = make_measurement([0, 1, 2, 3]) m2 = make_measurement([0, 1.1, 2, 2.9]) # %%% # Setting up the Propagator # ------------------------- # # Next, let's create a propagator. We are going to define the common grid # as 'd1' and tell it to interpolate that grid to a set of common values. We # tell it what those common values are with the common_coords argument. The # verbose argument will print some information about the propagation as we go. # See the :func:`rmellipse.propagators.RME.handle_common_grid` function for # what methods are available for the propagator. # # When we wrap our add function in the propagator and print the d1 coordinate, # we see that the d1 coordinate of x and y are now the same because the RME # interpolated them down to supplied values. Note how the print statement # happens twice, because a vectorized # propagator calls the function on the`RMEMeas.cov`attribute then on the`RMEMeas.mc` attribute. myprop = RMEProp( sensitivity=True, montecarlo_sims=100, common_grid='d1', handle_common_grid_method='interp_common', common_coords={'d1': [0, 0.5, 1.5, 2.5]}, vectorize=True, verbose=True, ) @myprop.propagate def add(x, y): """Add two data sets.""" print(x.d1.values, y.d1.values) return x + y m3 = add(m1, m2)