REMI: REsource for Materials Informatics

A Knowledge Sharing Platform

Summary

Welcome to REMI! This site will host a diverse collection of scripting notebooks (Jupyter, Matlab LiveScripts, etc.) for collecting, pre-processing, analyzing, and visualizing materials data. Notebooks are curated using tags aligned to Materials Science and Data Science topics. If you know of notebooks that would be great additions to REMI, please click here. We are also working to integrate a communication platform for holding discussions.
Above you will find links for learning resources, methods to contribute to REMI, upcoming workshops in pertinent fields, and open positions in academia and national labs.

Motivation

Many scientists would like to apply machine learning to their research, but they don’t know how to start. Typically, we start learning something new by picking up a learning resource (e.g. a textbook or intro paper) and working through some examples. If the examples are particularly useful, we build off of them to solve our own challenges.

REMI emerged from the realization that both experts and novices wanted examples of using machine learning for science. Meanwhile, lots of experts are developing digital notebooks (e.g. Jupyter) to demonstrate step-by-step data collection, pre-processing, analysis and visualization. However, before REMI there were no indexed repositories of notebooks with such examples and no community to maintain, build or learn from these resources. We hope that REMI can fill this gap, enabling scientists to more easily pick up machine learning while also helping to build a community for sharing knowledge, discussing, debating, establish collaborations, and benchmarking methods.



