

G	ene	era	(Ov	/er	'vi	ev	V:	ENGINEERING TEXAS A&M UNIVERSIT
		Pro	ce	SS	spa	ace			Structure space Property space
Model Sub-mode	el Parameter	trapp.	Unit	PDF form	μ	shi	Lower Bound	Upper Bound	
	0. ₄₂₂	Contraction of the second	$J.mol^{-1}$	-1	12975.13	3884.57	6824.89	20474.69	
single	$^{0}b_{xx}$	19. And 19. An	J.mol ⁻¹	1	6.28	6.34	3.67	11.02	
dwike (D	1. _{0.11}	a a a a a a a a a a a a a a a a a a a	J.mol ⁻¹	-1	-2027.82	3109.07	-5208.34	-1736.11	
CALPRO	o _{stra}	- - (J.mol ⁻¹	1	90748.41	25283.62	43550.19	130650.57	
sta	o _{brig}		J.mol ⁻¹	-1	-79.59	38.83	-86.03	-28.68	
l Inp	Lau.		I mal-	-	5620.01	4636.98	1114.80	2011.41	
Aode	Initial Composition		mol	Uniform			0.3	0.5	
(pla	SFTS (ϵ^T)			Uniform		0.02	-0.02	+0.02	
ų, s	$C_{11} Mg_2 Sn$		GPa	Normal	77.1471	5.9155	68.3000	83.7100	
Phas	$C_{12} Mg_2 Sn$		GPa	Normal	26.9833	7.2003	17.6800	39.7900	
	$C_{44} Mg_2 Sn$		GPa	Normal	30.7158	7.7791	16.0300	41.9400	
	$C_{11} Mg_2 Si$		GPa	Normal	120.2873	3.4141	114.0700	126.0000	
	$C_{12} Mg_2 Si$		GPa	Normal	22.5536	1.9625	19.5600	26.0000	
	$C_{44} M_{S2} Si$		GPa	Normal	46.9955	6.2219	33.3200	58.2000	
	Interface mobility (M)		$m^2 s^{-1}.J$	r-1 Uniform			$10^{-14}/(RT)$	$10^{-16}/(RT)$	
	Gradient energy Coefficient	(s)	$J.m^{-2}$	2 Uniform			2.0×10^{-26}	2.0×10^{-24}	
	Molar volume $(V_m^{Mp_2Sz})$		m3.mol	-1 Normal	5.96×10^{-05}	3.19×10^{-10}			
	Molar volume (V _m ^{M p₂Sn})		m [*] .mol	-1 Normal	4.99×10^{-05}	3.57×10^{-10}		· · ·	
	Materi	als Scie	ence	& En	ginee	ring D	epartr	nent	Computational Materials Sci. Lab. 25

