
Proprietary Fingerprint Template III
Test Plan and Application Programming Interface

Last Updated: 25 February 2021

Contents

1 Introduction 2
1.1 Background . 2
1.2 What’s New Since Proprietary Fingerprint Template (PFT) II 2

2 Evaluation Data 3
2.1 Source . 3
2.2 Quality . 3
2.3 Metadata . 3
2.4 Access . 3
2.5 Format . 3
2.6 Resolution . 4

3 Application Programming Interface 5
3.1 Enumerations . 5
3.2 Classes and Structures . 6
3.3 Interface . 12

4 Software and Documentation 17
4.1 Software Libraries and Platform Requirements . 17
4.2 Usage . 19
4.3 Validation and Submitting . 19
4.4 Speed . 19

References 20

Revision History 20

Disclaimer

Certain commercial equipment, instruments, or materials are identified in this document in order
to specify the experimental procedure adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and Technology, nor is it
intended to imply that the materials or equipment identified are necessarily the best available for
the purpose.

PFT III Test Plan and Application Programming Interface

1 Introduction

The Proprietary Fingerprint Template (PFT) evaluation is one of many tests of fingerprint technol-
ogy run by the National Institute of Standards and Technology (NIST). PFT specifically examines
the accuracy and performance of proprietary fingerprint templates—encodings of features of a fin-
ger that can only be understood by their creator. This is in contrast to a standardized template
that can be understood by any standards-compliant implementation. As fingerprint imaging and
computing technology improve, so must evaluations of proprietary fingerprint template software.
As a response, NIST is conducting PFT III.

1.1 Background

From 2003 to 2010, NIST conducted the first PFT evaluation [1]. This ongoing test allowed par-
ticipants to submit software for evaluation at any time. Implementations were provided images
of fingerprints and encoded them into proprietary templates. Later, the implementation was pro-
vided two templates and asked to produce a similarity score (verification or one-to-one matching).
This process was repeated for thousands of images across several operationally-collected datasets
of ink and live scan rolled and plain fingerprints. At the time, in-house offline testing was a novel
idea, but the PFT evaluation proved it was a viable strategy.

In 2010, NIST announced a change to PFT and introduced PFT II [2]. This revision greatly increased
the size of the datasets used, enabling measurement of false non-match rates (FNMRs) at lower
falsematch rates (FMRs). Othermetrics, such as average speedpermatch and and average template
size, were additionally reported.

As of 2019, the qualification criteria for PFT II were beginning to show their age. NIST sought
to build upon PFT II and update the test to better align with the current state of fingerprint
template generation and matching technology. New and larger datasets were added, includ-
ing 1 000 pixels per inch (PPI)/393.70 pixels per centimeter (PPCM) images and images from new
types of imaging devices, such as non-contact sensors. Computational resources were additionally
adjusted for current hardware.

1.2 What’s New Since PFT II

• Variable resolution (including 1 000 PPI) and non-contact sensor imagery.

• Datasets from other NIST evaluations for comparison.

• 64-bit software libraries linking under CentOS 8.2.2004.

• Faster turnaround of report cards.

• Tighter computational complexity requirements.

2

PFT III Test Plan and Application Programming Interface

2 Evaluation Data

2.1 Source

Data used in PFT III come from a variety of sources. The vast majority of images are operational
in nature. This means they were collected by law enforcement, border protection, or other local or
federal government employees as a part of their professional duties. Other data may come from
subjects recruited as part of institutional review board (IRB)-approved collections.

2.2 Quality

Due to the operational nature of the source of the imagery, the quality of the images vary dra-
matically between datasets and samples within the datasets. No open-source algorithm currently
exists that can quantify fingerprint image quality for all combinations of resolution, bit depth, and
sensor type represented in PFT III, and therefore, NIST will not be providing quality values along
with the imagery during the test. Participants are encouraged to use the metadata provided with
the imagery (Section 2.3) to assess quality and store this value in their proprietary template as an
aid during template verification.

2.3 Metadata

Participants will be provided with known metadata about each image during template creation.
Metadata may include the finger position, impression type, and sensor capture technology. Im-
plementations are expected to successfully process all types of images presented, regardless of
metadata.

2.4 Access

The PFT III test datasets are protected under the Privacy Act (5 U.S.C. §552a), andwill be treated as
controlled unclassified information (CUI) and/or law enforcement sensitive. PFT III participants
will not have access to PFT III test data, before, during, or after the test. NIST will provide similar
publicly-available data that can be used to prepare submissions for PFT III.