Explore Instructional Resources

Resource Name Type Collection Data Science Tags Material Science Tags
Automatminer Basic Tutorial Tutorial Matminer Platform:MatBench DimensionReduction:FeatureReducer Regression:RandomForest Preprocessing:Featurizer TargetProperty:Bandgap
Data Retrieval Basics Tutorial Matminer Platform:MaterialsProject Platform:Citrination Platform:MaterialsPlatformForDataScience Platform:Materials Data Facility Element:Pb Element:Te
Plot and compare experimental and computational bandgaps Tutorial Matminer Platform:MaterialsProject Platform:Citrination Computation:DFT Property:bandgap
Interacting with Jarvis via MDF Search Tutorial Matminer Platform:JARVIS Platform:MaterialsDataFacility Computation:DFT Property:bandgap Property:ShearModulus Property:BulkModulus
Uranium-oxygen bond length analysis using MPDS Tutorial Matminer Platform:MaterialsPlatformForDataScience Element:Ur Element:O Property:BondLength
Visualization using FigRecipes Tutorial Matminer
Advanced Visualization using FigRecipes Tutorial Matminer MaterialClass:Thermoelectric
Matminer introduction - Predicting bulk modulus Tutorial Matminer Regression:LinearRegression Regression:RandomForest Preprocessing:Featurizer MaterialClass:InorganicCrystallineCompounds Property:BulkModulus
Train a Model to Predict Formation Energy using the OQMD Example Matminer Platform:MaterialsDataFacility Platform:OpenQuantumMaterialsDatabase Regression:RandomForest Preprocessing:Featurizer Property:FormationEnthalpy
Recreating Ling IMMI (2017) - Random Forest with Uncertainty Example Matminer Platform:Citrination Regression:RandomForest Preprocessing:Featurizer ActiveLearning:MaximumExpectedImprovement ActiveLearning:MaximumLikelihoodOfImprovement Property:ZT
Using sklearn Pipeline with matminer Example Matminer Platform:Matminer Regression:LinearRegression Regression:RandomForest Preprocessing:Featurizer
Using the Crystal Structure Representation of Ward et al. to predict formation enthalpy,using the FLLA dataset. Example Matminer Regression:RandomForest Preprocessing:Featurizer Property:FormationEnthalpy
Analyzing data in the JARVIS DFT dataset Example Jarvis Platform:JARVIS Computation:DFT Property:Bandgap
BoltzTrap Example Example Jarvis Platform:JARVIS Computation:DFT Property:Seebeck
JARVIS DFT Formation Energies Accuracy Check Example Jarvis Platform:JARVIS Computation:DFT Property:FormationEnergy
GPU can accelerate model training with respect to CPU using JARVIS-ML CFID dataset Example Jarvis Platform:JARVIS Regression:GradientBoosting Computation:DFT Property:FormationEnergy
JARVIS ML TensorFlow Example Example Jarvis Platform:JARVIS Regression:DenseNet Preprocessing:StandardScaler Computation:DFT Property:FormationEnergy
JARVIS ML Training GPU Example Jarvis Platform:JARVIS Regression:GradientBoosting Computation:DFT
JARVIS Wannier 90 Example Example Jarvis Platform:JARVIS Computation:DFT Property:BandStructure Property:DensityOfStates
Si band structure & density of states Example Jarvis Platform:JARVIS Computation:DFT Property:BandStructure Property:DensityOfStates
Simple Machine learning training example with CFID descriptors Example Jarvis Platform:JARVIS Regression:GradientBoosting Computation:DFT Property:FormationEnergy
Simple Silicon atomic structure and analysis example Example Jarvis Platform:JARVIS Element:Si Computation:DFT
Python for novice Example Jarvis
Introduction Example MDF Forge Platform:MaterialsDataFacility
Core Query Builder Functions Example MDF Forge Platform:MaterialsDataFacility Platform:OpenQuantumMaterialsDatabase Computation:DFT
General Helper Functions Example MDF Forge Platform:MaterialsDataFacility Platform:OpenQuantumMaterialsDatabase Platform:MaterialsDataRegistry Computation:DFT
Field Specific Helper Functions Example MDF Forge Platform:MaterialsDataFacility Platform:OpenQuantumMaterialsDatabase Computation:DFT
Data Retrieval Functions Example MDF Forge Platform:MaterialsDataFacility
Band Excitation data processing Example pycroscopy Measurement:DCvoltageSpectroscopy Property:PFMHysteresis
Band Excitation & Contact Kelvin Probe Force Microscopy (cKPFM) data processing Example pycroscopy Preprocessing:PrincipalComponentAnalysisSmoothing DimensionReduction:PrincipalComponentAnalysis Measurement:ContactKelvinProbeForceMicroscopy Measurement:BandExcitation Measurement:JunctionContactPotentialDifference
Band Excitation Relaxation Spectroscopy Data Processing Example pycroscopy Measurement:PFM Property:BandExcitationRelaxationSpectra
G-Mode KPFM with Fast Free Force Recovery (F3R) Example pycroscopy Preprocessing:PrincipalComponentAnalysisSmoothing DimensionReduction:PrincipalComponentAnalysis Measurement:GKPFM
Static force spectroscopy simulation over a viscoelastic material Example pycroscopy Computation:StaticForceSpectroscopy MaterialClass:Viscoelastic
