
MOSAIC Manual
Release v2.2

Questions/Suggestions

Subscribe to our mailing list: visit https://groups.google.com/a/list.nist.gov/group/mosaic/.
Once subscribed, send messages by emailing mosaic@list.nist.gov.
To unsubscribe: email mosaic+unsubscribe@list.nist.gov.

Report problems with MOSAIC using the issue tracker on GitHub
https://github.com/usnistgov/mosaic/issues

https://groups.google.com/a/list.nist.gov/group/mosaic/
mailto:mosaic@list.nist.gov
mailto:mosaic+unsubscribe@list.nist.gov
https://github.com/usnistgov/mosaic/issues

Terms of Use

This software was developed at the National Institute of Standards and Technology by employees of the Federal
Government in the course of their official duties. Pursuant to title 17 section 105 of the United States Code this
software is not subject to copyright protection and is in the public domain. This software is experimental. NIST
assumes no responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied,
about its quality, reliability, or any other characteristic. This software can be redistributed and/or modified freely
provided that any derivative works bear some notice that they are derived from it, and any modified versions bear
some notice that they have been modified.

Disclaimer

Certain commercial firms and trade names are identified in this document in order to specify the installation and usage
procedures adequately. Such identification is not intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that related products are necessarily the best available
for the purpose.

MOSAIC Developers

Arvind Balijepalli, NIST

Kyle Briggs, Univeristy of Ottawa

Jacob Forstater, NIST

Joseph Robertson, NIST

Canute Vaz

Contents

1 Introduction 1

2 Data Processing Algorithms in MOSAIC 3
2.1 ADEPT 2-State . 3
2.2 ADEPT . 4
2.3 CUSUM+ . 5

3 Getting Started 7
3.1 Binary Installation . 7
3.2 Source Installation . 7
3.3 Docker Installation . 14

4 MOSAIC GUI 19
4.1 Interface Overview . 19
4.2 Panels A & B: Analysis Setup and Trajectory Viewer . 20
4.3 Panels C,D, & E: Blockade Depth Histogram, Statistics, and Event Viewer 23

5 MOSAIC WEB 27
5.1 Interface Overview . 27
5.2 Data Source Path . 29
5.3 Analysis Settings . 30
5.4 Analysis Results . 32

6 Settings File 35
6.1 Settings Layout . 35
6.2 Trajectory Settings . 36
6.3 Optimizing Settings . 41
6.4 Default Settings . 42

7 Database Structure and Query Syntax 45
7.1 Metadata Table . 46
7.2 Analysis Settings Table . 47
7.3 Work with SQLite . 47
7.4 Export to CSV . 48

8 Scripting and Advanced Features 51
8.1 Import Data and Run an Analysis . 51

i

8.2 Advanced Scripting . 54

9 Extend MOSAIC 59
9.1 Read Arbitrary Binary Data Files . 59
9.2 Define Top-Level Functionality . 61

10 Publication Quality Figures 63
10.1 Timeseries Plots . 63
10.2 Histogram Plots . 66
10.3 Contour Plots . 73

11 Advanced Analysis 77
11.1 Capture Rate . 77

12 Addons 81
12.1 Mathematica . 81
12.2 Matlab . 90
12.3 IGOR . 92

13 Developer Tools 95
13.1 Debug Logs . 95
13.2 Function Timing and Profiling . 97

14 API Documentation 99
14.1 MOSAIC Modules . 100

Python Module Index 143

Index 145

ii

CHAPTER 1

Introduction

MOSAIC is a modular toolbox for analyzing data from single molecule experiments. Primarily developed to analyze
data from nanopore experiments [Reiner:2012bg], MOSAIC can analyze any data that fit the form [Balijepalli:2014ft]:

𝑖(𝑡) = 𝑖0 +

𝑁∑︁
𝑗=1

𝑎𝑗

(︁
1− 𝑒−(𝑡−𝜇𝑗)/𝜏𝑗

)︁
𝐻 (𝑡− 𝜇𝑗)

The above functional form, which represents the response to a step change from one state to another is ubiqutous
in many disciplines. By fitting individual state changes to the equation above, MOSAIC is able to automatically
identify the states corresponding to each change. Moreover this approach allows us to accurately characterize transient
events before they asymptotically approach a steady state. In nanopore applications, this has resulted in a 20-fold
improvement in the number of states identified per unit time [Balijepalli:2014ft].

MOSAIC offers tremendous flexibility in how it can be used. Nanopore data can be analyzed and visualized using the
MOSAIC GUI (GUI), which is available as a stand-alone application (download binaries). This is a convenient way
for most users to analyze nanopore data. Advanced users can write their own Python scripts to include MOSAIC in
their analysis workflow (see Scripting and Advanced Features). Finally, because MOSAIC was designed from the start
using object oriented design, developers can easily extend it by combining existing classes to define new functionality
or writing their own classes (see Extend MOSAIC).

1

https://pages.nist.gov/mosaic/download.html

MOSAIC Manual, Release v2.2

2 Chapter 1. Introduction

CHAPTER 2

Data Processing Algorithms in MOSAIC

There are three primary algorithms available in MOSAIC to process time-series data from single-molecule nanopore
experiments. Fitting-based approaches are outlined in the Introduction, are implemented in MOSAIC using two sep-
arate algorithms, i) StepResponseAnalysis is used for events that exhibit a single state, and ii) MultistateAnalysis for
N-state events. In addition, the CUSUM algorithm is available for N-state events.

2.1 ADEPT 2-State

This algorithm limits the generalized algorithm for state-detection [Balijepalli:2014ft] to cases with a single state as
seen in the figure below. This simplified approach speeds up the analysis considerably and is appropriate to use for
many applications, for example the detection of PEG, small molecules, DNA homopolymers, etc. The adept2State
class uses a simplified form of the expression for the ionic current across a nanopore as shown below. Settings that
control the fit are defined through the settings file and are described in more detail in the Optimizing Settings section.
This functional form is fit to a time-series from a single event to recover optimal parameters for the mdoel.

𝑖(𝑡) = 𝑖0 + 𝑎
[︁(︁

𝑒−(𝑡+𝜇1)/𝜏 − 1
)︁
𝐻 (𝑡− 𝜇1) +

(︁
1− 𝑒−(𝑡+𝜇2)/𝜏

)︁
𝐻 (𝑡− 𝜇2)

]︁
This simplification speeds up the analysis for two state events like the PEG event in the figure below. The figure shows
the results of the fit (or meta-data) superimposed on the time-series of a single event.

2.1.1 Algorithm Settings

2.1.2 Metadata Output

Meta-data for individual events generated by adept2State can be queried using SQLite as described in the
Database Structure and Query Syntax section. A list of meta-data stored by the step response algorithm is given
below.

3

http://www.sqlite.org/

MOSAIC Manual, Release v2.2

Column Name Column Type Description
recIDX
ProcessingStatus
OpenChCurrent
BlockedCurrent
EventStart
EventEnd
BlockDepth
ResTime
RCConstant1
RCConstant2
AbsEventStart
ReducedChiSquared
ProcessTime
TimeSeries

INTEGER
TEXT
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL_LIST

Record index.
Status of the analysis.
Open channel current in pA.
Blocked state current in pA.
Event start in ms.
Event end in ms.
BlockedCurrent/OpenChCurrent.
EventEnd-EventStart in ms.
Downstroke RC constant in ms.
Upstroke RC constant in ms.
Global event start time in ms.
Reduced Chi-squared of fit.
Event processing time in ms.
(OPTIONAL) Event time-series.

2.2 ADEPT

The multistate algorithm implements the general case for identifying states in nanopore data [Balijepalli:2014ft]. The
general form of the equation used in this algorithm is shown below, where N is the number of states. This functional
form is fit to a time-series from a single event to recover optimal parameters for the mdoel.

𝑖(𝑡) = 𝑖0 +

𝑁∑︁
𝑗=1

𝑎𝑗

(︁
1− 𝑒−(𝑡−𝜇𝑗)/𝜏𝑗

)︁
𝐻 (𝑡− 𝜇𝑗)

Settings that control the fit are defined through the settings file and are described in more detail in the Optimizing Set-
tings section. Upon successfully fitting the model to an event, adept generates meta-data the describes the individual
states in the event. A representative example of one such event is shown in the figure below.

4 Chapter 2. Data Processing Algorithms in MOSAIC

MOSAIC Manual, Release v2.2

2.2.1 Algorithm Settings

2.2.2 Metadata Output

The adept algorithm outputs meta-data that characterizes every processed event. Similar to the stepresponse-page
algorithm, this information is stored in a SQLite database and is available for further processing (see Database Struc-
ture and Query Syntax). Notably, the data output by adept differs from adept2State in one important way.
Because the number of states (NStates) detected in each event is not pre-determined, key meta-data (e.g. BlockDepth,
EventDelay, etc.) are stored as arrays of real numbers with length equal to NStates.

Column Name Column Type Description
recIDX
ProcessingStatus
OpenChCurrent
NStates
CurrentStep
BlockDepth
EventStart
EventEnd
EventDelay
StateResTime
ResTime
RCConstant
AbsEventStart
ReducedChiSquared
ProcessTime
TimeSeries

INTEGER
TEXT
REAL
INTEGER
REAL_LIST
REAL_LIST
REAL
REAL
REAL_LIST
REAL_LIST
REAL
REAL_LIST
REAL
REAL
REAL
REAL_LIST

Record index.
Status of the analysis.
Open channel current in pA.
Number of detected states.
Blocked current steps in pA.
BlockedCurrent/OpenChCurrent for each state.
Event start in ms.
Event end in ms.
Start time of each state in ms.
Residence time of each state in ms.
EventEnd-EventStart in ms.
System RC constant in ms.
Global event start time in ms.
Reduced Chi-squared of fit.
Event processing time in ms.
(OPTIONAL) Event time-series.

2.3 CUSUM+

The CUSUM algorithm (used by OpenNanopore for example) [Raillon:2012is] is available in MOSAIC. In contrast
with other algorithms available in MOSAIC, this approach does not leverage system information in the analysis. This
however results in a faster estimation of single- and multi-level events, compared with stepresponse-page and ADEPT .
You can read about the CUSUM algorithm here.

Some known issues with CUSUM:

1. If the duration of a sub-event is shorter than a five RC constants, the averaging will underestimate the extent
of the current change. For longer events, CUSUM should achieve very similar output to the fitting employed

2.3. CUSUM+ 5

http://www.sqlite.org/
http://pubs.rsc.org/en/Content/ArticleLanding/2012/NR/c2nr30951c#!divAbstract

MOSAIC Manual, Release v2.2

elsewhere in MOSAIC.

2. CUSUM assumes an instantaneous transition between current states. As a result, if the RC rise time of the
system is large, CUSUM can trigger and detect intermediate states. This can usually be mitigated by optimizing
the algorithm sensitivity settings.

3. If an event is very long, CUSUM will detect a state transistion even if there is no real change, leading to an
artificially high number of states. This is a consequence of false positives from using a statistical t-test. In some
cases this can be mitigated by reducing the sensitivity.

Settings that control the algorithm are defined through the settings file, as described the Optimizing Settings section.
Upon successfully analyzing an event, cusumPlus generates meta-data the describes the individual states in the
event. A representative example of one such event is shown in the figure below.

2.3.1 Algorithm Settings

2.3.2 Metadata Output

The cusumPlus algorithm outputs meta-data that characterizes every processed event. Similar to the ADEPT algo-
rithm, this information is stored in a SQLite database and is available for further processing (see Database Structure
and Query Syntax).

Column Name Column Type Description
recIDX
ProcessingStatus
OpenChCurrent
NStates
CurrentStep
BlockDepth
EventStart
EventEnd
EventDelay
StateResTime
ResTime
AbsEventStart
ProcessTime
TimeSeries

INTEGER
TEXT
REAL
INTEGER
REAL_LIST
REAL_LIST
REAL
REAL
REAL_LIST
REAL_LIST
REAL
REAL
REAL
REAL_LIST

Record index.
Status of the analysis.
Open channel current in pA.
Number of detected states.
Blocked current steps in pA.
BlockedCurrent/OpenChCurrent for each state.
Event start in ms.
Event end in ms.
Start time of each state in ms.
Residence time of each state in ms.
EventEnd-EventStart in ms.
Global event start time in ms.
Event processing time in ms.
(OPTIONAL) Event time-series.

6 Chapter 2. Data Processing Algorithms in MOSAIC

http://www.sqlite.org/

CHAPTER 3

Getting Started

3.1 Binary Installation

MOSAIC is available as a pre-compiled binary for Windows and Mac OS X (download binaries). MOSAIC binaries do
not need special installation. Under Mac OS X open the the downloaded disk image and drag the MOSAIC executable
to the Applications folder. Under Windows, unzip downloaded zip file and move the MOSAIC executable to your hard
disk.

Note: MOSAIC binaries are 64-bit. If you need 32-bit support, please build MOSAIC from source as described in the
Source Installation section.

3.2 Source Installation

3.2.1 Install MOSAIC on Mac OS X

In the following guide, we provide step-by-step instructions on setting up and running MOSAIC on OS X. To simplify
the isntallation, we use Homebrew to install some required dependencies. Homebrew requires Apple command line
tools, but will directly prompt you to install it on set up.