2.5 Format

The software library must be capable of processing fingerprint images in uncompressed raw 8bit
(one byte per pixel) grayscale format. Images shall follow the scan sequence as defined by ISO/IEC
19794-4:2005, §6.2, paraphrased here, and visualized in Figure 1. The origin is the upper-left corner
of the image. The --coordinate (horizontal) position shall increase positively from the origin to
the right side of the image. The .-coordinate (vertical) position shall increase positively from the
origin to the bottom of the image.

Raw single-channel images are canonically encoded. The minimum value that will be assigned
to a “black” pixel is zero. The maximum value that will be assigned to a “white” pixel is 255.
Intermediate gray levels will have assigned values of 1 to 254. The pixels are stored left to right,
top to bottom. The number of bytes in an image is equal to its height multiplied by its width as
measured in pixels. The image width and height in pixels will be supplied to the software library
as supplemental information.

3

PFT III Test Plan and Application Programming Interface

Line 0

Line :

Line ℎ − 1

Line 0 Line : Line ℎ − 1

(0, 0)

(F − 1, ℎ − 1)

(F − 1, 0)

(0, ℎ − 1)

Figure 1: Order of image scanlines in data passed to PFT III implementations for 8 bits per pixel (bpp) images. Finger-
print image sourced from NIST Special Database 302.

2.6 Resolution

Images for this test will employ varying resolutions, but primarily 500 PPI (196.85 PPCM) and
1 000PPI (393.70 PPCM). Horizontal and vertical resolutions will be equivalent. Implementations
shall be able to handle images at all resolutions without resampling. Implementations will also
be provided images at “unusual” resolutions, such as 333 PPI and 600 PPI to identify tradeoffs in
resolutions.

4

PFT III Test Plan and Application Programming Interface

3 Application Programming Interface

3.1 Enumerations

Most enumeration values correspond with similarly-named fields from the document American
National Standard Institute/NIST-Information Technology Laboratory (ANSI/NIST-ITL) 1-2011:
Update 2015 [3].

Enumeration Explanation

PlainContact IMP 0
RolledContact IMP 1
LiveScanSwipe IMP 8
PlainContactlessStationary IMP 24
RolledContactlessStationary IMP 25
Unknown IMP 29
RolledContactlessMoving IMP 41
PlainContactlessMoving IMP 42

Table 1: PFTIII::Impression.

Enumeration Explanation

Unknown FCT 0
ScannedInkOnPaper FCT 2
OpticalTIRBright FCT 3
OpticalDirect FCT 5
Capacitive FCT 9
Electroluminescent FCT 11

Table 2: PFTIII::FrictionRidgeCaptureTechnology.

Enumeration Explanation

Success Successfully performed operation
Failure Unable to perform operation

Table 3: PFTIII::Result.

Enumeration Explanation

Unknown FGP 0
RightThumb FGP 1
RightIndex FGP 2
RightMiddle FGP 3
RightRing FGP 4
RightLittle FGP 5
LeftThumb FGP 6
LeftIndex FGP 7
LeftMiddle FGP 8
LeftRing FGP 9
LeftLittle FGP 10
RightExtraDigit FGP 16
LeftExtraDigit FGP 17

Table 4: PFTIII::FrictionRidgeGeneralized-
Position.

Enumeration Explanation

Supported Image supported
InvalidImageData Imagedata is not parsable
VendorDefined Vendor-defined error

(described in message)

Table 5: PFTIII::FingerImageStatus::Code.

5

https://doi.org/10.6028/NIST.SP.500-290e3
https://doi.org/10.6028/NIST.SP.500-290e3
https://doi.org/10.6028/NIST.SP.500-290e3

PFT III Test Plan and Application Programming Interface

3.2 Classes and Structures

3.2.1 FingerImageStatus

FingerImageStatus::Code code;
std::string message;

Figure 2: PFTIII::FingerImageStatus members.

FingerImageStatus(
const Code code = Code::Supported,
const std::string &message = "");

Figure 3: PFTIII::FingerImageStatus constructor.

3.2.1.1 Members

• code: A FingerImageStatus::Code summarizing if this software library can support feature
extraction from an image described in a FingerImage.

• message: A message providing more information about why a particular Code was chosen.
Optional.

3.2.1.2 Description

PFTIII::FingerImageStatus is a structure that allows participants to return information whether
an image described by a FingerImage is supported by their software library during calls to
createProprietaryTemplate(). Under normal operating conditions, robust implementations
need only to indicate FingerImageStatus::Code::Supported. Under failure conditions, it may
be useful for participants to provide debugging information in the message parameter of a
FingerImageStatus to help resolve the issue.

