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Outline

• Introduction to Uncertainty Propagation
• Case 1: Microstructure Evolution in the Solid State: Thermoelectrics
• Case 2: Microstructure Evolution during Additive Manufacturing
• Summary and Conclusions
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Overview of Bayesian Uncertainty 
Quantification and Propagation

• UQ:
– Inverse problem in uncertainty analysis: determine the 

parameterization of your models when confronted with experimental 
data (or any other approximation to the ground truth)

• UP:
– Forward problem in uncertainty analysis: propagate uncertainty in 

model parameters, simulation conditions forward through a model 
or through a model chain

• Within a Bayesian framework that provides principled way for updating 
knowledge
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Overview of Bayesian Uncertainty 
Quantification and Propagation
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Motivation: Uncertainty Quantification
(Simulation V&V)

Comparison of 
model prediction 
to experiments for 
Ni50.3Ti29.7Hf20 heat 
treated at 550°C for 

10 Hrs

RVEs with randomly 
placed precipitates

Coherency stress 
distribution

Ni& Hf diffusion Prediction of 
effective response

Variation of transformation 
temperatures with stress for 

different heat treatment 
conditions in Ni50.3Ti29.7Hf20.
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Motivation: Uncertainty Propagation
(Simulation V&V)

Comparison of 
model prediction 
to experiments for 
Ni50.3Ti29.7Hf20 heat 
treated at 550°C for 

10 Hrs

RVEs with randomly 
placed precipitates

Coherency stress 
distribution

Ni& Hf diffusion Prediction of 
effective response

Variation of transformation 
temperatures with stress for 

different heat treatment 
conditions in Ni50.3Ti29.7Hf20.
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Implementation of Uncertainty 
Quantification (and Propagation)
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Approaches to Bayesian Uncertainty 
Propagation

Uncertainty 
Propagation 
Approaches

Analytical 
Approaches

First/second-
order Second 

Moment
Gaussian 
Process

Polynomial 
Chaos 

Expansion
…..

Numerical 
Approaches

Monte Carlo 
Simulation

Quasi Monte 
Carlo 

Simulation
…..

Cheap, But Estimated Expensive, But Precise

Uncertainty Propagation is a forward analysis which is usually referred to the process of passing 

uncertainties from the model parameters to predictions or across a chain of multi-scale models.
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System-Level Uncertainty Propagation
• System-level uncertainty analysis/propagation may be cumbersome due to 

factors that result in inadequate integration of models.
• Models are computationally expensive
• Model chains are difficult to integrate seamlessly
• Model outputs may not be regular or continuous
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Solid-Solid Phase Transformations in Thermoelectrics
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Challenges:

• Phase field models are complex, computationally expensive, involving 
coupled, non-linear physical phenomena

• Moreover, the dimensionality of the input parameter space is high
• Finally, the output space may be very complex  and non-linear
• Question:

– How does one propagate uncertainty efficiently through such 
complex models?
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Motivation: Microstructural design of 
Thermoelectric Materials

A key factor in TE technologies is the development of high-performance TE materials. 
• Either completely new materials or 
• Through more ingenious materials engineering of existing materials. 

Solid-State Crystal Chemistry 
Approaches to Advanced TE Materials 

Classical Approach: 
Bulk Binary 

Semiconductors 
Modern Solid-State Chemistry

Complex 
Inorganic 
Structures 

Crystal 
Structures with 

“Rattlers.” 

Oxide 
Thermoelectric

s

Rare-Earth 
Intermetallics

with High 
Power Factors

Engineered 
Crystal Lattices 
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Process-structure-property-performance

Process Structure Property/Performance

Strategy: Minimizing Thermal Conductivity
• Mass fluctuation scattering 
• Scattering phonons in different frequency ranges
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Sn rich 
phase

Si rich 
phase

f) g) h) i)d

Chemical 
simulations

c) d)b) e)

Elastochemical
simulations

Synthetic microstructure

Structure Property/Performance

Experimental evidence of phase dissolution in Mg2SixSn1-x
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Our strategy for investigating/altering 
composition and structure space
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Is it only the mass scattering effect? 
The impact of lattice strain on the nanostructure

Figures description: 
Evolution of the microstructure under different lattice strain conditions. 
• First row: !" = 0.001, second row: !" = 0.008, and third row: !" = 0.014.

Alloy composition )*+ = 0.3 Alloy composition )*+ = 0.4 Alloy composition )*+ = 0.5
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Structure Property/Performance

!"#$

% = '∆!