Introduction to dynamic AFM simulations Example pycroscopy Computation:DynamicAFM
Dynamic atomic force microscopy simulations over a viscoelastic material Example pycroscopy Computation:DynamicAFM MaterialClass:Viscoelastic
AFLOW.org database and APIs Example AFLOW Platform:AFLOW
Structural analysis and prototyping Example AFLOW Platform:AFLOW Property:Structure
AFLOW machine learning Example AFLOW Platform:AFLOW Regression:GradientBoosting Regression:PropertyLabeledMaterialsFragments Preprocessing:PropertyLabeledMaterialsFragments Property:Electronic Property:ThermoMechanical
Density of States Example Plotly Platform:MaterialsProject Computation:DFT Property:DensityOfStates Property:BandDiagram
EELS analysis Example hyperspy FileFormat:HDF5 MaterialClass:PerovskiteOxides Measurement:EELS
SEM EDS 4D visualization Example hyperspy FileFormat:RPL Preprocessing:PrincipalComponentAnalysisSmoothing DimensionReduction:PrincipalComponentAnalysis Element:Ni MaterialClass:Superalloy Measurement:4D-EDS-SEM
TEM EDS nanoparticles Example hyperspy FileFormat:HDF5 Preprocessing:WatershedTransformation DimensionReduction:IndependentComponentAnalysis Element:Fe Element:Pt MaterialClass:CoreShellNanoparticles Measurement:EDS-TEM
Holography Example hyperspy FileFormat:HDF5 Element:Fe MaterialClass:Needle Measurement:OffAxisElectronHolography
Getting Started Tutorial hyperspy FileFormat:HDF5
SVD and BSS Example hyperspy FileFormat:HDF5 Preprocessing:PrincipalComponentAnalysisSmoothing DimensionReduction:PrincipalComponentAnalysis DimensionReduction:IndependentComponentAnalysis DimensionReduction:NonNegativeMatrixFactorization Measurement:EELS
Fitting tutorial Tutorial hyperspy FileFormat:HSPY Preprocessing:FeatureExtraction
Online Robust PCA Example hyperspy FileFormat:HDF5 Preprocessing:PrincipalComponentAnalysisSmoothing DimensionReduction:PrincipalComponentAnalysis DimensionReduction:IndependentComponentAnalysis DimensionReduction:OnlineRobustPrincipalComponentAnalysis
Working with image data Example hyperspy FileFormat:HSPY Element:Sr Element:Ti Element:O Measurement:HighResolutionScanningTEM
Working with image data Example hyperspy
How to extract or plot the NiO band structure from a VASP calculation using pymagen Example matgenb Platform:MaterialsProject Element:Ni Element:O Computation:DFT Property:BandStructure Property:DensityOfStates
core functionality of pymatgen,including the core objects representing Elements,Species,Lattices,and Structures Example matgenb FileFormat:POSCAR FileFormat:CIF
calculate reaction energies using the Materials API and pymatgen Example matgenb Platform:MaterialsProject Element:Ca Element:O Property:ReactionEnergy
how to plot an XRD plot for the two polymorphs of CsCl ($Pm\overline{3}m$ and $Fm\overline{3}m$) Example matgenb Element:Cs Element:Cl Computation:XRD
how to obtain an explaination of the different corrections being applied in the Materials Project Example matgenb Platform:MaterialsProject
Getting crystal structures from online sources Example matgenb FileFormat:COD FileFormat:CIF Element:Li Element:O
matgen's functionality in terms of creating and editing molecules,as well as its integration with OpenBabel Example matgenb FileFormat:XYZ FileFormat:G09 FileFormat:PDB Element:C Element:H
ordering of a disordered structure using pymatgen Example matgenb FileFormat:CIF
Plotting and Analyzing a Phase Diagram using the Materials API Example matgenb Platform:MaterialsProject Element:Ca Element:C Element:O Property:PhaseStability
Plotting the electronic structure of Fe Example matgenb Property:ElectronicStructure
Units Example matgenb
Data-driven First Principles Methods for the Study and Design of Alkali Superionic Conductors Part 1 - Structure Generation Example matgenb FileFormat:CIF Computation:DFT
Data-driven First Principles Methods for the Study and Design of Alkali Superionic Conductors Part 2 - Phase and Electrochemical Stability Example matgenb Platform:MaterialsProject FileFormat:GZ Element:Li Element:P Element:S Element:Cl Property:ElectrochemicalStability
Data-driven First Principles Methods for the Study and Design of Alkali Superionic Conductors Part 3 - Diffusivity and Ionic Conductivity Example matgenb FileFormat:XML Property:ActivationEnergy Property:IonicConductivity
how to use the output from VASP DFPT calculation and the phonopy interface to plot the phonon bandstructure and density of states Example matgenb Computation:DFT Property:DensityOfStates Property:PhononBandStructure
how you can obtain various data from the Materials Project using pymatgen's interface to the Materials API Example matgenb Platform:MaterialsProject Property:PhononBandStructure Property:ElasticConstants
Slab generation and Wulff shape Example matgenb Element:Gd Element:O
Inputs and Analysis of VASP runs Example matgenb Element:Ni Element:Si Element:Li Element:Fe Element:P Element:O