In createProprietaryTemplate(), implementations should consider the FingerImage and set this
value before attempting to perform feature extraction and create a proprietary template. Errors
that occur after validating the parameters (i.e., during the feature extraction or template generation
step) should be expressed via CreateProprietaryTemplateResult.result (Section 3.2.2).

Examples of using FingerImageStatus are shown in Figure 4.

• NIST will be unable to provide participants with the contents of message if it contains
information about fingerprint imagery, as the imagery and derivative information used in
this testmay not be distributed. Information that is not immediately decipherable by humans
(e.g., Base64-encoded data) will be assumed sensitive.

• The contents of message shall match the regular expression [[:graph:]]*.

/∗ Use the default arguments to indicate success ∗/
const PFTIII::FingerImageStatus status{};

/∗ Provide a debugging message ∗/
const PFTIII::FingerImageStatus status{

FingerImageStatus::Code::VendorDefined, "Couldn't initialize extractor"};

Figure 4: Ways to return a PFTIII::FingerImageStatus.

6

PFT III Test Plan and Application Programming Interface

3.2.2 CreateProprietaryTemplateResult

Result result;
std::vector<uint8_t>

proprietaryTemplate;
std::string message;

Figure 5: PFTIII::CreateProprietaryTemplateResult
members.

CreateProprietaryTemplateResult();

Figure 6: PFTIII::CreateProprietaryTemplateResult
constructor.

3.2.2.1 Members

• result: A Result summarizing the success or failure of extracting features and creating a
proprietary template in createProprietaryTemplate().

• message: Amessage providingmore information about why a particular Resultwas chosen.
Optional.

3.2.2.2 Description

PFTIII::CreateProprietaryTemplateResult is a structure that allows participants to return infor-
mation about the status of extracting features from an image and creating a proprietary template.
Under normal operating conditions, participants need only to indicate Result::Success. Un-
der failure conditions, it may be useful for participants to provide debugging information in the
message parameter of a CreateProprietaryTemplateResult to help resolve the issue. Examples of
using CreateProprietaryTemplateResult are shown in Figure 7.

A failure due to not understanding or supporting input parameters should be recorded with a
FingerImageStatus (Section 3.2.1), not a Result.

• NIST will be unable to provide participants with the contents of message if it contains
information about fingerprint imagery, as the imagery and derivative information used in
this testmay not be distributed. Information that is not immediately decipherable by humans
(e.g., Base64-encoded data) will be assumed sensitive.

• The contents of message shall match the regular expression [[:graph:]]*.

/∗ Use convenience method to indicate success ∗/
std::vector<uint8_t> proprietaryTemplate = ...;
const auto result1 = PFTIII::CreateProprietaryTemplateResult::success(

proprietaryTemplate);

/∗ Use convenience method to provide a debugging message ∗/
const auto result2 = PFTIII::CreateProprietaryTemplateResult::failure(

"Image quality is too poor");

Figure 7: Ways to return a PFTIII::CreateProprietaryTemplateResult.

7

PFT III Test Plan and Application Programming Interface

3.2.3 CompareProprietaryTemplatesStatus

Result result;
std::string message;

Figure 8: PFTIII::CompareProprietary-
TemplatesStatusmembers.

CompareProprietaryTemplatesStatus(
const Result result = Result::Success,
const std::string &message = "");

Figure 9: PFTIII::CompareProprietaryTemplatesStatus con-
structor.

3.2.3.1 Members

• result: A Result summarizing the success or failure of comparing two templates in
compareProprietaryTemplates().

• message: Amessage providingmore information about why a particular Resultwas chosen.
Optional.

3.2.3.2 Description

PFTIII::CompareProprietaryTemplatesStatus is a structure that allows participants to return in-
formation about the status of comparing two proprietary templates. Under normal operating
conditions, participants need only to indicate Result::Success. Under failure conditions, it
may be useful for participants to provide debugging information in the message parameter of
a CompareProprietaryTemplatesStatus to help resolve the issue. Examples of using Compare-
ProprietaryTemplatesStatus are shown in Figure 10.

• NIST will be unable to provide participants with the contents of message if it contains
information about fingerprint imagery, as the imagery and derivative information used in
this testmay not be distributed. Information that is not immediately decipherable by humans
(e.g., Base64-encoded data) will be assumed sensitive.

• The contents of message shall match the regular expression [[:graph:]]*.