1. Installing Homebrew

First we will install Homebrew, a useful package manager, to help install some of the dependencies required by
MOSAIC. You will need administrator access for this step. In the OS X Terminal, run the following command:

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
→˓install)"

Note, if the Apple command line tools are not installed, Homebrew will prompt you do so during installation.

7

https://pages.nist.gov/mosaic/download.html
https://brew.sh/
https://brew.sh/
https://brew.sh/

MOSAIC Manual, Release v2.2

Hint: To test if Homebrew is properly installed, run the following in the terminal: brew doctor

To ensure that Homebrew is set up correctly, add the Homebrew directory to ~/.bash_profile. This can be done using
the following command:

$ echo 'export PATH="/usr/local/bin:$PATH"' >> ~/.bash_profile

Hint: If you don’t have a .bash_profile file in your home directory, you can create one manually using a text editor.

Restart the terminal to update your shell.

2. Installing brewed Python and other neccessary packages

MOSAIC is written in Python and utilizes a number of different packages and utilities. In the following we’ll install
a number of these (specifically, python, gcc, gfortran, qt, and pyQt4). With homebrew this is easy to do in one line!
Run the following in the terminal:

$ brew install python gcc gfortran qt pyqt

At this point, it is a good idea to update the PYTHONPATH environment variable in ~/.bash_profile:

$ export PYTHONPATH=$PYTHONPATH:/usr/local/lib/python3.7/site-packages

3. (Optional) Install and Setup Virtual Environment

It is generally a good practice to run MOSAIC from within a dedicated virtual environment. This minimizes conflicts
with other installed programs. While we highly recommend this approach, it is not required to run MOSAIC. If you
prefer to skip this, move on to the next step now.

To setup a virtual environment, we need two different packages: virtualenv, which creates the virtual environments,
and virtualenvwrapper, a wrapper for virtualenv that simplifies set up and use.

To install these and set up the virtual enviroment wrapper, run the following in a shell:

$ pip install virtualenv virtualenvwrapper

Hint: Under Ubuntu, you may need install virtualenv and virtualenvwrapper as root. Simply prefix the command
above with sudo.

If you would like virtualenvwrapper to be available each time you open a new terminal window, add the line below to
~/.bash_profile on OS X or ~/.bashrc on Linux.

source /usr/local/bin/virtualenvwrapper.sh

Hint: Depending on the process used to install virtualenv, the path to virtualenvwrapper.sh may vary. Find the appro-
poriate path by running $ find /usr -name virtualenvwrapper.sh. Adjust the line in your .bash_profile
or .bashrc script accordingly.

Open a new shell to make the new virtual environment available. Now we are ready to create a virtual environment.
You can choose any name for your virtual environment, here we name it MOSAIC:

8 Chapter 3. Getting Started

https://brew.sh/
https://brew.sh/
https://www.python.org/

MOSAIC Manual, Release v2.2

$ mkvirtualenv -p <path to python>/python MOSAIC

Hint: We explicitly specify the Python installation to use. This is not mandatory, but is useful if you have multiple
Python installations on your computer. The <path to python> may vary according to the specific version of python
you wish to use. In most cases, this will be either /usr/local/bin/ or /usr/bin

4. Installing MOSAIC

Install using Setuptools

The command-line version of MOSAIC can be installed using pip as shown below. Any additional dependencies
required by MOSAIC will be installed automatically.

pip install mosaic-nist

Note: Installing the graphical interface requires one to install MOSAIC from the source distribution as outlined below.

Install from a Downloaded Source Distribution

First we need to obtain the MOSAIC source code. For analyzing publication data, we recommend downloading
the latest stable version of the source code (download source). Alternatively, the latest development version can be
downloaded from the MOSAIC page on Github. Here we will show you how to set up MOSAIC from the latest stable
release:

1. Download the latest release (download source)

2. Create a directory for the project source. In this case we will create a directory called MOSAIC, located in
~/projects/, where ‘~’ is your home directory.

$ mkdir ~/projects/MOSAIC

3. Navigate to the directory:

$ cd ~/projects/MOSAIC

4. Extract the source into this folder.

5. Make sure you are working in the virtual environment we set up in the previous step by typing:

$ workon MOSAIC

Note: You will notice that (MOSAIC) now appears in front of the $ prompt in your shell. This inidicates that the
virtual environment is active. We have employed this notation to indicate commands that should be run from inside
the virtual environment.

6. MOSAIC and its dependencies are built using setuptools. Navigate to ~/projects/MOSAIC/ and run the follow-
ing:

(MOSAIC)$ python setup.py mosaic_deps

7. Finally, add the installation directory (~/projects/MOSAIC as set up previously) to your PYTHONPATH as
shown below. This addition can be made permanent by adding the line below to your .bash_profile (OS X) or
.bashrc (Ubuntu) script.

3.2. Source Installation 9

https://pages.nist.gov/mosaic/download.html
https://github.com/usnistgov/mosaic
https://pages.nist.gov/mosaic/download.html

MOSAIC Manual, Release v2.2

(MOSAIC)$ export PYTHONPATH=$PYTHONPATH:~/projects/MOSAIC

5. Testing MOSAIC

To test the MOSAIC installation, in the MOSAIC directory type

$ python setup.py test -q

Verify that all tests pass as seen below

3.2.2 Install MOSAIC on Ubuntu(14.04)

MOSAIC can be run under Ubuntu using a procedure very similar to Install MOSAIC on Mac OS X.

1. Prerequisites

Several prerequisites must be installed prior to building MOSAIC dependencies. This is easily accomplished in Ubuntu
using the aptitude package manager.

Hint: superuser privileges are needed when installing MOSAIC prerequisites.

$ sudo apt-get install python python-dev python-pip python-qt4
pkg-config freetype* gfortran liblapack-dev libblas-dev

Next add the following to ~/.bashrc

export PYTHONPATH=/usr/lib/python3.7/dist-packages

2. (Optional) Install and Setup Virtual Environment

It is generally a good practice to run MOSAIC from within a dedicated virtual environment. This minimizes conflicts
with other installed programs. While we highly recommend this approach, it is not required to run MOSAIC. If you
prefer to skip this, move on to the next step now.

To setup a virtual environment, we need two different packages: virtualenv, which creates the virtual environments,
and virtualenvwrapper, a wrapper for virtualenv that simplifies set up and use.

To install these and set up the virtual enviroment wrapper, run the following in a shell:

$ pip install virtualenv virtualenvwrapper

Hint: Under Ubuntu, you may need install virtualenv and virtualenvwrapper as root. Simply prefix the command
above with sudo.

If you would like virtualenvwrapper to be available each time you open a new terminal window, add the line below to
~/.bash_profile on OS X or ~/.bashrc on Linux.

source /usr/local/bin/virtualenvwrapper.sh

10 Chapter 3. Getting Started

MOSAIC Manual, Release v2.2

Hint: Depending on the process used to install virtualenv, the path to virtualenvwrapper.sh may vary. Find the appro-
poriate path by running $ find /usr -name virtualenvwrapper.sh. Adjust the line in your .bash_profile
or .bashrc script accordingly.

Open a new shell to make the new virtual environment available. Now we are ready to create a virtual environment.
You can choose any name for your virtual environment, here we name it MOSAIC:

$ mkvirtualenv -p <path to python>/python MOSAIC

Hint: We explicitly specify the Python installation to use. This is not mandatory, but is useful if you have multiple
Python installations on your computer. The <path to python> may vary according to the specific version of python
you wish to use. In most cases, this will be either /usr/local/bin/ or /usr/bin

3. Installing MOSAIC

Install using Setuptools

The command-line version of MOSAIC can be installed using pip as shown below. Any additional dependencies
required by MOSAIC will be installed automatically.

pip install mosaic-nist

Note: Installing the graphical interface requires one to install MOSAIC from the source distribution as outlined below.

Install from a Downloaded Source Distribution

First we need to obtain the MOSAIC source code. For analyzing publication data, we recommend downloading
the latest stable version of the source code (download source). Alternatively, the latest development version can be
downloaded from the MOSAIC page on Github. Here we will show you how to set up MOSAIC from the latest stable
release:

1. Download the latest release (download source)

2. Create a directory for the project source. In this case we will create a directory called MOSAIC, located in
~/projects/, where ‘~’ is your home directory.

$ mkdir ~/projects/MOSAIC

3. Navigate to the directory:

$ cd ~/projects/MOSAIC

4. Extract the source into this folder.

5. Make sure you are working in the virtual environment we set up in the previous step by typing:

$ workon MOSAIC

Note: You will notice that (MOSAIC) now appears in front of the $ prompt in your shell. This inidicates that the
virtual environment is active. We have employed this notation to indicate commands that should be run from inside
the virtual environment.

3.2. Source Installation 11

https://pages.nist.gov/mosaic/download.html
https://github.com/usnistgov/mosaic
https://pages.nist.gov/mosaic/download.html

MOSAIC Manual, Release v2.2

6. MOSAIC and its dependencies are built using setuptools. Navigate to ~/projects/MOSAIC/ and run the follow-
ing:

(MOSAIC)$ python setup.py mosaic_deps

7. Finally, add the installation directory (~/projects/MOSAIC as set up previously) to your PYTHONPATH as
shown below. This addition can be made permanent by adding the line below to your .bash_profile (OS X) or
.bashrc (Ubuntu) script.

(MOSAIC)$ export PYTHONPATH=$PYTHONPATH:~/projects/MOSAIC

4. Testing MOSAIC

To test the MOSAIC installation, in the MOSAIC directory type

$ python setup.py test -q

Verify that all tests pass as seen below

3.2.3 Install MOSAIC on Windows

In the following guide, we provide step-by-step instructions on setting up and running MOSAIC on Windows. To
simplify the isntallation, we use Anaconda to install some required dependencies.

1. Installing Anaconda

First we will install Anaconda to easily install the dependencies required by MOSAIC. Download the 64-bit Anaconda
installer for Python 3.7 and use the graphical installer.

2. Installing MOSAIC dependencies within Anaconda

MOSAIC is written in Python and utilizes a number of different packages and utilities. In the following we’ll install a
number of these (specifically, python, gcc, gfortran, qt, and pyQt4). With Anaconda this is easy to do.

First, we create a self-contained environment to host the MOSAIC installation. Open the Anaconda prompt (Start
Menu–>Anaconda 2–>Anaconda Prompt) and type:

$ conda create -n mosaicENV python=3.7

Activate the new environment:

$ conda activate mosaicENV

Add a new installation source (conda-forge) for packages that are not included with Anaconda out of the box:

$ conda config --add channels conda-forge

Install all the dependencies by typing:

12 Chapter 3. Getting Started

https://anaconda.org/
https://anaconda.org/
https://anaconda.org/
https://www.python.org/
https://anaconda.org/
https://anaconda.org/
https://anaconda.org/

MOSAIC Manual, Release v2.2

$ conda install
cython=0.29
pandas=0.20.3
nose=1.3.7
numpy=1.11.1 o
scipy=0.18.1
docutils=0.14
flask=0.12.2
matplotlib=1.5.3
pyqt=4
lmfit=0.9.3
uncertainties=2.4.8.1
PyWavelets=0.5.2
coverage=4.5.1
codecov=2.0.15

Hint: The latest dependency version numbers can be obtained from the requirements.txt file.

Install the MOSAIC source by cloning the Github repository or using one of the methods below.

3. Installing MOSAIC

Install using Setuptools

The command-line version of MOSAIC can be installed using pip as shown below. Any additional dependencies
required by MOSAIC will be installed automatically.

pip install mosaic-nist

Note: Installing the graphical interface requires one to install MOSAIC from the source distribution as outlined below.

Install from a Downloaded Source Distribution

First we need to obtain the MOSAIC source code. For analyzing publication data, we recommend downloading
the latest stable version of the source code (download source). Alternatively, the latest development version can be
downloaded from the MOSAIC page on Github. Here we will show you how to set up MOSAIC from the latest stable
release:

1. Download the latest release (download source)

2. Create a directory for the project source. In this case we will create a directory called MOSAIC, located in
~/projects/, where ‘~’ is your home directory.

$ mkdir ~/projects/MOSAIC

3. Navigate to the directory:

$ cd ~/projects/MOSAIC

4. Extract the source into this folder.

5. Make sure you are working in the virtual environment we set up in the previous step by typing:

$ workon MOSAIC

3.2. Source Installation 13

https://github.com/usnistgov/mosaic/blob/devel-2.0/requirements.txt
https://github.com/usnistgov/mosaic
https://pages.nist.gov/mosaic/download.html
https://github.com/usnistgov/mosaic
https://pages.nist.gov/mosaic/download.html

MOSAIC Manual, Release v2.2

Note: You will notice that (MOSAIC) now appears in front of the $ prompt in your shell. This inidicates that the
virtual environment is active. We have employed this notation to indicate commands that should be run from inside
the virtual environment.