!")*
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Overall Bayesian Framework for UQ/UP

Parameter Probability 
Distributions

Inverse Problem
UQ of Thermodynamic Model Parameters through MCMC

Experimental Data from 
Calculated phase Diagrams

Forward Problem
UP form Thermodynamic Parameters to CALPHAD: 

Gibbs Free Energy, Phase Diagram, etc.

Forward Problem
UP from CALPHAD to phase-field modeling of Microstructure: 

Characteristic Length, Roundness, etc.

Pr
ob

ab
ili

ty
 D

en
si

ty

Molar Volume-Mg2Si

Prior Probability Distributions of Kinetic 
Parameters in Phase-Field Model 
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First Step: UQ/UP over CALPHAD Model

Joint frequency distribution
between a selected pair of
parameters
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Process space Structure space Property space

General Overview:
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Specification of Input Parameter Uncertainty in Phase-
field Approach

CALPHAD 
energy form

Thermodynamic state variables
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Efficient Sampling
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Process space Structure space Property space

General Overview:
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Microstructure mosaic from High-throughput phase-field 
calculations

• Created from 1024 
phase-field runs out 
of 10000 

• TAMU synthetic 
microstructure 
database

TAMU synthetic microstructure database
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Process space Structure space Property space

General Overview:
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How to propagate uncertainty in the 
microstructure space?
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How to propagate uncertainty in the 
microstructure space?

72% 
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Process space Structure space Property space

Next Step: Efficient Uncertainty 
Propagation

How do we get this?By Efficiently Sampling this
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Challenge: Sampling Issues
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Challenge: Sampling Issues

• Is there a way to ‘smartly’ sampling the input space in such a way that 
we can attain a target distribution from sparse efficient sampling over 
the input space?
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Approach 1: Probability Measure Optimized 
Importance Weights 

Given a set of input samples and a desired 
target input probability measure:

– Construct a set of subsets of the sample 
space.

– Create a row vector for each subset with a 
one or zero entry if a given sample is in 
the subset or not. Create a matrix from 
the set of row vectors.

– Create a column vector with entries equal 
to the probability of a sample occurring in 
a given subset according to the target 
measure.

– Solve for importance weights using least 
squares.
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Approach 1: Probability Measure Optimized Importance 
Weights. Benchmark: Johnson-Cook Model 
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Approach 1: Probability Measure Optimized Importance 
Weights. Benchmark: Johnson-Cook Model 
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Approach 2: Ordered Monte Carlo

• Monte Carlo approaches to UP 
require ~1x106 evaluations to 
converge

• Key idea: all samples are useful
on average

• Thus, there are some samples 
that are more useful than others
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Approach 2: Ordered Monte Carlo
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Process space Structure space Property space

Next Step: Apply Advanced UP and test 
against PF Dataset (as Ground Truth)
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UP in Phase Field Models for Additive Manufacturing
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Challenges:

• Simulations in materials may be the result of a complex chain of models
• Each model is computationally expensive
• Some model outputs are observable, some aren’t. 
• Moreover, the experimental information necessary to validate/calibrate 

models is scarce
• Question:

– How does one calibrate multiple models in a model chain with 
incomplete information?



5/13/19

20

41Materials Science & Engineering Department Computational Materials Sci. Lab.

Motivation

Applications:

ØMostly in dental and aerospace industry

Advantages:

Ø Fabrication of complex geometries

Ø Fully dense parts

Ø Near-net-shape production

Ø No need for part-specific tooling

Ø Minimum waste of material

Selective Laser Melting (SLM)
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Motivation

Part quality

• Micro-cracks

• Delamination

• Balling effect 

• Porosity

• Swelling

Variability

• Microstructure

• Mechanical properties

• Swelling

[6]

Challenges
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Framework

Microstructure
Modeling

SLM Process

Thermal
Modeling

Thermodynamics

Performance

Integrated Computational Modeling

https://www.orthobullets.com/basic-
science/9062/material-properties

44Materials Science & Engineering Department Computational Materials Sci. Lab.

Framework
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Coupling of Models

7mm

1.5mm

1.
5m

m

Boundary Types
Dirichlet: ①②④⑤
Symmetry: ③
Thermal Loads: ⑥

⑥

⑤

④

③

②
①

T [K]
G R

Cooling Rate = G*R

G: Temperature Gradient
R: Solidification Growth Rate

G*R
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Application to AM of Ni-Nb

!" = 0.71	

!" = 0.82	

!" = 0.92	

,-./: 0.54	µm

567 589

:;8<8=
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=
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	K/M
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=
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!" = 0.75	

!" = 0.71	

!" = 0.82	

!" = 0.92	!" = 0.68	

,-./: 0.54	µm

,-./: 0.46	µm

,-./: 0.24	µm
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Effect of Process Parameters on Thermal Output