/∗ Use the default arguments to indicate success ∗/
const PFTIII::CompareProprietaryTemplatesStatus status1{};

/∗ Use convenience method to provide a debugging message ∗/
const auto status2 = PFTIII::CompareProprietaryTemplatesStatus::failure(

"Probe template has too few minutia");

Figure 10: Ways to return a PFTIII::CreateProprietaryTemplatesStatus.

8

PFT III Test Plan and Application Programming Interface

3.2.4 FingerImage

uint16_t width;
uint16_t height;
uint16_t ppi;
std::vector<uint8_t> pixels;
Impression imp;
FrictionRidgeCaptureTechnology

frct;
FrictionRidgeGeneralizedPosition

frgp;

Figure 11: PFTIII::FingerImagemembers.

FingerImage(
const uint16_t width,
const uint16_t height,
const uint16_t ppi,
const std::vector<uint8_t> &pixels,
const Impression imp =

Impression::Unknown,
const FrictionRidgeCaptureTechnology frct =

FrictionRidgeCaptureTechnology::
Unknown,

const FrictionRidgeGeneralizedPosition frgp =
FrictionRidgeGeneralizedPosition::
Unknown);

Figure 12: PFTIII::FingerImage constructor.

3.2.4.1 Members

• width: Width of the image.
• height: Height of the image.
• ppi: Resolution of the image in PPI.
• pixels: Raw pixel data of image.

• imp: Impression typeof thedepictedfinger.
• frct: Capture technology of the sensor

that created this image.
• frgp: Position of the depicted finger.

3.2.4.2 Description

A container for data and properties of an image of a single finger. Participants will never need to
construct an instance of FingerImage.

3.2.4.3 Note

To pass FingerImage.pixels as an C-style array without duplicating memory, invoke the data()
method, as shown in Figure 13.

/∗ Given this C function declaration ... ∗/
void find_minutia(void *data, size_t size, struct proprietary *out);

/∗ ... pass image data from createProprietaryTemplate () like this : ∗/
struct proprietary out;
find_minutia(fingerImage.pixels.data(), fingerImage.pixels.size(), &out);

Figure 13: Converting image data to a C-style array in constant time without additional memory allocations.

9

PFT III Test Plan and Application Programming Interface

3.2.5 SubmissionIdentification

uint16_t versionNumber;
std::string libraryIdentifier;
std::tuple<std::string, bool>

featureExtractionAlgorithm-
MarketingIdentifier;

std::tuple<std::string, bool>
comparisonAlgorithmMarketing-
Identifier;

std::tuple<uint16_t, bool>
cbeffFeatureExtractionAlgorithm-
ProductOwner;

std::tuple<uint16_t, bool>
cbeffFeatureExtractionAlgorithm-
Identifier;

std::tuple<uint16_t, bool>
cbeffComparisonAlgorithmProduct-
Owner;

std::tuple<uint16_t, bool>
cbeffComparisonAlgorithmIdentifier;

Figure 14: PFTIII::SubmissionIdentification mem-
bers.

SubmissionIdentification(
const uint16_t versionNumber,
const std::string &libraryIdentifier,
const std::tuple<std::string, bool>

&featureExtractionAlgorithm-
MarketingIdentifier =
std::make_tuple("", false),

const std::tuple<std::string, bool>
&comparisonAlgorithmMarketing-
Identifier =
std::make_tuple("", false),

const std::tuple<uint16_t, bool>
cbeffFeatureExtractionAlgorithm-
ProductOwner =
std::make_tuple(0x0000, false),

const std::tuple<uint16_t, bool>
cbeffFeatureExtractionAlgorithm-
Identifier =
std::make_tuple(0x0000, false),

const std::tuple<uint16_t, bool>
cbeffComparisonAlgorithmProduct-
Owner =
std::make_tuple(0x0000, false),

const std::tuple<uint16_t, bool>
cbeffComparisonAlgorithmIdentifier =
std::make_tuple(0x0000, false));

Figure 15: PFTIII::SubmissionIdentification constructor.

3.2.5.1 Members

• versionNumber: Version number of this submission. Required to be unique for each new
submission. Required.

• libraryIdentifier: Non-infringing identifier of this submission. Should be the same for
all submissions from an organization. Required. Case sensitive. Must match the regular
expression [:alnum:]+.

• featureExtractionAlgorithmMarketingIdentifier: Non-infringing marketing name of the
feature extraction algorithm include in this submission. Optional. Case sensitive. Must
match the regular expression [[:graph:]]*. The first tuple member is the value and second
is a boolean indicating the initialization status of the value.