6. MOSAIC and its dependencies are built using setuptools. Navigate to ~/projects/MOSAIC/ and run the follow-
ing:

(MOSAIC)$ python setup.py mosaic_deps

7. Finally, add the installation directory (~/projects/MOSAIC as set up previously) to your PYTHONPATH as
shown below. This addition can be made permanent by adding the line below to your .bash_profile (OS X) or
.bashrc (Ubuntu) script.

(MOSAIC)$ export PYTHONPATH=$PYTHONPATH:~/projects/MOSAIC

4. Testing MOSAIC

To test the MOSAIC installation, in the MOSAIC directory type

$ python setup.py test -q

Verify that all tests pass as seen below

3.3 Docker Installation

MOSAIC can be installed using Docker Desktop. This may be desirable in many cases because it provides a consistent
experience across all operating systems. Installing MOSAIC using Docker is relatively straightforward and requires
only a few steps as described below.

1. Install Docker Desktop

Download and install Docker Desktop. Follow instructions for either Windows or Mac OS X installation.

2. Create a configuration file

Copy the text below and paste into a file called docker-compose.yml.

Note: The filename and extension should be docker-compose.yml.

Modify the data path and log file paths under the volumes line appropriately for your PC.

Also note the version number in the image line.

Place the docker-compose.yml anywhere on your PC.

version: '3'
services:
mosaic:

(continues on next page)

14 Chapter 3. Getting Started

https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-desktop/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-mac/install/

MOSAIC Manual, Release v2.2

(continued from previous page)

image: ghcr.io/usnistgov/mosaic:v2.2
ports:

- "5000:5000"
volumes:

- C:\\Users\\arvind\\Desktop:/src/data
- C:\\Users\\arvind\\Desktop:/var/logs

3. Run MOSAIC using Docker

Open the Command Prompt in Windows or Terminal on Mac OS.

Hint: You can launch the Command Prompt by typing cmd in the search bar on Windows.

In the Command Prompt, navigate to the directory that you placed the docker-compose.yml file. For example
if you place the file at C:\\Users\\arvind\Desktop then type:

c:
cd Users\arvind\Desktop

Run the Docker MOSAIC image by typing:

docker compose up

You should see Docker download the image file and start MOSAIC similar to the figure below

4. Run MOSAIC Web UI

Open a browser and type localhost:5000 in the address bar. This should load the MOSAIC web UI as shown
below.

3.3. Docker Installation 15

MOSAIC Manual, Release v2.2

16 Chapter 3. Getting Started

MOSAIC Manual, Release v2.2

3.3. Docker Installation 17

MOSAIC Manual, Release v2.2

18 Chapter 3. Getting Started

CHAPTER 4

MOSAIC GUI

MOSAIC’s GUI interface is designed to allow you to easily setup and run an analysis and to analyze the results of prior
trials via a graphical interface; it contains the most commonly used features of MOSAIC. The GUI contains modular
panels for setting up an analysis, running it, and analyzing the results. Here we give you a brief overview of the
graphical interface and its basic use. You can learn more in the examples-page section.

Opening the GUI

If you installed MOSAIC from a precomiled binary, you can open the GUI by double clicking the MOSAIC icon.
Alternatively, if you compiled MOSAIC from source code, you can run the GUI from the terminal window – navigate
to the installation directory and type:

python runMOSAIC

Hint: Having trobule getting the GUI to start? Frequently, this arises because your PYTHONPATH environment
variable is set up incorrectly. To fix this error, first type echo $PYTHONPATH in the terminal. If you don’t see
the path to the MOSAIC installation in PYTHONPATH, consult the operating-system specific instructions (OSX or
Ubuntu) to help resolve this issue.

4.1 Interface Overview

The main interface consists of five panels which we go over in detail later in this document. Briefly, these are:

A) Analysis Setup: This panel is used to set up the analysis parameters.

B) Trajectory Viewer: This panel shows a snippet of the ionic current time-series and an all points histogram, used
to set the baseline and threshold parameters found in Panel A: Analysis Setup.

C) Blockade Depth Histogram: Once the data processing has started, this panel shows a live blockade depth his-
togram; a query can be defined to restrict the histogram to data which fulfills a user-defined criteria.

D) Analysis Statistics: Displays live statistics about the data processed.

19

MOSAIC Manual, Release v2.2

Fig. 1: Primary panels in MOSAIC: (A)Analysis Setup (B) Trajectory Viewer (C) Live Blockade Depth Histogram (D)
Live Analysis Statistics (E) Event Viewer.

E) Event Viewer: Displays the partitioned events and their fit. This panel is active only if “Write Events to Disk” is
enabled in the Analysis Setup.

4.2 Panels A & B: Analysis Setup and Trajectory Viewer

4.2.1 Panel A: Analysis Setup

1. Data Settings

• Path: Allows user to set the directory containing files to analyze. Click the “. . . ” icon to navigate to the directory.

• File Type: The GUI is natively compatible with either ABF or QDF Files, this field is automatically populated
based on the files in the directory you’ve chosen.The Rfb and Cfb parameters are needed to correctly analyze
QDF files (see qdfTrajIO for more information)

• Rfb & Cfb: MOSAIC supports the QUB QDF file format used by the Electronic Biosciences Nanopatch system.
Two additional parameters, the feedback resistance (Rfb) in Ohms and capacitance (Cfb) in Farads are required
to appropriately convert the measurements to ionic current.

• Start and End: These parameters allow you to analyze a range of your data. Choose the starting and ending
times if you’d like to analyze a small time segement of your data. If this is left blank, all data will be analyzed.

• DC Offset: If your measurement contains a systematic bias, it can be manually corrected by entering the DC
offset here.

2. Baseline Current Detection

20 Chapter 4. MOSAIC GUI

http://electronicbio.com

MOSAIC Manual, Release v2.2

Fig. 2: Overview of Panels A & B: (A) Analysis setup panel (B) Trajectory viewer panel

• 𝜇: Mean baseline current, in picoamperes (pA). This is shown schematically in the trajectory viewer (see Label
#8). When Auto is selected, this will be greyed out and labeled <auto>

• 𝜎: Noise level (in pA). This is expected noise level of your baseline. Typically one would set this to the measured
RMS noise of the open channel state at the cutoff frequency. When Auto is selected, this will be greyed out and
labeled <auto>.

• Auto: Checking this box enables automatic dectection of the mean baseline current (𝜇) and noise level (𝜎).
When auto is enabled, the values chosen by the software will be displayed in the trajectory viewer panel (see
Label #10)

• Block Size: Controls the amount of data examined to determine the baseline. This also controls the amount of
data shown in the trajectory viewer.

3. Event Partition Control

This panel is used to set the current threhold used for event detection

• Algorithm: Currently,the only event partitioning algorithm enabled is CurrentThreshold.

• Threshold: This is used to set the minimum current threshold used to partition events with the CurrentThreshold
algorithm.

4. Event Processing Setup

Event Processing Algorithm: The GUI supports two event processing algorithms, i) StepResponseAnalysis and ii)
MultiStateAnalysis. StepResponseAnalysis is the default analysis, and should be used with data sets with unimodal
events. For events with mutliple states or steps the MultiStateAnalysis algorithm, which is capable of automatically an-
alyzing events with N states, should be used. Note that StepResponseAnalysis is a restricted case of MultiStateAnalysis
and is more computationally efficient to run if you have unimodal (or single states) data.

• Write Events to Disk: When this box is checked, the data points for each partition events are written to the
SQLite database. When this is checked it is possible to view the individual fits of each in the Event Fits panel.

Hint: When Write Evens to Disk is checked, your database can become extremely large! This is because MOSAIC

4.2. Panels A & B: Analysis Setup and Trajectory Viewer 21

http://www.sqlite.org/

MOSAIC Manual, Release v2.2

is effectively writing most of your time-series to the database. Note that the fit parameters are always written to the
database.

• Parallel Processing and Processors: Parallel processing can be enabled by checking this box. This box will be
greyed out if the python module ZeroMQ is not installed. The Processors box allows you to select the number
of processors used in the analysis. It is important to note that the GUI will occupy one processor, so choosing 3
processors will actually use a total of 4 processors.

5. Plot Results and Advanced Settings

• Event Fits: Checking this box will show the events viewer (Panel E). This can also be accessed from the file
menu View>Plots>Event Fits. If Write Events to Disk is not enabled this checkbox will be greyed out.

• Blockade Depth Histogram: Checking this box will show the blockade depth histogram (Panel C). This can
also be accessed through the file menu View>Plots>Blockade Depth Histogram.

• Advanced Settings: This opens a dialog window to manually edit settings not otherwise accessible in the GUI.
See the Settings File section for further details.

4.2.2 Panel B: Trajectory Viewer

This panel shows a segment of the data time series. The file currently being displayed is shown at the top of the
window. If data from multiple files are loaded, the last filename is displayed. The length of time displayed in the
window is controlled by BlockSize in Panel A (see #2).

6. Time Series (Trajectory)

• This plot shows the ionic current time series, of length BlockSize. Other features in the panel (such as histogram,
denoising, etc.) only utilize the data in the window for their calculations.

7. All Points Histogram

• This shows a histogram of the time series data shown in #6.

8. Dashed line indicates mean baseline current

9. Detection threshold level indicated by solid red line

10. Navigation, Denoising, and Statistics

• Navigation Tools: Tools to navigate the plot window are shown below the time-series plot. These can be applied
to either the trajectory or all points histogram plots. The arrow bar on the bottom right of the trajectory viewer
can be used to advance to the next data block.

• Denoising Wavelet denoising can be activated by clicking , the denoising level is enabled here, the level of
denoising can be varied between 1 and 5.

Warning: Wavelet-based denoising is currently an experimental feature and should be used with caution.

• Baseline Statistics: The mean baseline current, standard deviation, and the threshold used for event detection
(specified as a multiple of the standard deviation in parenthesis) correspond to the settings in the main window.
If the baseline current detection is set to auto these values will update as each data segment is examined. The
size of this segment is determined by the Block Size setting. In the figure above, the Block Size is set to 0.5 s.

22 Chapter 4. MOSAIC GUI

https://zeromq.github.io/pyzmq/

MOSAIC Manual, Release v2.2

4.3 Panels C,D, & E: Blockade Depth Histogram, Statistics, and Event
Viewer

4.3.1 Panel C: Blockade Depth Histogram

Fig. 3: Blockade depth histogram

This window shows the blockade depth histogram calculated from the meta-data output by MOSAIC.

• Filter: The data displayed in the histogram can be restricted to events that fulfill specific user-defined criteria.
For instance, the default filter ResTime > 0.025 only includes events longer than 0.025 ms (or 25 𝜇𝑠). The
GUI uses a SQL select statement to restrict the events included in the histogram. The text in the Filter field
represents the part of the query after the where clause, and allows the user to use standard SQL syntax to narrow
the results in the plot. See the Work with SQLite section for details on SQL syntax.

• Bins: The number of bins in the histogram are defined here. By default, 500 bins are used, but the user can
change this necessary.

• Detect Peaks: Checking Detect Peaks enables a wavelet-based peak detection algorithm. The wavelet level
slider controls the sensitivity of the peak detection. Sliding it to the right will decrease the number of peaks
picked up. The peaks detected are represented with red dots. Mousing over the detected peaks cause the
coordinates of the peak to be displayed in the lower right hand corner of the window. The detected peaks can
also be exported to a CSV file from the file menu File>Save Histogram.

4.3.2 Panel D: Statistics

The Statistics Window is displayed when a new analysis is started and displays:

• Events Processed: The number of events processed.

• Processing Error: The processing error rate (i.e. the percentage of events for which fit has failed).

• Capture Rate: An estimate of the mean capture rate.

• Analysis Time: The amount of data processed (in seconds).

4.3. Panels C,D, & E: Blockade Depth Histogram, Statistics, and Event Viewer 23

https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL

MOSAIC Manual, Release v2.2

Fig. 4: Live statistics window

4.3.3 Panel E: Event Viewer

Fig. 5: Event viewer window

If Write to Disk is enabled, this panel allows you to view the first 10,000 events processed. This is useful to ensure the
quality of the analysis and to debug potential problems with the settings.

4.3.4 Console Log

When processing is complete, this panel displays a log of the analysis. This log contains useful information such as
the analysis settings, the number of events fit, baseline drift, open channel conducatance, etc. This file is written to the
database and can be accessed later.

24 Chapter 4. MOSAIC GUI

MOSAIC Manual, Release v2.2

Fig. 6: Console log window

4.3.5 Advanced Settings

This dialog allows you to manually edit advanced settings for uncommon use cases not natively accessible from within
the GUI. Further information can be found in the Settings File.

4.3. Panels C,D, & E: Blockade Depth Histogram, Statistics, and Event Viewer 25

MOSAIC Manual, Release v2.2

Fig. 7: Advanced settings window

26 Chapter 4. MOSAIC GUI

CHAPTER 5

MOSAIC WEB

MOSAIC’s web interface is designed to allow you to easily setup and run an analysis, or to visualize and analyze the
results of previous experiments. It contains the most commonly used features of MOSAIC. The web interface consists
of a series of screens that allow you to set up and run an analysis. The interface keeps track of all analysis within the
current session so it is easy to go back and compare data sets. The web interface is designed to allow you to easily
run the most common use cases. For more complicated analysis, please refer to the Scripting and Advanced Features
section.