Running Jupyter Notebook on clusters Example matgenb
Analyze and plot band structures Example matgenb Computation:DFT
Plotting a Pourbaix Diagram Example matgenb Platform:MaterialsProject Element:Cu Element:O Computation:DFT Property:PourbaixDiagram
ChemEnv - How to automatically identify coordination environments in a structure Example matgenb Platform:MaterialsProject FileFormat:CIF Element:Si Element:O Computation:DFT
Computing the Reaction Diagram between Two Compounds Example matgenb Platform:MaterialsProject Element:V Element:P Element:C Element:H Element:O Computation:DFT
Plotting COHP from LOBSTER Example matgenb Element:Fe Computation:DFT Property:CrystalOrbitalHamiltonPopulation
Adsorption on solid surfaces Example matgenb Platform:MaterialsProject Computation:DFT Property:Adsorption
Structure Prediction using Pymatgen and the Materials API Example matgenb Element:Ni Element:C Element:H Element:O
Dopant suggestions using Pymatgen Example matgenb Platform:MaterialsProject Element:Sn Element:O Computation:DFT Property:NDopant Property:PDopant
How to use Boltztra2 interface Example matgenb Platform:MaterialsProject Computation:DFT Property:DensityOfStates Property:Transport Property:Seebeck
How to plot and evaluate output files from Lobster Example matgenb FileFormat:LOBSTER Element:Ga Element:As Computation:DFT Property:CrystalOrbitalHamiltonPopulation Property:DensityOfStates
Interface Reactions Example matgenb Platform:MaterialsProject Element:Li Element:Co Element:O Element:P Element:S Computation:DFT Property:InterfaceReactions
How to plot a Fermi surface Example matgenb FileFormat:GZ FileFormat:CUBE Element:Pb Element:Te Computation:DFT Property:FermiSurface
How to plot a Fermi surface Example matgenb
Experimental design with Citrination Example Citrine Platform:Citrination ActiveLearning:MaximumLikelihoodOfImprovement MaterialClass:Thermoelectric Property:ZT
Import Instron Example Citrine Platform:Citrination FileFormat:PIF FileFormat:Instron
Citrination t-SNE API Example Citrine Platform:Citrination DimensionReduction:TDistributedStochasticNeighborEmbedding Property:Bandgap
Citrination t-SNE API Example Citrine
Importing data from VASP calculations into Citrination Example Citrine FileFormat:PIF Platform:Citrination Computation:DFT
Working with PIFs Example Citrine FileFormat:PIF Platform:Citrination Element:Al Element:Cu Property:PhaseStability
Introduction to Queries Example Citrine FileFormat:PIF Platform:Citrination Element:Al Element:Cu Property:PhaseStability
Machine Learning on Citrination Example Citrine FileFormat:PIF Platform:Citrination Platform:MaterialsProject Preprocessing:Featurizer Element:Al Element:Cu Property:DensityOfStablePhases
Advanced PIF Tutorial Example Citrine FileFormat:PIF Platform:Citrination
Advanced Queries Example Citrine FileFormat:PIF Platform:Citrination MaterialClass:Oxides
Advanced Queries Example Citrine
Citrination Demo on Shape Memory Alloys Example Citrine Platform:Citrination DimensionReduction:TDistributedStochasticNeighborEmbedding MaterialClass:ShapeMemoryAlloys Property:TransitionTemperature
Citrination Demo on Shape Memory Alloys Example Citrine
Compare Band Gaps From Citrination and Materials Project Example Citrine Platform:Citrination Platform:MaterialsProject Property:Bandgap
Citrine Data Retrieval Example Example Citrine Platform:Citrination
Synthetic Data Demo Example Citrine Platform:Citrination DimensionReduction:TDistributedStochasticNeighborEmbedding
Synthetic Data Demo Example Citrine
NANO106 - Symmetry Computations on m3¯¯¯m (Oh) Point Group Example MaterialsVirtualLab SymmetryClass:m-3mPointGroup Property:Symmetry
NANO106 - Symmetry Computations on mmm(D2h) Point Group Example MaterialsVirtualLab SymmetryClass:mmmPointGroup Property:Symmetry
NANO106 - Symmetry Computations on mmm(D2h) Point Group Example MaterialsVirtualLab
Using pymatgen to mine the Materials Project Example MaterialsVirtualLab Platform:MaterialsProject MaterialClass:Inorganic
plot representation quadrics for some rank 2 tensors Example MaterialsVirtualLab
plot an XRD plot for the two polymorphs of CsCl (Pm3¯¯¯m and Fm3¯¯¯m) by computing the structure factors Example MaterialsVirtualLab Element:Cs Element:Cl Computation:XRD Property:StructureFactor
plot an XRD plot for the two polymorphs of CsCl (Pm3¯¯¯m and Fm3¯¯¯m) by computing the structure factors Example MaterialsVirtualLab
Bayesian Optimization and Regression Analysis for Ferromagnetic Materials Example Regression:GaussianProcess ActiveLearning:MaximumExpectedImprovement Element:Fe Element:Ga Element:C MaterialClass:Magnetostriction Measurement:MagnetostrictionCantileverDisplacement Property:Magnetostriction



NIST disclaimer: Certain commercial equipment, instruments, or materials are identified on this website. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.