• comparisonAlgorithmMarketingIdentifier: Non-infringing marketing name of the com-
parison algorithm include in this submission. Optional. Case sensitive. Must match the
regular expression [[:graph:]]*. The first tuple member is the value and the second is a
boolean indicating the initialization status of the value.

• cbeffFeatureExtractionAlgorithmProductOwner: Common Biometric Exchange Formats
Framework (CBEFF) Product Owner of the feature extraction algorithm, if registered. Op-

10

PFT III Test Plan and Application Programming Interface

tional, unless cbeffFeatureExractionAlgorithmIdentifier is supplied. The first tuple mem-
ber is the value and second is a boolean indicating the initialization status of the value.

• cbeffFeatureExtractionAlgorithmIdentifier: CBEFF Feature Extraction Algorithm Iden-
tifier, if registered. Optional. The first tuple member is the value and the second is a boolean
indicating the initialization status of the value.

• cbeffComparisonAlgorithmProductOwner: CBEFF Product Owner of the template compari-
son algorithm, if registered. Optional, unless cbeffComparisonAlgorithmIdentifier is sup-
plied. The first tuplemember is the value and second is a boolean indicating the initialization
status of the value.

• cbeffComparisonAlgorithmIdentifier: CBEFF Comparison Algorithm Identifier, if regis-
tered. Optional. The first tuple member is the value and the second is a boolean indicating
the initialization status of the value.

3.2.5.2 Description

Identifying information about this submission that will be included in reports.

11

PFT III Test Plan and Application Programming Interface

3.3 Interface

Participants in PFT III must submit a software library that fully implements the pure abstract C++

class PFTIII::Interface. Since the PFT III test driver will not know the name of the PFTIII::
Interface class at compile time, the software library must also implement a factory method to
return an instance of their implementation. NIST’s declaration of the factory method is shown in
Figure 16.

3.3.1 Obtain PFT III Implementation

std::shared_ptr<PFTIII::Interface>
getImplementation();

Figure 16: Declaration of a function to obtain an instance of the participant’s PFTIII::Interface implementation.

3.3.1.1 Description

Obtain amanagedpointer to an object implementing PFTIII::Interface. To avoid name collisions,
the class implementing the interface should be in the PFTIII namespace.

3.3.1.2 Return

Amanaged pointer to the participant’s implementation of PFTIII::Interface. A sufficient imple-
mentation of this method for an implementation whose constructor has no arguments could be
the return statement shown in Figure 17.

return (std::make_shared<PFTIII::Implementation>());

Figure 17: A sufficient implementation of PFTIII::Interface::getImplementation().

3.3.1.3 Speed

This method shall return in ≤10 s.

12

PFT III Test Plan and Application Programming Interface

3.3.2 Identification

PFTIII::SubmissionIdentification
PFTIII::Interface::getIdentification()

const;

Figure 18: Declaration of a method to obtain identification information for this submission.

3.3.2.1 Description

This method allows for the retrieval of identification information of the library at runtime.

• The returned value’s versionNumber member shall be identical to the four hexadecimal
characters prior to the extension of the submitted software library’s name (Section 4.1.4).

• The libraryIdentifier member of the returned value shall be identical to the string sur-
rounded by underscores, just prior to the four hexadecimal digit version, in the submitted
software library’s name (Section 4.1.4).

3.3.2.2 Return

This method shall immediately return a PFTIII::SubmissionIdentification of the identifier and
version number for this software library. Marketing names to be printed in publications may be
provided. Similarly, if your organization is registered with International Biometrics + Identity
Association (IBIA) and has received CBEFF information, include the information in the respective
fields in the SubmissionIdentification struct for publication in report cards.

Sufficient implementations for the librarylibpftiii_initech_101D.soare shown inFigure 19.

/∗ A sufficient implementation of getIdentification ∗/
return {"initech", 0x101D};

/∗ A more verbose implementation of getIdentification ∗/
PFTIII::SubmissionIdentification id{};
id.libraryIdentifier = "initech";
id.version = 0x101D;
id.featureExtractionAlgorithmMarketingIdentifier = std::make_tuple("IniEx (v2.16)", true);
id.comparisonAlgorithmMarketingIdentifier = std::make_tuple("IniCmp (v2.3.3)", true);
id.cbeffProductOwner = std::make_tuple(0x000F, true);
id.cbeffFeatureExtractionAlgorithmIdentifier = std::make_tuple(0x351A, true);
id.cbeffComparisonAlgorithmIdentifier = std::make_tuple(0x42F2, true);
return (id);

Figure 19: Implementations of PFTIII::Interface::getIdentification() for the library libpftiii_initech_101D.so.