Opening the Web Interface

The web interface can be run locally, allowing you to run a MOSAIC analysis from within any modern web browser.
If you installed MOSAIC from a precomiled binary, you can start the web interface by double clicking the MOSAIC
icon. Alternatively, if you compiled MOSAIC from source code, you can run the GUI from the terminal window –
navigate to the installation directory and type:

python runMOSAIC

This should start a local copy of the MOSAIC web server and open a new browser window that launches the web
interface. Running servers can be accessed at anytime by opening a browser and entering http://localhost:5000 in the
adress bar.

5.1 Interface Overview

The main screen of the MOSAIC web interface is the starting point for running new analyses or reviewing previous
runs.

27

http://localhost:5000

MOSAIC Manual, Release v2.2

Fig. 1: The main screen of the MOSAIC web interface allows new analyses to be set up or previous runs to be retrieved.

28 Chapter 5. MOSAIC WEB

MOSAIC Manual, Release v2.2

5.2 Data Source Path

The path of the data source can be changed when MOSAIC is run in local mode, i.e., when it is run entirely on a local
machine. This is the default configuration of the pre-compiled binaries. When running MOSAIC from source it can be
enabled by editing the global.json file.

The data source path can be edited when starting a new analysis or loading a previous analysis by clicking the
CHANGE DATA PATH button shown in the figure below.

The setting can also be accessed from the overflow menu at the top right and then clicking Set Data Path as seen from
the figure below.

The new source data path can be entered in the resulting dialog. Click CHANGE to save the new path.

If the new path is invalid, an error message will be displayed and the path will not be updated as seen below.

5.2. Data Source Path 29

MOSAIC Manual, Release v2.2

5.3 Analysis Settings

The analysis settings interface displays the data trajectory and allows one to set up and run an analysis. Below we
present an overview of the different settings available on this screen. The numbered sections correspond to the numbers
in the figure below.

1. Time-Series

This section of the analysis settings shows a segment of the data time series. The length of time-series displayed is
determined by BlockSize parameter in #2.

• Gray Dashed line: The gray dashed line in the time-series display indicates the mean baseline current (⟨𝑖0⟩) as
estimated in #3.

• Solid Red line: The red line in the time-series indicates the threshold current set in #3.

• Data Path: The location of the data filesand currently being displayed is shown at the top of the window. If
data from multiple files are loaded, the last filename is displayed.

• Fs: The sampling frequency of the time-series data in kHz.

2. Data File Settings

• File Type: The web interface is natively compatible with ABF, BIN or QDF Files. If the data path contains any
of those file types this field is automatically populated.

• DC Offset: If your measurement contains a systematic bias, it can be manually corrected by entering the DC
offset here.

• Start and End: These parameters allow you to analyze a range of your data. Choose the starting and ending
times if you’d like to analyze a small time segement of your data. If both fields are left blank, all data will be
analyzed. If the End field is left blank, the data segment from Start to the end of the data will be analyzed.

3. Event Partition Control

• Partition Algorithm: Currently, the only event partitioning algorithm available is CurrentThreshold.

• Block Size: Controls the amount of data used to determine the baseline. This setting also controls the amount
of data shown in the trajectory viewer.

• ⟨𝑖0⟩: Mean open channel current, in picoamperes (pA). This is shown using the gray dashed line in the time-
series viewer (see #1). When Auto is selected, this input will be disabled.

30 Chapter 5. MOSAIC WEB

MOSAIC Manual, Release v2.2

• 𝜎𝑖0 : Standardard deviation of the open channel current noise in pA. This is expected noise level of your base-
line. Typically one would set this to the measured standard deviation of the open channel current at the cutoff
frequency. When Auto is selected, this input will be disabled.

• Auto: Checking this box enables automatic dectection of ⟨𝑖0⟩ and 𝜎𝑖0 .

• Threshold: The slider and correspnding text input can be used to set the current threshold used to determine the
start of an event. This setting is used by the CurrentThreshold algorithm to perform an initial partition of the
time-series into individual events.

4. Event Processing Setup

Event Processing Algorithm: The GUI supports two event processing algorithms, i) StepResponseAnalysis and ii)
MultiStateAnalysis. StepResponseAnalysis is the default analysis, and should be used with data sets with unimodal
events. For events with mutliple states or steps the MultiStateAnalysis algorithm, which is capable of automatically an-
alyzing events with N states, should be used. Note that StepResponseAnalysis is a restricted case of MultiStateAnalysis
and is more computationally efficient to run if you have unimodal (or single states) data.

• Write Events to Disk: When this box is checked, the data points for each partition events are written to the
SQLite database. When this is checked it is possible to view the individual fits of each in the Event Fits panel.

Hint: When Write Events to Disk is checked, your database can become extremely large! This is because MOSAIC
is effectively writing most of your time-series to the database. Note that the fit parameters are always written to the
database.

5. Advanced Settings

5.3. Analysis Settings 31

http://www.sqlite.org/

MOSAIC Manual, Release v2.2

This opens a dialog window to manually edit settings not otherwise accessible in the GUI. See the Settings File section
for further details.

6. Start Analysis/Update Settings

Use this button to either start the analysis when it has a Play symbol or to update and validate any settings when it
displays a Check Mark.

5.4 Analysis Results

1. Analysis Control

Statistics

The Statistics Window is displayed when a new analysis is started and displays:

• Events Processed: The number of events processed.

• Processing Error: The processing error rate (i.e. the percentage of events for which fit has failed).

• Capture Rate: An estimate of the mean capture rate.

• Analysis Time: The amount of data processed (in seconds).

2. Results View

This window shows the blockade depth histogram calculated from the meta-data output by MOSAIC.

• Filter: The data displayed in the histogram can be restricted to events that fulfill specific user-defined criteria.
For instance, the default filter ResTime > 0.025 only includes events longer than 0.025 ms (or 25 𝜇𝑠). The
GUI uses a SQL select statement to restrict the events included in the histogram. The text in the Filter field
represents the part of the query after the where clause, and allows the user to use standard SQL syntax to narrow
the results in the plot. See the Work with SQLite section for details on SQL syntax.

• Bins: The number of bins in the histogram are defined here. By default, 500 bins are used, but the user can
change this necessary.

• Detect Peaks: Checking Detect Peaks enables a wavelet-based peak detection algorithm. The wavelet level
slider controls the sensitivity of the peak detection. Sliding it to the right will decrease the number of peaks
picked up. The peaks detected are represented with red dots. Mousing over the detected peaks cause the
coordinates of the peak to be displayed in the lower right hand corner of the window. The detected peaks can
also be exported to a CSV file from the file menu File>Save Histogram.

32 Chapter 5. MOSAIC WEB

https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL

MOSAIC Manual, Release v2.2

5.4. Analysis Results 33

MOSAIC Manual, Release v2.2

34 Chapter 5. MOSAIC WEB

CHAPTER 6

Settings File

MOSAIC stores its settings in the JSON format. When using the graphical interface, a settings file is generated
automatically upon starting an analysis, or by clicking Save Settings in the File menu (see MOSAIC GUI).

6.1 Settings Layout

JSON is a human readable file format that consists of key-value pairs separated by sections. Each section in a JSON
object consists of a section name and a list of string key-value pairs.

{
"<section name>" : {

"key1" : "value1",
"key2" : "value2",
...

}

}

MOSAIC settings define a new section for each class, with key-value pairs corresponding to class attributes that are set
upon initialization. This is illustrated below for the adept2State class. The adept2State section in the settings file holds
parameters corresponding to the adept2State class. Note that that the section name in the settings file is identical
to the corresponding class name. Three parameters are then defined within the section that control the behavior of the
class.

{
"adept2State" : {

"FitTol" : "1.e-7",
"FitIters" : "50000",
"BlockRejectRatio" : "0.9"

}
}

35

https://json.org/
https://json.org/

MOSAIC Manual, Release v2.2

Finally, adept2State is initialized by defining class attributes corresponding to the key-value pairs in the settings
file.

try:
self.FitTol=float(self.settingsDict.pop("FitTol", 1.e-7))
self.FitIters=int(self.settingsDict.pop("FitIters", 5000))

self.BlockRejectRatio=float(self.settingsDict.pop("BlockRejectRatio",
→˓0.8))

except ValueError as err:
raise commonExceptions.SettingsTypeError(err)

6.2 Trajectory Settings

6.2.1 Common Settings (metaTrajIO)

class mosaic.trajio.metaTrajIO.metaTrajIO(**kwargs)

Warning: This metaclass must be sub-classed. All abstract methods within this metaclass must be imple-
mented.

Initialize a TrajIO object. The object can load all the data in a directory, N files from a directory or from
an explicit list of filenames. In addition to the arguments defined below, implementations of this meta class
may require the definition of additional arguments. See the documentation of those classes for what those may
be. For example, the qdfTrajIO implementation of metaTrajIO also requires the feedback resistance (Rfb) and
feedback capacitance (Cfb) to be passed at initialization.

Parameters

• dirname : all files from a directory (‘<full path to data directory>’)

• nfiles : if requesting N files (in addition to dirname) from a specified directory

• fnames : explicit list of filenames ([file1, file2,. . .]). This argument cannot be used in con-
juction with dirname/nfiles. The filter argument is ignored when used in combination with
fnames.

• filter : ‘<wildcard filter>’ (optional, filter is ‘*’ if not specified)

• start : Data start point in seconds.

• end : Data end point in seconds.

• datafilter : Handle to the algorithm to use to filter the data. If no algorithm is specified,
datafilter is None and no filtering is performed.

• dcOffset : Subtract a DC offset from the ionic current data.

• filtersettings: Dict containing low pass filter settings (optional: if not provided filter settings
will be loaded from the settings file. If no settings are found, datafilter will be turned off.)

Properties

• FsHz : sampling frequency in Hz. If the data was decimated, this property will hold the
sampling frequency after decimation.

36 Chapter 6. Settings File

MOSAIC Manual, Release v2.2

• LastFileProcessed : return the data file that was last processed.

• ElapsedTimeSeconds : return the analysis time in sec.

Errors

• IncompatibleArgumentsError : when conflicting arguments are used.

• EmptyDataPipeError : when out of data.

• FileNotFoundError : when data files do not exist in the specified path.

• InsufficientArgumentsError : when incompatible arguments are passed

6.2.2 QDF Files (qdfTrajIO)

class mosaic.trajio.qdfTrajIO.qdfTrajIO(**kwargs)
Use the readqdf module from EBS to read individual QDF files.

In addition to metaTrajIO args, check if the feedback resistance (Rfb) and feedback capacitance (Cfb) are
defined to convert qdf binary data into pA.

A typical settings section to read QDF files is shown below. Note, that the values for Rfb and Cfb are specific
to the amplifier used.

"qdfTrajIO": {
"Rfb" : 9.1e+12,
"Cfb" : 1.07e-12,
"dcOffset" : 0.0,
"filter" : "*.qdf",
"start" : 0.0
}

Parameters

In addition to metaTrajIO.__init__ args,

• Rfb : feedback resistance of amplifier

• Cfb : feedback capacitance of amplifier

• format : ‘V’ for voltage or ‘pA’ for current. Default is ‘V’

Returns None

Errors

• InsufficientArgumentsError : if the mandatory arguments Rfb and Cfb are not set.

6.2.3 ABF Files (abfTrajIO)

class mosaic.trajio.abfTrajIO.abfTrajIO(**kwargs)
Read ABF1 and ABF2 file formats. Currently, only gap-free mode and single channel recordings are supported.

A typical settings section to read ABF files is shown below.

"abfTrajIO" : {
"filter" : "*.abf",
"start" : 0.0,
"dcOffset" : 0.0
}

6.2. Trajectory Settings 37

MOSAIC Manual, Release v2.2

Parameters

In addition to metaTrajIO args, None

6.2.4 Binary Files (binTrajIO)

class mosaic.trajio.binTrajIO.binTrajIO(**kwargs)
Read a file that contains interleaved binary data, ordered by column. Only a single column that holds ionic cur-
rent data is read. The current in pA is returned after scaling by the amplifier scale factor (AmplifierScale)
and removing any offsets (AmplifierOffset) if provided.

Usage and Assumptions Binary data is interleaved by column. For three columns (a, b, and c) and
N rows, binary data is assumed to be of the form:

[a_1, b_1, c_1, a_2, b_2, c_2, , a_N, b_N, c_N]

The column layout is specified with the ColumnTypes parameter, which accepts a list of
tuples. For the example above, if column a is the ionic current in a 64-bit floating point format,
column b is the ionic current representation in 16-bit integer format and column c is an index
in 16-bit integer format, the ColumnTypes paramter is a list with three tuples, one for each
column, as shown below:

[(‘curr_pA’, ‘float64’), (‘AD_V’, ‘int16’), (‘index’, ‘int16’)]

The first element of each tuple is an arbitrary text label and the second element is a valid Numpy
type.

Finally, the IonicCurrentColumn parameter holds the name (text label defined above) of
the column that holds the ionic current time-series. Note that if an integer column is selected, the
AmplifierScale and AmplifierOffset parameters can be used to convert the voltage
from the A/D to a current.