	Pr	ос	ess	s sp	ace			Structure space	P	roper	ty s	spa	ace	
									Target variables	Likelihood kernel	μ	std	Min.	Max.
fodel Sub-model Parameter		en l	Unit PDF	Fform μ	sal	Lower Bound	Upper Bound							
0. _{0.22}			mol^{-1}	12975	.13 3884.57	6824.89	20474.69		C^{α}		0.4887	0.34	0.3112	0.9219
β. ο _{δ,,}	2	. 1	mol^{-1}	6.28	6.24	3.67	11.02		C^{β}		0.3626	0.24	0.0884	0.5089
1 WWW	700		mol^{-1}	-2027	.82 3109.07	-5208.34	-1736.11	化结构 医囊体 经过度 化化化化化 医乙烯酸 化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化		1				
CALPH		. ,	mol ⁻¹	90748	.41 25283.62	43550.19	130650.57	化结晶 化化化化 医胃管 医外外的 医子子 医子子 化化化化化 医化化化化化 化化化化化化化化化化化化化化化化化	Char. Length	L			0	7.0000e-07
obrie Santa	Film	. ,	mol ⁻¹	-79.5	19 38.83	-86.03	-28.68	化硫酸化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化						
land land		ļmi,	mol ⁻¹	56701	4636.98	3314.80	9944.41		Volume fraction		0.12	1.86	0	1.0
DO Initial Com	sposition		mol Un	iform -		0.3	0.5							
SFTS (e ^T))		- Uni	dom 0	0.02	-0.02	+0.02		Roundness		0.96	0.32	0	1.5
-5 C ₁₁ M ₂₂	Sn		GPa No	rmal 77.14	/1 5.9155	68.3000	83.7100							
C ₁₁ M ₂₂	3n Sn		GPa No	emal 26.98	13 7.2005 158 7.7291	15.0300	41,9400		Cubicness ₁		1.15	0.38	0	2.8284
$C_{11} M_{g_2}$.81		GPa Ne	ormal 120.2*	873 3.4141	114.0700	126.0000				0.07	0.20		1.5100
$C_{12} M_{g_2}$	154		GPa Ne	emal 22.55	36 1.9625	19.5600	26.0000		Cubicness ₂		0.97	0.38	0	1.0499
$C_{44} M_{32}$	81		GPa Ne	rmal 46.99	35 6.2219	33.3200	58.2000				210.02	1.00	055 75	1272.20
Interface m	sobility (M)	m ²	r ⁻¹ .J ⁻¹ Us	iform -		$10^{-14}/(RT)$	$10^{-16}/(RT)$		μ_{chem}		-310.48	-1.98	-955.75	1275.38
Gradient er	nergy Coefficient (n)		Cm ⁻² Uni	iform -		2.0×10^{-26}	2.0×10^{-24}							
Molar volu	$me(V_m^{M_{p_2}S_i})$	- "	.mol ⁻¹ No	rmal 5.96 × 1	0 ⁻⁰⁵ 3.19 × 10 ⁻⁶				$\bar{\mu}_{elas}$		-0.03	-2.14	-0.33	0.1302
	and the second second			4.99 v 7	.0 3.57 × 10 ⁻⁶	· ·								

Approach 1: P Weights. Benc	robability Mea hmark: Johns	isure Optii on-Cook M	mized Impo lodel	rtance	ĀM	ENGINEERING				
	$\sigma = [A + B(\epsilon_{pl})^n] \cdot \left[1 + C \ln\left(\frac{\dot{\epsilon_{pl}}}{\dot{\epsilon_o}}\right)\right] \cdot \left[1 - \left(\frac{T - T_o}{T_m - T_o}\right)^m\right]$									
	Material Coefficient	Units	Target Distribution	ı	Proposal Distribution]				
	Α	$N(\mu = 775, \sigma^2 = 3$	50) U [595,955]		1					
	В	[MPa]	$\mathcal{N}(\mu = 600, \sigma^2 = 1)$	100)	u[350, 850]					
	С	[-]	$N(\mu = 0.025, \sigma^2 =$	= 0.0025)	$\mathcal{U}[0.0005'0.005]$					
	n	[-]	$N(\mu = 0.38, \sigma^2 = 0.025)$		U[0.3, 0.45]					
	m	[-]	$\mathcal{N}(\mu = 0.98, \sigma^2 =$	0.01)	$\mathcal{U}[0.95, 1.01]$					
	Material Parameters	Units	Selected	Value						
	Effective plastic stra	[-]	0.08							
	Plastic strain rate (ϵ_p	$[s^{-1}]$	500							
	Reference strain rate	$[s^{-1}]$	1							
	Current Temperature	[°c]	600							
	Room Temperature ([°c]	22							
	Melting Temperature	[°c]	1632							
					1					
Materials Science & I	Engineering Department			Comp	outational Materials Sci. L	ab. 34				

Materials Science & Engineering Department

Computational Materials Sci. Lab.

UP in Phase Field Models for Additive Manufacturing

Pejman Honarmandi¹, Vahid Attari¹, Isaac Benson², Douglas Allaire² and, Mohammed Mahmoud³, Alaa Elwany³, Supriyo Ghosh¹, Kubra Karayagiz¹, Raymundo Arroyave,^{1,2,3}

¹Department of Materials Science and Engineering, Texas A&M University
²Department of Mechanical Engineering, Texas A&M University
³Department of Industrial and Systems Engineering, Texas A&M University