3.3.2.3 Speed

This method shall return immediately (≤≈0.001 s).

13

PFT III Test Plan and Application Programming Interface

3.3.3 Feature Extraction

std::tuple<FingerImageStatus, CreateProprietaryTemplateResult>
PFTIII::Interface::createProprietaryTemplate(

const FingerImage &fingerImage);

Figure 20: Declaration of a method that extracts features from a fingerprint image and encodes them into a proprietary
template.

3.3.3.1 Description

This method provides an image of a single fingerprint to an implementation. The implementation
should extract, encode, and return those features for later use in verification.

• This method shall be deterministic. Providing the same FingerImage repeatedly shall result
in the same returned value, regardless of time or previously-encountered images.

• All values, including Unknown, for types FrictionRidgeGeneralizedPosition, Impression,
and FrictionRidgeCaptureTechnology shall be supported. It is not acceptable to return a
failure solely because metadata is not specified.

• Entire classifications of images (e.g., 1 000 PPI, RolledContactlessMoving, etc.) shall not fail
to have templates created.

3.3.3.2 Return

The Code member of the FingerImageStatus member in the return of this method shall be set to
Supported if the FingerImage passed to this method should be supported, or another approved
Code with an optional message otherwise. If the FingerImageStatus::Code is not Supported, the
second member of the returned tuple will not be consulted.

The Resultmember of the CreateProprietaryTemplateResultmember in the return of thismethod
shall be set to Success if the implementation was able to successfully extract features and produce
a proprietary template in proprietaryTemplate for later use in compareProprietaryTemplates().
Otherwise, Result shall be set to Failure and an optional debugging message shall be pro-
vided.

3.3.3.3 Note

• Be careful not to confuse FingerImageStatus::Code and Result. FingerImageStatus::Code
indicates if it should have been technically possible to call and complete the method based
on the inputs provided, while Result indicates the actual result of extracting features and
encoding a template.

– PFT III does not distinguish between failures to extract features, failures to encode
extracted features into a template, not supporting an image type, or any other situations
resulting in the lack of proprietaryTemplate being produced. All such failures will be
categorized as failure to enroll.

• This method does not differentiate between probe and reference templates.

14

PFT III Test Plan and Application Programming Interface

• proprietaryTemplate will be saved only when Result is Success and FingerImageStatus::
Code is Supported. In all other cases, an empty (0 byte) entry will be saved by the PFT III test
driver instead. Regardless, all pre-determined comparisons will be performed.

3.3.3.4 Speed

This method shall return on average in ≤0.5 s, as measured on a dedicated timing sample.

15

PFT III Test Plan and Application Programming Interface

3.3.4 Template Comparison

std::tuple<CompareProprietaryTemplatesStatus, double>
PFTIII::Interface::compareProprietaryTemplates(

const std::vector<uint8_t> &probeTemplate,
const std::vector<uint8_t> &referenceTemplate);

Figure 21: Declaration of a method that compares two proprietary templates.

3.3.4.1 Description

This method provides two proprietary templates (created by createProprietaryTemplate(), de-
tailed in Section 3.3.3), and returns a value indicating their similarity in terms of being derived
from the same finger.

• This method shall be deterministic. Providing the same two templates repeatedly shall
result in the same similarity score returned, regardless of time or previously-encountered
comparisons.

3.3.4.2 Return

The Result member of the CompareProprietaryTemplatesStatus member in the return of this
method shall be set to Success if the method was able to be successfully executed, or Failurewith
an optional message otherwise. If returning Success, the double member of the returned tuple
shall be the similarity of comparing probeTemplate to referenceTemplate.

3.3.4.3 Note

• This method must tolerate empty (0 byte) templates for both probe and reference templates,
in the case of failure when calling createProprietaryTemplates().

• The similarity score will be used in analysis so long as the Result when returned from
createProprietaryTemplates() was Success. In other occurrences, the lowest non-mated
similarity score returned (as determined after all evaluation comparisons have completed)
will be used instead. That is, a comparison score will be assigned for all evaluation com-
parisons, even if the comparison fails or the templates involved in the comparison do not
exist.

3.3.4.4 Speed

This method shall return on average in ≤0.01 s, as measured on a dedicated timing sample.

16

PFT III Test Plan and Application Programming Interface

4 Software and Documentation

4.1 Software Libraries and Platform Requirements

The functions specified in Section 3 shall be implemented exactly as defined in a software library.
The header file used by the PFT III test driver executable is provided on the PFT III website in the
PFT III validation package.