Assuming that we use a floating point representation of the ionic current, and a sampling rate of
50 kHz, a settings section that will read the binary file format defined above is:

"binTrajIO": {
"AmplifierScale" : "1",
"AmplifierOffset" : "0",
"SamplingFrequency" : "50000",
"ColumnTypes" : "[('curr_pA', 'float64'), ('AD_V', 'int16'), (

→˓'index', 'int16')]",
"IonicCurrentColumn" : "curr_pA",
"dcOffset": "0.0",
"filter": "*.bin",
"start": "0.0",
"HeaderOffset": 0

}

Settings Examples Read 16-bit signed integers (big endian) with a 512 byte header offset. Set the
amplifier scale to 400 pA, sampling rate to 200 kHz.

"binTrajIO": {
"AmplifierOffset": "0.0",
"SamplingFrequency": 200000,
"AmplifierScale": "400./2**16",
"ColumnTypes": "[('curr_pA', '>i2')]",
"dcOffset": 0.0,
"filter": "*.dat",

(continues on next page)

38 Chapter 6. Settings File

http://docs.scipy.org/doc/numpy/user/basics.types.html
http://docs.scipy.org/doc/numpy/user/basics.types.html

MOSAIC Manual, Release v2.2

(continued from previous page)

"start": 0.0,
"HeaderOffset": 512,
"IonicCurrentColumn": "curr_pA"

}

Read a two-column file: 64-bit floating point and 64-bit integers, and no header offset. Set the
amplifier scale to 1 and sampling rate to 200 kHz.

"binTrajIO": {
"AmplifierOffset": "0.0",
"SamplingFrequency": 200000,
"AmplifierScale": "1.0",
"ColumnTypes" : "[('curr_pA', 'float64'), ('AD_V',

→˓'int64')]",
"dcOffset": 0.0,
"filter": "*.bin",
"start": 0.0,
"HeaderOffset": 0,
"IonicCurrentColumn": "curr_pA"

}

Parameters

In addition to metaTrajIO args,

• AmplifierScale : Full scale of amplifier (pA/2^nbits) that varies with the gain (default:
1.0).

• AmplifierOffset : Current offset in the recorded data in pA (default: 0.0).

• SamplingFrequency : Sampling rate of data in the file in Hz.

• HeaderOffset : Ignore first n bytes of the file for header (default: 0 bytes).

• ColumnTypes : A list of tuples with column names and types (see Numpy types). Note
only integer and floating point numbers are supported.

• IonicCurrentColumn : Column name that holds ionic current data.

Returns None

Errors None

6.2.5 Chimera Files (binTrajIO)

class mosaic.trajio.chimeraTrajIO.chimeraTrajIO(**kwargs)
Read a file generated by the Chimera VC100. The current in pA is returned after scaling by the amplifier scale
factors.

Usage and Assumptions Binary data is in a single column of unsigned 16 bit integers:

The column layout is specified with the ColumnTypes parameter, which accepts a list of
tuples.

[(‘curr_pA’, ‘<u2’)]

The option is left in in case of future changes to the platform, but can be left alone in the settings
file for now. The first element of each tuple is an arbitrary text label and the second element is a
valid Numpy type.

6.2. Trajectory Settings 39

http://docs.scipy.org/doc/numpy/user/basics.types.html
http://docs.scipy.org/doc/numpy/user/basics.types.html

MOSAIC Manual, Release v2.2

Chimera gain settings are used to convert the integers stored by the ADC to current values. These
values are automatically read in from matched MAT files generated by the Chimera software.

"chimeraTrajIO": {
"filter": "*.log",
"start": "0.0",
"HeaderOffset": "0"

}

Parameters In addition to metaTrajIO args,

• HeaderOffset : Ignore first n bytes of the file for header (currently fixed at: 0 bytes).

Returns None

Errors None

6.2.6 TSV Files (binTrajIO)

class mosaic.trajio.tsvTrajIO.tsvTrajIO(**kwargs)
Read tab separated valued (TSV) files.

Parameters

In addition to metaTrajIO args,

• headers : If True, the first row is ignored (default: True)

• separator : set the data separator (defualt: ‘”"t’)

• scale : set the data scale (default: 1). For example to convert from to pA set
scale=1e12.

Either:

• Fs : Sampling frequency in Hz. If set, all other options are ignored and the first column
in the file is assumed to be the current in pA.

Or:

• nCols : number of columns in TSV file (default:2, first column is time in ms and second
is current in pA)

• timeCol : explicitly set the time column (default: 0, first col)

• currCol : explicitly set the position of the current column (default: 1)

If neither Fs nor {nCols, timeCol, currCol} are set then the latter is assumed with the
listed default values.

40 Chapter 6. Settings File

MOSAIC Manual, Release v2.2

6.3 Optimizing Settings

MOSAIC classes are controlled through the JSON settings files as defined above. In most cases, running MOSAIC
through the GUI (see MOSAIC GUI) should generate satisfactory results. However, settings can be further opti-
mized either by editing a file named .settings stored within the data directory, or by clicking on the Advanced
Settings check-box in the Panel A: Analysis Setup section of the GUI.

6.3.1 Initial Event Detection (eventSegment)

The first step when analyzing an ionic-current time series is to perform a quick partition to identify events. This is
accomplished by overriding the eventPartition class. Currently, the only implementation of event partitioning is
the eventSegment algorithm. This algorithm uses a thresholding technique to detect the start and end of an event.
When an event is detected the ionic current time-series associated with that event is passed to a processing algorithm
for fitting. Settings that can be passed to eventSegment are given below followed by their descriptions.

"eventSegment" : {
"blockSizeSec" : "0.5",
"eventPad" : "50",
"minEventLength" : "5",
"eventThreshold" : "6.0",
"driftThreshold" : "999.0",
"maxDriftRate" : "999.0",
"meanOpenCurr" : "-1",
"sdOpenCurr" : "-1",
"slopeOpenCurr" : "-1",
"writeEventTS" : "1",
"parallelProc" : "0",
"reserveNCPU" : "2"

}

Setting Description
blockSizeSec
eventPad
minEventLength
eventThreshold
meanOpenCurr
sdOpenCurr
slopeOpenCurr
driftThreshold
maxDriftRate
writeEventTS
parallelProc
reserveNCPU

Time-series length (in sec) for block operations.
Pad an event with the specified number of points.
Discard events with fewer than the specfied points.
Event detection threshold.
Set the mean open channel current (i0) in pA. -1 computes i0 automatically.
Set the open channel std. dev. in pA. -1 computes SD automatically.
Set the open channel drift in pA/ms. -1 automatically computes the slope.
Aborts the analysis when the open channel drift exceeds the specified value.
Aborts the analysis when the open channel slope exceeds the specified value (pA/ms).
Write the event time-series to the output database.
Enable parallel processing.
Use N-reserveNCPU for parallel processing.

6.3. Optimizing Settings 41

https://json.org/

MOSAIC Manual, Release v2.2

6.3.2 Two-State Identification (adept2State)

Once the time-series is partitioned, individual events are processed by a processing algorithm. For simple event
patterns (e.g. homopolymers of DNA, PEG, etc.), one can use the stepresponse-page algorithm. Settings that can be
passed to this algorithm are below, followed by their descriptions. For a vast majority of cases, the settings below can
be used without modification.

"adept2State" : {
"FitTol" : "1.e-7",
"FitIters" : "50000"

}

6.3.3 Multi-State Identification (adept)

For more complex signals with multiple states, the ADEPT algorithm yields better results. The settings passed to this
algorithm (described below) are largely similar to Two-State Identification (adept2State).

"adept" : {
"FitTol" : "1.e-7",
"FitIters" : "50000",
"InitThreshold" : "3.0"

}

Hint: The parameter InitThreshold is used for preliminary state identification within multi-state events. As
a rule of thumb, this value should be set to roughly half that of eventThreshold in the Initial Event Detection
(eventSegment) section. However, the final value may be adjusted further for optimal results.

6.4 Default Settings

{
"eventSegment" : {

"blockSizeSec" : "0.5",
"eventPad" : "50",
"minEventLength" : "5",
"eventThreshold" : "6.0",
"driftThreshold" : "999.0",
"maxDriftRate" : "999.0",
"meanOpenCurr" : "-1",
"sdOpenCurr" : "-1",
"slopeOpenCurr" : "-1",
"writeEventTS" : "1",
"parallelProc" : "0",
"reserveNCPU" : "2"

},
"singleStepEvent" : {

"binSize" : "1.0",
"histPad" : "10",
"maxFitIters" : "5000",
"a12Ratio" : "1.e4",
"minEvntTime" : "10.e-6",
"minDataPad" : "75"

(continues on next page)

42 Chapter 6. Settings File

MOSAIC Manual, Release v2.2

(continued from previous page)

},
"adept2State" : {

"FitTol" : "1.e-7",
"FitIters" : "50000"

},
"adept" : {

"FitTol" : "1.e-7",
"FitIters" : "50000",
"InitThreshold" : "3.0"

},
"cusumPlus": {

"StepSize" : 3.0,
"Threshold" : 3.0

},
"besselLowpassFilter" : {

"filterOrder" : "6",
"filterCutoff" : "10000",
"decimate" : "1"

},
"waveletDenoiseFilter" : {

"wavelet" : "sym5",
"level" : "5",
"thresholdType" : "soft",
"thresholdSubType" : "sqtwolog"

},
"abfTrajIO" : {

"filter" : "*.abf",
"start" : 0.0,
"dcOffset" : 0.0

},
"qdfTrajIO": {

"Rfb": 9.1e+12,
"Cfb": 1.07e-12,
"dcOffset": 0.0,
"filter": "*.qdf",
"start": 0.0

},
"binTrajIO": {

"AmplifierScale": "1.0",
"AmplifierOffset": "0.0",
"SamplingFrequency": "50000",
"HeaderOffset": "0",
"ColumnTypes": "[('curr_pA', 'float64')]",
"IonicCurrentColumn" : "curr_pA",
"dcOffset": "0.0",
"filter": "*.bin",
"start": "0.0"

}
}

6.4. Default Settings 43

MOSAIC Manual, Release v2.2

44 Chapter 6. Settings File

CHAPTER 7

Database Structure and Query Syntax

MOSAIC stores the output of an analysis in a SQLite database. Database files are stored in the same directory as
the data being processed. Each analysis creates a new database file named eventMD-<date>-<time>.sqlite, where
<date> is the date the analysis was performed (e.g. 20140929 for Sep 29, 2014) and <time> is the analysis start time
(e.g. 112937 for 11:29:37 AM).

SQLite databases store data in tables similar to spreadsheets, where each table is analogous to a sheet in an Excel
spreadsheet. Databased generated by MOSAIC can be inspected using a database viewer, for example the open source
DB browser for SQLite. MOSAIC outputs databases with multiple tables as seen from the figure below. Databases
output by MOSAIC contain four tables: i) analysisinfo contains general information about the anlysis such as the
data path, analysis algorithm etc., ii) analysissettings contains a JSON formatted string with the analysis settings, iii)
metadata holds the output of the analysis, and iv) metadata_t lists the data types for each column in metadata. Two
tables most relevant to the analysis (metadata and analysissettings) are discussed in detail below.

45

http://www.sqlite.org/
http://www.sqlite.org/
https://sqlitebrowser.org/
https://json.org/

MOSAIC Manual, Release v2.2

7.1 Metadata Table

The metadata table contains the primary output of the analysis. MOSAIC processes individual blockade events from
a time-series of ionic current. The parameters describing each event (or metadata) are stored in individual rows of
the metadata table in the database file. The column names describe the metadata and are unique to the processing
algorithm used. For example, the column names for the stepresponse-page algorithm are shown below. The column
names for ADEPT differ from this list.

{
ProcessingStatus,
OpenChCurrent,
BlockedCurrent,
EventStart,
EventEnd,
BlockDepth,
ResTime,
RiseTime,
AbsEventStart,
RedChiSq,
TimeSeries

}

Note that the column names can be used in constructing queries passed to SQLite, and is described in more detail in
the Work with SQLite section and the Scripting and Advanced Features section. The first example SQL query below
returns the BlockDepth column (ratio of BlockedCurrent to OpenChCurrent). One can imagine assembling more
complex queries for example restricting the results to events whose residence time is greater than 0.2 ms as seen from
the second example query below.

select BlockDepth from metadata where ProcessingStatus='normal'

select BlockDepth from metadata where ProcessingStatus='normal' and ResTime > 0.2

A typical metadata table for the stepresponse-page algorithm is shown below. The ProcessingStatus column is a text
field that should read normal if the fit for a particular event was successful. If a failure occurred the corresponding
error code (e.g. eInvalidFitParameters) is stored and all other columns (except TimeSeries) are set to -1. If event
time-series storage was requested, then the TimeSeries column will store the ionic current data for that entry in binary
format.

46 Chapter 7. Database Structure and Query Syntax

MOSAIC Manual, Release v2.2

7.2 Analysis Settings Table

The analysissettings table contains a single text entry that stores the settings file for the analysis. This allows any
database opened with the MOSAIC GUI to retrieve settings that correspond to the analysis results in the file. As seen
from the figure below, the settings file is in the JSON format as described in the Settings File documentation.