Highest 
Cooling Rate

Lowest 
Cooling Rate

Lowest 
Cooling Rate

Highest 
Cooling Rate

Laser Laser

Laser 
Power:

201 W

Laser 
Speed:

957 mm/s

LED (High): 0.21 J/mm

Laser 
Power:

162 W

Laser 
Speed:

2050 mm/s

LED (Low): 0.08 J/mm

(a) (b)

High LED Low LED
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Effect of Process Parameters on Microstructure

(a) (b)

High LED Low LED
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Experimental Validation

(a)

Laser Power: 122 W

Laser Speed: 50 mm/s

LED: 2.44 J/mm

High LED
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Experimental Validation

(a)

Laser Power: 122 W

Laser Speed: 50 mm/s

LED: 2.44 J/mm

Medium LED
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Experimental Validation

Laser Power: 122 W

Laser Speed: 50 mm/s

LED (HIGH): 2.44 J/mm

Laser Power: 162 W

Laser Speed: 957 mm/s

LED (LOW): 0.169 J/mm

Low LED
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How do we Calibrate the PFM?

• We need physical observations to calibrate the model

• But ! and " are unobservable

Solidification 
speed & gradient 
"#, !#

Phase field

Mobility %, 
interface energy &, 
permeability '

Primary dendrite 
arm spacing ()*!

index S (mm/s) G (K/m) PDAS (um)
1 167 8.83E+06 0.365
2 515 1.09E+07 0.350
3 602 1.09E+07 0.290
4 238 7.53E+06 0.316
… … … …

11 100 1.18E+07 0.415
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Experimental Observations

• 11 data points
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Experimental Observations for FE Model

44 data points (power, speed, width, depth)
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Multi-Level Calibration

• We couple two models and calibrate them together 

Solidification 
gradient !"

Power #, speed $

FE Model

Phase field

Conductivity 
%&, %(, %(), %*, %*), 
Absorptivity +", +,-.

Melt pool 
dimensions /,0, 1

Temperature field 
2(4, 5, 6, 7)

Mobility 9, 
interface energy :, 
permeability ;

Primary dendrite 
arm spacing #0+<
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Emulation (Surrogate Modeling)

• We replace the computationally-heavy models with fast emulators

Solidification 
gradient !"

Power #, speed $

FE Model

Phase field

Conductivity 
%&, %(, %(), %*, %*), 
Absorptivity +", +,-.

Melt pool 
dimensions /,0, 1

Temperature field 
2(4, 5, 6, 7)

Mobility 9, 
interface energy :, 
permeability ;

Primary dendrite 
arm spacing #0+<

9=

9>?=

?>
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Bayesian Estimation

We construct a network of variables and use a Bayesian updating scheme 
to estimate the model parameters.

Model 1
!"#: observable system response
$"#: experimental data for !"#
!"&: unobservable system response

Model 2 
!': observable system response
$': experimental data for !(
)(: auxiliary variable correcting for *!"+
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Bayesian Estimation

We construct a network of variables and use a Bayesian updating scheme 
to estimate the model parameters.
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Preliminary Results

• Calibration parameters are estimated using the posterior distribution.
• Model 1 has seven calibration parameters (!", … , !%):

1. ()
2. (+
3. (+-
4. (/
5. (/-
6. 23456
7. 289:

• Model 2 has one calibration parameter:
1. ; (interfacial energy)
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Results (Ct’d)

• Calibrated response surface for each output
– sample

Emulator response Discrepancy Final estimate
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Results (Ct’d)

• Calibrated response surface for the FE model
– sample

Response with 
calibrated parameters

Response corrected using 
discrepancy function

MAPE = (36.2 µm) 21.1% MAPE = (18.6 µm) 12.1%

Melt pool width 
predictions
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Results (Ct’d)

• Calibrated response surface for the PF model

Response with 
calibrated parameters

Response corrected using 
discrepancy function

MAPE = (0.260 µm) 71.6% MAPE = (0.020 µm) 5.8%

PDAS 
predictions
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Results (Ct’d)

• Can we identify areas of missing physics from each model?

PDAS 
predictions

Melt pool width 
predictions
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Summary

• UQ/UP is a central challenge to materials 
modeling and simulation-assisted 
materials design

• We have carried out massive HT phase 
field models to explore UP approaches in 
materials modeling

• Novel approaches to UP are being 
explored to make the process more 
efficient and practical

• UQ/UP through Bayesian Networks may 
be a promising approach when 
attempting simultaneous calibration of 
models along a complex model chain
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