4.1.1 Restrictions

Participants shall provide NIST with binary code in the form of a software library only (i.e., no
source code or headers). Software libraries must be submitted in the form of a dynamic/shared
library file (i.e., .sofile). This library shall be know as the core library, and shall be named according
to the guidelines in Section 4.1.4. Static libraries (i.e., .a files) are not allowed. Multiple shared
libraries are permitted if technically required and are compatible with the validation package
(Section 4.3). Any required libraries that are not standard to CentOS 8.2.2004 must be built and
submitted alongside the core library. All submitted software libraries will be placed in a single
directory, and NIST will add this directory to the runtime library search path list (RPATH).

Individual software libraries provided must not include multiple modes of operation or algorithm
variations. No configurations or options will be tolerated within one library. For example, the use
of two different minutia sorting techniques would be split across two separate software libraries
(though the PFT III application indicates that NISTwill only accept one submission every 90 days).
No external configuration, training, model, or other separate files will be permitted. Such supple-
mental information, if necessary, shall be encoded into the submitted core library, or placed in a
directory alongside the core library, as copied directly from the validation submission (Section 4.3).
No environment variables will be set for an implementation to affect operation.

The software library shall not make use of threading, forking, OpenMP, or any other multipro-
cessing techniques. The NIST test driver operates as a Message Passing Interface (MPI) job over
multiple compute nodes, and then forks itself into many processes. In the test environment, there
is no advantage to threading. It limits the usefulness of NIST’s batch processing and makes it
impossible to compare timing statistics across PFT III participants.

The software library shall remain stateless anddeterministic. It shall not acknowledge the existence
of other processes running on the test hardware, such as through semaphores or pipes, nor attempt
to communicate with any other process. It shall not read from or write to any file system or file
handle, including standard streams. It shall not attempt any external communication such network
connections via sockets.

4.1.2 External Dependencies

It is preferred that the application programming interface (API) specified by this document be
implemented in a single core library. Additional libraries may be submitted that support this core
library file (i.e., the core library file may have dependencies implemented in other libraries if a
single library is not feasible).

One required dependency shall be the NIST-provided libpftiii.so. Participants shall not alter
the provided header file for libpftiii.so. NIST will build and supply libpftiii.so, and so this
library shall not be included in submissions.

17

PFT III Test Plan and Application Programming Interface

4.1.3 Hardware Dependencies

Use of intrinsic functions and inline assembly is allowed and encouraged, but software libraries
shall be able to run and are required to pass validation (Section 4.3) on a variety of Intel-based
CPUs, including, but not limited to, Intel Xeon Gold 6140, Intel Xeon E5-2680, and Intel Xeon
E5-4650. Timing metrics will only be reported on the CPU referenced in Section 4.4, but other
CPUs may be used for template generation and matching as available.

4.1.4 Naming

The core software library submitted for PFT III shall be named in a predefined format. The first part
of the software library’s name shall be libpftiii_. The second piece of the software library’s name
shall be a non-infringing and case-sensitive unique identifier that matches the regular expression
[:alnum:]+ (likely your organization’s name), followed by an underscore. The final part of the
software library’s name shall be a four uppercase hexadecimal digit version number, followed by
a file extension. Be cognizant of the name you provide, as this will be name NIST uses to refer to
your submission in reports. Supplemental libraries may have any name, but the core library must
be dependent on supplemental libraries in order to be linked correctly. The only library that will be
explicitly linked to the PFT III test driver is the core library, as demonstrated in Section 4.1.5.

The version number shall match the hexadecimal version number with leading 0s, as returned by
getIdentification(). With this naming scheme, every core library received by NIST shall have
a unique filename. Incorrectly named or versioned software libraries will be rejected.

Example
Initech submits a PFT III shared library named libpftiii_initech_101C.so with build 4 124 of
their algorithm. This library returns {"initech", 0x101C} from getIdentification(). NIST
determines that Initech’s createProprietaryTemplate()method is too slow and rejects the library.
Initech submits build 4 125 to correct the defect in 4 124. Initech updates getIdentification()
in their implementation to return {"initech", 0x101D} and renames their library to libpftiii_
initech_101D.so. In reports, NIST refers to Initech’s library as initech+101D.

4.1.5 Operating Environment

The software library will be tested in non-interactive “batch” mode (i.e., without terminal sup-
port) in an isolated environment (i.e., no Internet connectivity). Thus, the software library shall
not use any interactive functions, such as graphical user interface calls, or any other calls that
require terminal interaction (e.g., writes to stdout) or network connectivity. Any messages for
debugging failure conditions shall be provided via the message parameters of FingerImageStatus,
CreateProprietaryTemplateResult, and CompareProprietaryTemplatesStatus.