7.3 Work with SQLite

MOSAIC stores the output of an analysis in a SQLite database as described in the Database Structure and Query
Syntax section. Interacting with the data through the Structured Query Language (SQL) is a flexible approach to
further analyze or plot the output. Here we provide a few detailed examples of the common ways in which the output
of MOSAIC can be queried for further processing. While this section is not a comprehensive SQL tutorial, it provides
common use cases to allow you to get started.

One way to retrieve data from a SQLite database is to use the select command. In its simplest form, a select query can
return the entire contents of a table using the syntax below. The statement below selects all columns (select *) from
the table specified by <tablename>.

select * from <tablename>

The power of SQL lies in its ability to restrict results to match specific criteria. This is accomplished with the where
clause described next. SQL queries can be very fast event for large databases. It is often desirable to only include
events that were successfully fit in a plot or other analysis. All eventprocess-page algorithms implemented in MOSAIC
store a ProcessingStatus column in the output database. This enables one to easily query events that were success-
fully processed. This is easily accomplished with the query below, which returns all columns for events that were
successfully processed (ProcessingStatus=normal).

select * from metadata where ProcessingStatus='normal'

It is not always necessary to retrieve every column for events that fit a certain criteria. For example, gui-blockdepth-
sec in the GUI displays a histogram of the blockade depths that match a user specified criteria. This is accomplished
within the GUI by a query similar to the one shown below. There are two important differences between the query
below and previous examples: i) by replacing * with BlockDepth, we only retrieve the BlockDepth column for events

7.2. Analysis Settings Table 47

https://json.org/
http://en.wikipedia.org/wiki/SQL
http://www.sqlite.org/

MOSAIC Manual, Release v2.2

that meet the criteria specified after the where clause, and ii) selection criteria specified after where can be compound
statements or even nested as seen in the examples below.

select BlockDepth from metadata where ProcessingStatus='normal' and ResTime > 0.2

select BlockDepth from metadata where ProcessingStatus='normal' and ResTime > 0.2
and BlockDepth between 0.1 and 0.5

Multiple columns can be retrieved from a table by providing a comma separated list of column names after the select
clause. As in previous cases, only events that meet a specified criteria are returned. The results can be ordered using
order. In this example we sort the results in ascending order by the AbsEventStart column.

select BlockDepth, ResTime, AbsEventStart from metadata where ProcessingStatus='normal
→˓'
order by AbsEventStart ASC

Finally, SQL allows the number of results returned to be limited using the limit clause. In this example, we limit the
query results to the first 500 rows that meet our criteria.

select AbsEventStart from metadata where ProcessingStatus='normal'
order by AbsEventStart ASC limit 500

7.4 Export to CSV

48 Chapter 7. Database Structure and Query Syntax

MOSAIC Manual, Release v2.2

7.4. Export to CSV 49

MOSAIC Manual, Release v2.2

50 Chapter 7. Database Structure and Query Syntax

CHAPTER 8

Scripting and Advanced Features

The analysis can be run from the command line by setting up a Python script. Scripting allows one to build additional
analysis tools on top of MOSAIC. The first step is to import MOSAIC as shown below.

import mosaic

Alternatively, one can import sub-modules of MOSAIC directly into a script to access other parts of the system as
shown below.

import mosaic.qdfTrajIO as qdf
import mosaic.abfTrajIO as abf

import mosaic.SingleChannelAnalysis
import mosaic.eventSegment as es
import mosaic.adept2State
import mosaic.besselLowpassFilter as bessel

8.1 Import Data and Run an Analysis

Once the required modules are imported, a basic analysis can be run with the code snippet below. The top-level object
that is used to configure and run a new analysis is SingleChannelAnalysis, which takes five arguments: i) the
path to the data directory, ii) a handle to a TrajIO object that reads in data (e.g. abfTrajIO), iii) a handle to a data
filtering algorithm (e.g. besselLowpassFilter or None for no filtering), iv) a handle to a partitioning algorithm
(e.g. eventSegment) that partitions the data and v) a handle to a processing algorithm (e.g. adept2State) that
processes individual blockade events.

Process all ABF files in a directory
analysisObj=mosaic.SingleChannelAnalysis.SingleChannelAnalysis(

'~/ReferenceData/abfSet1',
abf.abfTrajIO,
None,
es.eventSegment,

(continues on next page)

51

https://www.python.org/

MOSAIC Manual, Release v2.2

(continued from previous page)

moasaic.adept2State.adept2State
)

The analysis is started by calling the Run() function.

analysisObj.Run()

The code listing above analyzes all ABF files in the specified directory. Handles to trajectory I/O, data filtering, event
partitioning and event processing are controlled with their corresponding sections in the Settings File. Default settings
used to read ABF files are shown below.

"abfTrajIO" : {
"filter" : "*.abf",
"start" : 0.0,
"dcOffset" : 0.0

}

MOSAIC also supports the QUB QDF file format used by the Electronic Biosciences Nanopatch system. This is
accomplished by replacing abfTrajIO in the previous example with qdfTrajIO. Settings for QDF files require
two additional parameters to be specified in the settings file, the feedback resistance (Rfb) in Ohms and capacitance
(Cfb) in Farads as described in the API Documentation. A sample section of the settings file to read QDF files,
followed by Python code required to run an anlysis, is shown below.

"qdfTrajIO": {
"Rfb" : 9.1e+12,
"Cfb" : 1.07e-12,
"dcOffset" : 0.0,
"filter" : "*.qdf",
"start" : 0.0

}

Process all QDF files in a directory
mosaic.SingleChannelAnalysis.SingleChannelAnalysis(

'~/ReferenceData/qdfSet1',
qdf.qdfTrajIO,
None,
es.eventSegment,
mosaic.adept2State.adept2State

).Run()

Upon completion the analysis writes a log file to the directory containing the data. The log file summarizes the
conditions under which the analysis were run, the settings used and timing information.

Start time: 2014-10-05 11:53 AM

[Status]
Segment trajectory: ***USER STOP***
Process events: ***NORMAL***

[Summary]
Baseline open channel conductance:

Mean = 136.0 pA
SD = 5.5 pA
Slope = 0.0 pA/s

(continues on next page)

52 Chapter 8. Scripting and Advanced Features

https://electronicbio.com

MOSAIC Manual, Release v2.2

(continued from previous page)

Event segment stats:
Events detected = 11306

Open channel drift (max) = 0.0 * SD
Open channel drift rate (min/max) = (-2.77/3.0) pA/s

[Settings]
Trajectory I/O settings:

Files processed = 27
Data path = ~/ReferenceData/qdfSet1
File format = qdf
Sampling frequency = 500.0 kHz

Feedback resistance = 9.1 GOhm
Feedback capacitance = 1.07 pF

Event segment settings:
Window size for block operations = 0.5 s
Event padding = 50 points
Min. event rejection length = 5 points
Event trigger threshold = 2.36363636364 * SD

Drift error threshold = 999.0 * SD
Drift rate error threshold = 999.0 pA/s

Event processing settings:
Algorithm = adept2State

Max. iterations = 50000
Fit tolerance (rel. err in leastsq) = 1e-07
Blockade Depth Rejection = 0.9

[Output]
Output path = ~/ReferenceData/qdfSet1
Event characterization data = ~/ReferenceData/qdfSet1/eventMD-20141005-115324.

→˓sqlite
Event time-series = ***enabled***
Log file = eventProcessing.log

[Timing]
Segment trajectory = 98.03 s
Process events = 0.0 s

Total = 98.03 s
Time per event = 8.67 ms

8.1. Import Data and Run an Analysis 53

MOSAIC Manual, Release v2.2

8.1.1 Filter Data

Filter data with a Bessel filter before processing
mosaic.SingleChannelAnalysis.SingleChannelAnalysis(

'~/ReferenceData/abfSet1',
abf.abfTrajIO,
bessel.besselLowpassFilter,
es.eventSegment,
mosaic.adept2State.adept2State

).Run()

MOSAIC supports filtering data prior to analysis. This is achieved by passing the dataFilterHnd argu-
ment to the SingleChannelAnalysis object. In the code above, the ABF data is filtered using a
besselLowpassFilter. Parameters for the filter are defined within the settings file as described in the Settings
File section.

"besselLowpassFilter" : {
"filterOrder" : "6",
"filterCutoff" : "10000",
"decimate" : "1"

}

A similar approach can be used to filter data using a waveletDenoiseFilter or a tap delay line
(convolutionFilter). Additional filters can be easily added to MOSAIC as described in Extend MOSAIC.

8.2 Advanced Scripting

Scripting with Python allows transforming the output of the MOSAIC further to generate plots, perform additional
analysis or extend functionality. Moreover, individual components of the MOSAIC module, which forms the back end
code executed in the data processing pipeline, can be used for specific tasks. In this section, we highlight a few typical
use cases.

Plot the Ionic Current Time-Series

import mosaic.abfTrajIO as abf
import matplotlib.pyplot as plt
import numpy as np

abfDat=abf.abfTrajIO(dirname='~/abfSet1/', filter='*.abf')
plt.plot(np.arange(0,1,1/500000.), b.popdata(500000), 'b.', markersize=2)
plt.xlabel("t (s)", fontsize=14)
plt.ylabel("-i (pA)", fontsize=14)
plt.show()

It is useful to visualize time-series data to highlight unique characteristics of a sample. For example the sample code
above was used to load 1 second of monodisperse PEG28 data, sampled at 500 kHz. The data was read using a
abfTrajIO object similar to the examples above. The popdata() command was used to take 500k data points (or
1 second) and then plot a time-series using matplotlib (see figure below). Calling popdata() again will return the
next n points.

We have packaged time-series plotting into an easy to use module timeseries. Run interactive examples in an
IPython notebook: |timeseries|

Estimate the Channel Gating Duration

54 Chapter 8. Scripting and Advanced Features

https://www.python.org/
https://matplotlib.org/

MOSAIC Manual, Release v2.2

Scripting can be used to obtain statistics from the raw time-series. In the code snippet below, we estimate the amount
of time a channel spends in a gated state by combining modules defined within MOSAIC. The analysis is performed
in blocks for efficiency. We first define a Python function that takes multiple arguments including TrajIO object, the
threshold at which we want to define the gated state in pA (gatingcurrentpa), the block size in seconds (blocksz), the
total time of the time-series being processed in seconds (totaltime) and the sampling rate of the data in Hz (fshz). The
function then calculates the number of blocks in which the channel was in a gated state and returns the time spent in
that state in seconds.

import mosaic.abfTrajIO as abf
import numpy as np

def estimateGatingDuration(trajioobj, gatingcurrentpa, blocksz, totaltime, fshz):
npts = int((fshz)*blocksz)
nblk = int(totaltime/blocksz)-1

Iterate over the blocks of data and check if the channel was in a gated state.
The code below returns the mean ionic current of blocks that are below the

→˓gating
threshold (gatingcurrentpa)
gEvents = filter(lambda x:x<float(gatingcurrentpa),

[np.mean(trajioobj.popdata(npts)) for i in range(nblk)])

return len(gEvents)*blocksz

abfObj=abf.abfTrajIO(dirname='~/abfSet1',filter='*.abf')
print estimateGatingDuration(abfObj, 20., 0.25, 100, abfObj.FsHz)

Plot the Output of an Analysis

This final example shows how one can use MOSAIC to process an ionic current time-series and then build a custom
script that further analyses and plots the results. This example uses single-molecule mass spectrometry (SMMS) data
[Robertson:2007jo], described in more detail in the smms-sec section .

In the code below, we first process all the ABF files in a specified directory similar to the examples in previous
sections. Upon completion of the analysis, the results are stored in a SQLite database, which can be then queried using
the structured query language (SQL).

import mosaic.qdfTrajIO as qdf
(continues on next page)

8.2. Advanced Scripting 55

http://www.sqlite.org/
https://en.wikipedia.org/wiki/SQL

MOSAIC Manual, Release v2.2

(continued from previous page)

import mosaic.abfTrajIO as abf

import mosaic.SingleChannelAnalysis
import mosaic.eventSegment as es
import mosaic.adept2State

import glob
import pylab as pl
import numpy as np
import mosaic.sqlite3MDIO as sql

Process all ABF files in a directory
mosaic.SingleChannelAnalysis.SingleChannelAnalysis(

'~/ReferenceData/abfSet1',
abf.abfTrajIO,
None,
es.eventSegment,
mosaic.adept2State.adept2State

).Run()

Load the results of the analysis
s=sql.sqlite3MDIO()
s.openDB(glob.glob("~/ReferenceData/abfSet1/*sqlite")[-1])

We first set up a string that holds the query to retrieve the analysis results.
→˓Note that {col}
will be replaced with the name of the database column when we run the query below.
q = "select {col} from metadata where ProcessingStatus='normal' and ResTime > 0.2 \

and BlockDepth between 0.15 and 0.55"

Now we run two separate queries - the first returns the blockade depth
and the second returns the residence time. Note that we simply take the query
string 'q' above and replace {col} with the column name.
x=np.hstack(s.queryDB(q.format(col='BlockDepth')))
y=np.hstack(s.queryDB(q.format(col='ResTime')))

Use matplotlib to plot the results with 2 views:
i) a 1D histogram of blockade depths and
ii) a 2D histogram of the residence times vs. blockade depth
fig = pl.gcf()
fig.canvas.set_window_title('Residence Time vs. Blockade Depth')

pl.subplot(2, 1, 1)
pl.hist(x, bins=500, histtype='step', rwidth=0.1)
pl.xticks(())
pl.ylabel("Counts", fontsize=14)

pl.subplot(2, 1, 2)
pl.hist2d(x,y, bins=500)

pl.xlabel("Blockade Depth", fontsize=14)
pl.ylabel("Residence Time (ms)", fontsize=14)
pl.ylim([0.2, 20])

pl.show()

56 Chapter 8. Scripting and Advanced Features

MOSAIC Manual, Release v2.2

Running the code above generates a two pane plot using matplotlib. The top pane contains a histogram of the blockade
depth, while the bottom pane plots a 2D histogram of residence time vs. blockade depth.