NISTwill link the provided library files to a C++ language test driver application using the compiler
g++ (version RedHat 8.3.1-5, via mpicxx) under CentOS 8.2.2004, as seen in Figure 22.

mpicxx -o pftiii pftiii.cpp -Llib -Wl,-rpath,lib -lpftiii -lpftiii_initech_101D

Figure 22: Example compilation and link command for the PFT III test driver.

Participants are required to provide their software libraries in a format that is linkable using g++
with theNIST test driver. All compilation and testingwill beperformedon64-bit hardware running

18

PFT III Test Plan and Application Programming Interface

CentOS 8.2.2004. Thus, participants are strongly encouraged to verify library-level compatibility
with g++ on CentOS 8.2.2004 prior to submitting their software to NIST to avoid unexpected
problems.

4.2 Usage

4.2.1 Software Libraries

The software library shall be executable on any number of machines without requiring additional
machine-specific license control procedures, activation, hardware dongles, or any other form of
rights management.

The software library usage shall be unlimited. No usage controls or limits based on licenses,
execution date/time, number of executions, etc., shall be enforced by the software library. Should
a limitation be encountered, the software library shall have PFT III testing status revoked.

4.3 Validation and Submitting

NIST shall provide a validation package that will link the participant core software library to a
sample test driver. Once the validation successfully completes on the participant’s system, a file
with validation data and the participant’s software library will be created. After being signed
and encrypted, only this file and a public key shall be submitted to NIST. Any software library
submissions not generated by an unmodified copy of the latest version of NIST’s PFT III validation
package will be rejected. Any software library submissions that generate errors while running the
validation package on NIST’s hardware will be rejected. Validation packages that have recorded
errors while running on the participant’s system will be rejected. Any software library submis-
sions not generated with the latest version of NIST’s PFT III validation package will be rejected.
Any submissions of successful validation runs not created on CentOS 8.2.2004 will be rejected.
Any submissions not signed and encrypted with the private key whose public key fingerprint is
recorded on the PFT III application will be rejected.

Participants may resubmit a new validation package immediately upon being notified of a vali-
dation rejection. NIST may impose a “cool down” period of several months for participants with
excessive repeated rejections, in order to most efficiently make use of test hardware.

4.4 Speed

Timing tests will be run and reported on a fixed sample of the PFT III dataset using an Intel
Xeon Gold 6140 CPU prior to completing the entire test. Submissions that do not meet the timing
requirements listed for each method in Section 3.3 will be rejected. Participants may resubmit a
faster submission immediately with a new version number. To avoid the appearance of PFT III as
an algorithm speed-checking service, NIST may require that participants with excessive repeated
failures exceedingly distant from published timing requirements wait several months before their
next submission.

19

PFT III Test Plan and Application Programming Interface

References

[1] Watson C, Wilson C, Marshall K, Indovina M, Snelick R (2005) Studies of One-to-One Finger-
print Matching with Vendor SDK Matchers. NIST Interagency Report 7221 https://doi.org/
10.6028/NIST.IR.7221

[2] Cheng SL, Fiumara G, Watson C (2011) PFTII report: Plain and Rolled Fingerprint Matching
with Proprietary Templates. NIST Interagency Report 7821 https://doi.org/10.6028/NIST.IR.
7821

[3] American National Standard for Information Systems (2016) Information Technology:
ANSI/NIST-ITL 1-2011 Update 2015 — Data Format for the Interchange of Fingerprint, Fa-
cial & Other Biometric Information. NIST Special Publication 500-290e3 https://doi.org/10.
6028/NIST.SP.500-290e3

Revision History

25 February 2021 Require CentOS 8.2.2004.

30 October 2019 Initial release for API version 1.0.0.

20

https://doi.org/10.6028/NIST.IR.7221
https://doi.org/10.6028/NIST.IR.7221
https://doi.org/10.6028/NIST.IR.7821
https://doi.org/10.6028/NIST.IR.7821
https://doi.org/10.6028/NIST.SP.500-290e3
https://doi.org/10.6028/NIST.SP.500-290e3

	Introduction
	Background
	What's New Since pft II

	Evaluation Data
	Source
	Quality
	Metadata
	Access
	Format
	Resolution

	Application Programming Interface
	Enumerations
	Classes and Structures
	Interface

	Software and Documentation
	Software Libraries and Platform Requirements
	Usage
	Validation and Submitting
	Speed

	References
	Revision History