8.2. Advanced Scripting 57

https://matplotlib.org/

MOSAIC Manual, Release v2.2

58 Chapter 8. Scripting and Advanced Features

CHAPTER 9

Extend MOSAIC

MOSAIC was designed from the start using object oriented tools, which makes it easy to extend. Meta-Classes define
interfaces to five key parts of MOSAIC: time-series IO (metaTrajIO), time-series filtering (metaIOFilter),
analysis output (metaMDIO), event partition and segmenting (metaEventPartition), and event processing
(metaEventProcessor). Sub-classing any of these meta classes and implementing their interface functions al-
lows one to extend MOSAIC while maintaining compatibility with other parts of the program. We highlight these
capabilities via two examples. In the first example, we show how one can extend metaTrajIO to read arbitrary
binary files. In the second example, we implement a new top-level class that converts files to the comma separated
value (CSV) format.

9.1 Read Arbitrary Binary Data Files

In this first example, we implement a class that can read an arbitrary binary data file and make its data available via
the interface functions in metaTrajIO. This allows the newly implemented binary data to be used across MOSAIC.
A complete listing of the code used in this example (binTrajIO) is available in the API documentation.

The new binary IO class is implemented by sub-classing metaTrajIO as shown in the listing below.

class binTrajIO(metaTrajIO.metaTrajIO):

Next, we must fully implement the metaTrajIO interface functions (_init(), readdata() and
_formatsettings()). Note that the arguments of each function must match their corresponding base-class ver-
sions. For example the _init() function only accepts keyword arguments and is defined as shown below.

def _init(self, **kwargs):

The _init() function checks the arguments passed to kwargs and raises an exception if they are not defined.

if not hasattr(self, 'SamplingFrequency'):
raise metaTrajIO.InsufficientArgumentsError("{0} requires the

→˓sampling rate in Hz to be defined.".format(type(self).__name__))
if not hasattr(self, 'PythonStructCode'):

raise metaTrajIO.InsufficientArgumentsError("{0} requires the Python
→˓struct code to be defined.".format(type(self).__name__)) (continues on next page)

59

MOSAIC Manual, Release v2.2

(continued from previous page)

Next we define the readdata() function that reads in the data and stores the results in a numpy array. This array is
then passed back to the calling function.

def readdata(self, fname):

tempdata=np.array([])
Read binary data and add it to the data pipe
for f in fname:

tempdata=np.hstack((tempdata, self.readBinaryFile(f)))

return tempdata

Finally, we implement the _formatsettings() that returns a formatted string of the settings used to read in
binary data.

def _formatsettings(self):
"""

Return a formatted string of settings for display
"""
fmtstr=""

fmtstr+='\n\t\tAmplifier scale = {0} pA\n'.format(self.AmplifierScale)
fmtstr+='\t\tAmplifier offset = {0} pA\n'.format(self.AmplifierOffset)
fmtstr+='\t\tHeader offset = {0} bytes\n'.format(self.HeaderOffset)
fmtstr+='\t\tData type code = \'{0}\'\n'.format(self.PythonStructCode)

return fmtstr

The newly defined binTrajIO class can then be used as shown below and in Scripting and Advanced Features.

Process all binary files in a directory
mosaic.SingleChannelAnalysis.SingleChannelAnalysis(

"~/RefData/binSet1/",
bin.binTrajIO,
None,
es.eventSegment,
mosaic.adept2State.adept2State

).Run()

Similar to other TrajIO objects, parameters for binTrajIO are obtained from the settings file when used with
SingleChannelAnalysis. Example settings for binTrajIO that read 16-bit intgers from a binary data file,
assuming 50 kHz sampling, are shown below.

"binTrajIO" : {
"filter" : "*bin",
"AmplifierScale" : "1.0",
"AmplifierOffset" : "0.0",
"SamplingFrequency" : "50000",
"HeaderOffset" : "0",
"PythonStructCode" : "'h'"

}

60 Chapter 9. Extend MOSAIC

MOSAIC Manual, Release v2.2

9.2 Define Top-Level Functionality

New functionality can be added to MOSAIC by combining other parts of the code. One way of accomplishing this is by
defining new top-level functionality as shown in the following example. We define a new class that converts data from
one of the supported data formats to comma separated text files (CSV). A complete listing of the ConvertToCSV
class in this example is available in the API documentation.

The __init__ function of ConvertToCSV class accepts two arguments: a trajIO object and the location to save the
converted files. If the output directory is not specified, the data is saved in the same folder as the input data. The
data conversion is performed by the Convert() function, which saves the data in blocks controlled by the blockSize
parameter. Convert() saves each block to a new CSV file, named with the filename of the input data followed by
an integer number (see the API documentation for _filename() for additional details).

class ConvertToCSV(object):
def __init__(self, trajDataObj, outdir=None):

self.trajDataObj=trajDataObj
self.datPath=trajDataObj.datPath

If outdir is None, save the CSV files to the same directory as the
→˓data.

if outdir==None:
self.outDir=self.datPath

else:
self.outDir=outdir

self.filePrefix=None
self._creategenerator()

def Convert(self, blockSize):
data=numpy.array([], dtype=numpy.float64)

try:
while(True):

(self.trajDataObj.popdata(blockSize)).tofile(
self._filename(),
sep=','

)
except EmptyDataPipeError:

pass

The ConvertToCSV class can now be used with any trajIO object as seen below.

ConvertToCSV(abfTrajIO(dirname="~/RefData/abfSet1/", filter="*abf")).Convert(
blockSize=50000)

ConvertToCSV(qdfTrajIO(dirname="~/RefData/qdfSet1/", filter="*qdf", Rfb="2.1E+9",
Cfb="1.16E-12")).Convert(blockSize=50000)

ConvertToCSV(binTrajIO(dirname="~/RefData/binSet1/", filter="*bin", AmplifierScale=1.
→˓0,

AmplifierOffset=0.0, SamplingFrequency=50000, HeaderOffset=0,
PythonStructCode='h')).Convert(blockSize=50000)

Since ConvertToCSV accepts a trajIO object, we can apply a lowpass filter to the data before converting it to the
CSV format. This is accomplished by passing the datafilter option to the trajIO object as described in the Filter Data
section. In the example below, we convert ABF files to the CSV format after applying a lowpass Bessel filter to the
data.

9.2. Define Top-Level Functionality 61

MOSAIC Manual, Release v2.2

ConvertToCSV(abfTrajIO(dirname="~/RefData/abfSet1/", filter="*abf",
datafilter=mosaic.besselFilter

)).Convert(blockSize=50000)

Finally, the ConvertToCSV class can be further extended to output arbitrary binary files in place of CSV by the
simple extension shown below.

"""
Extend the MOSAIC ConvertToCSV class to export arbitrary binary files.

:Created: 02/25/2015
:Author: Arvind Balijepalli <arvind.balijepalli@nist.gov>
:ChangeLog:
.. line-block::

02/25/15 AB Initial version
"""
import mosaic.ConvertToCSV as conv
import mosaic.binTrajIO as bin
import mosaic.settings as sett
import numpy as np

from mosaic.metaTrajIO import EmptyDataPipeError

class ConvertToBin(conv.ConvertToCSV):
def Convert(self, blockSize, binType):

"""
Start converting data

:Parameters:
- `blockSize` : number of data points to convert.
- `binType` : Numpy binary type.

"""
try:

while(True):
np.array(self.trajDataObj.popdata(blockSize),

→˓dtype=binType).tofile(self._filename())
except EmptyDataPipeError:

pass

if __name__ == '__main__':
s={
"AmplifierOffset": 0.0,
"SamplingFrequency": 250000,
"AmplifierScale": "1.0",
"ColumnTypes": "[('curr_pA', '>f8'), ('volts', '>f8')]",
"dcOffset": 0.0,
"filter": "*.bin",
"start": 0.0,
"HeaderOffset": 0,
"IonicCurrentColumn": "curr_pA"

}
ConvertToBin(

bin.binTrajIO(dirname=".", **s),
outdir="convert",
extension="bin"
).Convert(blockSize=10000000, binType='f4')

62 Chapter 9. Extend MOSAIC

CHAPTER 10

Publication Quality Figures

We provide packaged functions for publication quality plots using Python and matplotlib. Example plots using these
modules are below.

10.1 Timeseries Plots

Generate publication time-series plots using the mosaicscripts.plots.timeseries module.

:Created: 11/19/2015
:Author: Arvind Balijepalli <arvind.balijepalli@nist.gov>
:License: See LICENSE.TXT
:ChangeLog:

12/12/15 AB Generalized plot function to allow different data types
11/20/15 AB Initial version

import mosaicscripts.plots.timeseries as ts

Plots are generated using the mosaicscripts.plots.timeseries module. See the timeseries module for
additional details.

Basic usage to plot 1 second of ionic current vs. time is shown below. The plotopts argument is used to style the
curve in the plot.

ts.PlotTimeseries(
"../data/",
"abf",
5.0,
6.0,
50000,
labels=["t (s)", "-i (pA)"],
axes=True,
polarity=-1,
plotopts={

(continues on next page)

63

https://www.python.org/
https://matplotlib.org/
../mosaicscripts/plots/timeseries.py

MOSAIC Manual, Release v2.2

(continued from previous page)

'color' : '#3F50A0',
'marker' : '.',
'markersize' : 0.2

}
)

Plotting other data types is also straightforward. The next example demonstrates plotting a time-series in the QUB
data format (QDF). Note that the conversion to voltage to current is performed with the Rfb and Cfb parameters,
passed to the plotting function as a dictionary.

ts.PlotTimeseries(
"../data/",
"qdf",
0.25,
0.75,
500000,
labels=["t (s)", "-i (pA)"],
axes=True,
polarity=1,
plotopts={

'color' : '#3F50A0',
'marker' : '.',
'markersize' : 0.2

},
data_args={"Rfb" : 9.1e9, "Cfb": 1.07e-12}

)

64 Chapter 10. Publication Quality Figures

MOSAIC Manual, Release v2.2

Segments of timeseries can be highlighted for emphasis or to show specific features. Three blockade events are plotted
using different colors in the example below.

ts.PlotTimeseries(
"../data/",
"abf",
5.0,
6.0,
50000,
labels=["t (s)", "-i (pA)"],
axes=True,
polarity=-1,
plotopts={

'color' : 'gray',
'marker' : '.',
'markersize' : 0.2

},
highlights=[

[[0.282, 0.293], {'color' : '#3F50A0', 'marker' : '.', 'markersize' : 0.1}],
[[0.584, 0.597], {'color' : '#D42324', 'marker' : '.', 'markersize' : 0.1}],
[[0.685, 0.695], {'color' : '#EB751A', 'marker' : '.', 'markersize' : 0.1}]

],
figname="timeseries.png"

)

10.1. Timeseries Plots 65

MOSAIC Manual, Release v2.2

10.2 Histogram Plots

Generate publication quality histogram plots using the mosaicscripts.plot.histogram module.

:Created: 12/14/2015
:Author: Arvind Balijepalli <arvind.balijepalli@nist.gov>
:License: See LICENSE.TXT
:ChangeLog:

01/09/16 AB Added a plot overlay example.
12/14/15 AB Initial version

import numpy as np
from scipy.optimize import curve_fit

import mosaicscripts.plots.histogram as histogram
from mosaic.utilities.sqlQuery import query

q="select BlockDepth from metadata where ProcessingStatus='normal' and ResTime > 0.25
→˓and BlockDepth between 0.3 and 0.4"

66 Chapter 10. Publication Quality Figures

MOSAIC Manual, Release v2.2

10.2.1 Basic Histogram Plots

Plots are generated using the mosaicscripts.plots.histogram.histogram_plot() function. See the
histogram module for additional details.

histogram.histogram_plot(
query("../data/eventMD-P28-bin.sqlite", q),
100,
(0.3, 0.4),
xticks= (0.3,0.35,0.4),
yticks=(0,500,1000,1500),
xlabel=r"<i>/<i$_0$>",
ylabel=r"Counts"

)

To plot the probability density, supply the argument density=True as shown below.

histogram.histogram_plot(
query("../data/eventMD-P28-bin.sqlite", q),
100,
(0.3, 0.4),
xticks= (0.3,0.35,0.4),
yticks=(0,50,100),
xlabel=r"<i>/<i$_0$>",
ylabel=r"Density",

density=True
)

10.2. Histogram Plots 67

../mosaicscripts/plots/histogram.py

MOSAIC Manual, Release v2.2

10.2.2 Custom Styles

The fill transperancy can be controlled with the fill_alpha argument. When set to 1, it results in a filled plot as
seen below. To turn off filling, simply set fill_alpha=0

histogram.histogram_plot(
query("../data/eventMD-P28-bin.sqlite", q),
100,
(0.3, 0.4),
xticks= (0.3,0.35,0.4),
yticks=(0,500,1000,1500),
xlabel=r"<i>/<i$_0$>",
ylabel=r"Counts",

fill_alpha=1
)

68 Chapter 10. Publication Quality Figures

MOSAIC Manual, Release v2.2

Matplotlib plotting directies can be supplied to histogram_plot() using the advanced_opts argument. See
the Matplotlib plot documentation for additional details. In the example below, the plot linewidth is set to 1.5 points.

histogram.histogram_plot(
query("../data/eventMD-P28-bin.sqlite", q),
100,
(0.3, 0.4),
xticks= (0.3,0.35,0.4),
yticks=(0,500,1000,1500),
xlabel=r"<i>/<i$_0$>",
ylabel=r"Counts",

color='purple',
dpi=600,
fill_alpha=0.15,
advanced_opts={'linewidth': 1.5}

)

10.2. Histogram Plots 69

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot

MOSAIC Manual, Release v2.2

The example below shows more advanced styling. Circular markers can be placed at the center of each bin using the
Matplotlib marker keywords.

Finally, images can be saved by supplying the figname argument as seen in the example below. Optionally, the
figure resolution can be set with the dpi argument.

histogram.histogram_plot(
query("../data/eventMD-P28-bin.sqlite", q),
100,
(0.3, 0.4),
xticks= (0.3,0.35,0.4),
yticks=(0,500,1000,1500),
figname="histogram.png",
xlabel=r"<i>/<i$_0$>",
ylabel=r"Counts",

color='#EB771A',
dpi=600,
fill_alpha=0.15,
advanced_opts={

'marker': 'o',
'markersize': 6,
'markeredgecolor' : '#EB771A',
'markeredgewidth' : 0.75,
'markerfacecolor': 'none',
'linewidth': 1.

}
)

70 Chapter 10. Publication Quality Figures

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot

MOSAIC Manual, Release v2.2

10.2.3 Advanced Analysis and Plot Overlays

The mosaicscripts.plots.histogram.histogram_plot() function allows one to overlay additional
curves on top of the histogram data. This is useful, for example, to fit the histogram to a known functional form.
Below we describe, how to fit the histogram data to a sum of two Gaussians.

First we must define the fit function as shown below. We sum two Gaussians of the form: 𝑎1𝑒𝑥𝑝(−(𝑥− 𝜇1)
2/2𝜎2

1) +
𝑎2𝑒𝑥𝑝(−(𝑥 − 𝜇2)

2/2𝜎2
2), where 𝑥 is the independent variable, 𝜇 is the mean of the distribution, 𝜎 is the standard

deviation, 𝑎 is the amplitude and the subscripts denote the peak number.

def gauss_sum_fit(x, a1, mu1, sigma1, a2, mu2, sigma2):
return a1*np.exp(-(x-mu1)**2/(2*sigma1**2)) + a2*np.exp(-(x-mu2)**2/(2*sigma2**2))

Next, we call the histogram_plot function as before. Note however there are two additional options we must
provide to enable us to add the peak fits to the plot. The first is show=False, which suppresses plotting the histogram
to allow additional plots to be added to the figure (see the Matplotlib documentation for details), and the second is
return_histogram=True, which returns the raw histogram data that we fit to.

Next, we perform the least squares fit using the Scipy curve_fit function. The optimized parameters and covariance
are stored in popt and pcov respectively.

Finally, we plot the fit function and call show() to display the figure.

hist,bins=histogram.histogram_plot(
query("../data/eventMD-P28-bin.sqlite", q),
75,
(0.3, 0.4),
xticks= (0.3,0.325,0.35,0.375,0.4),
yticks=(0,500,1000,1500),
figname="histogram.png",
xlabel=r"<i>/<i$_0$>",
ylabel=r"Counts",

(continues on next page)

10.2. Histogram Plots 71

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.show
http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.optimize.curve_fit.html
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.show

MOSAIC Manual, Release v2.2

(continued from previous page)

fill_alpha=0.,
show=False,
return_histogram=True,
advanced_opts={

'marker': 'o',
'markersize': 6,
'markeredgecolor' : '#002A63',
'markeredgewidth' : 0.75,
'markerfacecolor': 'none',
'linewidth': 0.

}
)

popt,pcov=curve_fit(gauss_sum_fit, bins, hist, [1200, 0.34,0.003, 100, 0.36,0.003])

xdat=np.arange(0.3, 0.4,0.0005)
ydat=gauss_sum_fit(xdat, *popt)

histogram.plt.plot(xdat, ydat, color="#002A63")
histogram.plt.show()

The popt variable holds the optimized fit parameters, stored in the order defined by the gauss_sum_fit above.
We can extract these values from this list. For example, the peak positions can be retrieved as shown below.

popt[1], popt[4]

(0.33733498827022712, 0.3559240351776794)

72 Chapter 10. Publication Quality Figures

MOSAIC Manual, Release v2.2

10.3 Contour Plots

Generate publication quality contour plots using the mosaicscripts.plot.contour module.

:Created: 11/19/2015
:Author: Arvind Balijepalli <arvind.balijepalli@nist.gov>
:License: See LICENSE.TXT
:ChangeLog:

11/19/15 AB Initial version

import matplotlib.pyplot as plt
import mosaicscripts.plots.contour as contour
from mosaic.utilities.sqlQuery import query

Plots are generated using the mosaicscripts.plots.contour_plot() function. See the contour module for
additional details.

contour.contour_plot(
query(

"../data/eventMD-20150404-221533_MSA.
→˓sqlite",

"select BlockDepth, StateResTime from
→˓metadata where ProcessingStatus='normal' and BlockDepth > 0 and ResTime > 0.025"

),
x_range=[0.01, 0.26],
y_range=[0.02, 0.06],
bin_size=0.0085,
contours=6,
colormap=plt.get_cmap('Purples'),
img_interpolation='nearest',
xticks=[

(0.05, '0.05'),
(0.1, '0.1'),
(0.15, '0.15'),
(0.2, '0.2')
],

yticks=[
(0.025, '25'),
(0.04, '40'),
(0.05, '50')
],

axes_type=['linear', 'log', 'linear'],
figname="contour.png",

colorbar_num_ticks=4,
cb_round_digits=-1,
min_count_pct=0.08, # Set bins with < 7% of

→˓max to 0,
xlabel=r"$<i>/<i_0>$",
ylabel=r"Residence Time (μs)"

)

10.3. Contour Plots 73

../mosaicscripts/plots/contour.py

MOSAIC Manual, Release v2.2

Plot styling can be controlled with custom colormaps. Examples are found within the contour.gen_colormap()
function. Calling this function makes two additional colormaps (mosaicBlue and mosaicOrange) available as
seen below.

contour.gen_colormaps()

Note: The colormap argument is now uses Orange1 as opposed to Purples above.

contour.contour_plot(
query(

"../data/eventMD-20150404-221533_MSA.
→˓sqlite",

"select BlockDepth, StateResTime from
→˓metadata where ProcessingStatus='normal' and BlockDepth > 0 and ResTime > 0.025"

),
x_range=[0.01, 0.26],
y_range=[0.02, 0.06],
bin_size=0.0085,
contours=6,
colormap=plt.get_cmap('mosaicOrange'),
img_interpolation='nearest',
xticks=[

(0.05, '0.05'),
(0.1, '0.1'),
(0.15, '0.15'),
(0.2, '0.2')
],

yticks=[
(0.025, '25'),
(0.04, '40'),
(0.05, '50')
],

axes_type=['linear', 'log','linear'],
(continues on next page)

74 Chapter 10. Publication Quality Figures

MOSAIC Manual, Release v2.2

(continued from previous page)

figname="contour.png",
colorbar_num_ticks=4,
cb_round_digits=-1,
min_count_pct=0.08, # Set bins with < 7% of

→˓max to 0,
xlabel=r"$<i>/<i_0>$",
ylabel=r"Residence Time (μs)"

)

10.3. Contour Plots 75

MOSAIC Manual, Release v2.2

76 Chapter 10. Publication Quality Figures

CHAPTER 11

Advanced Analysis

We provide packaged functions for advanced analysis such as calculating the capture rate of molecules, determining
the residene time, etc as described below.

11.1 Capture Rate

Estimate the capture rate of molecules partitioning into a nanopore.

:Created: 12/27/2015
:Author: Arvind Balijepalli <arvind.balijepalli@nist.gov>
:License: See LICENSE.TXT
:ChangeLog:

12/27/15 AB Initial version

import numpy as np

from mosaicscripts.analysis.kinetics import CaptureRate

11.1.1 Wrapper Function to Estimate the Capture Rate

The capture rate can be estimated directly by calling the CaptureRate function in mosaicscripts.
analysis.kinetics. The function returns a list with two elements: the capture rate (s:math:^{-1}), and the
standard error of the capture rate (s:math:^{-1}).

np.round(
CaptureRate(

"../data/eventMD-P28-bin.sqlite",
"select AbsEventStart from metadata where ProcessingStatus='normal' and

→˓ResTime > 0.02 order by AbsEventStart ASC"
),

(continues on next page)

77

MOSAIC Manual, Release v2.2

(continued from previous page)

decimals=1
)

array([27.9, 0.2])

11.1.2 Capture Rate Details

from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

from mosaicscripts.analysis.kinetics import query1Col
import mosaicscripts.plots.mplformat as mplformat
from mosaic.utilities.fit_funcs import singleExponential

mplformat.update_rcParams()

Continue reading to dig deeper into how the capture rate is estimated within the CaptureRate function.

The first step is to read in the start times for each event. This is easily done with a query to the MOSAIC database
as shown below. The start times are stored in the AbsEventStart column. We limit the events we use to estimate
the capture rate to ones that were successfully fit (ProcessingStatus=’normal’) and those whose residence times
(ResTime) in the pore are longer than 20 𝜇s.

Finally, we sort the AbsEventStart to ensure the event start times are in ascending order.

start_times=query1Col(
"../data/eventMD-P28-bin.sqlite",
"select AbsEventStart from metadata where ProcessingStatus='normal' and

→˓ResTime > 0.02 order by AbsEventStart ASC"
)

Next, we calculate the arrival times, i.e. the time between the start of successive events. This is done with the Numpy
diff function. Note that AbsEventStart is stored in milliseconds within the database. Here, we also convert the
arrival times to seconds.

arrival_times=np.diff(start_times)/1000.

The partitioning of molecules into the pore is a stochastic process. There are however a couple properties related
to stochastic process that we will leverage that makes the estimation of the capture rate more robust. With randomly
occuring events that have some mean rate, the number of events scales linearly with time. Therefore, the distribution of
these events follows a single exponential form. We can easily test this by calculating the probability density function
(PDF) using the Numpy histogram function. Note that the density=True argument normalizes the histogram
resulting in a PDF.

density,bins=np.histogram(arrival_times, bins=100, density=True)

Plot the resulting PDF with Matplotlib to verify the distribution. Sure enough on a semilog scale, the resulting
distribution appears linear suggesting an exponential form.

plt.semilogy(
bins[:len(density)], density,
linestyle='None',
marker='o',

(continues on next page)

78 Chapter 11. Advanced Analysis

MOSAIC Manual, Release v2.2

(continued from previous page)

markersize=8,
markeredgecolor='blue',
markerfacecolor='None'

)
plt.xlim(0.005,0.3)
plt.ylim(0.006,25)
plt.xticks([0.05,0.15,0.25])
plt.yticks([1e-2,0.1,1,1e1])
plt.axes().set_xlabel("Arrival Times (s)")
plt.axes().set_ylabel("Density (s$^{-1}$)")
plt.show()

Next we fit the PDF to a single exponential function of the form 𝑎 𝑒−𝑡/𝜏 , where a is a scaling factor and 𝜏 is the mean
time of the distribution (with a rate of 1/𝜏). This is accomplished with the curve_fit function within Scipy.

popt, pcov = curve_fit(singleExponential, bins[:len(density)], density, p0=[1, np.
→˓mean(arrival_times)])

We then visually check the fit, by superimposing the resulting fit function over the PDF.

plt.semilogy(
bins[:len(density)], density,
linestyle='None',
marker='o',
markersize=8,
markeredgecolor='blue',
markerfacecolor='None'

)
plt.semilogy(

np.arange(0.001,0.4,0.02),
singleExponential(np.arange(0.001,0.4,0.02), *popt),

(continues on next page)

11.1. Capture Rate 79

MOSAIC Manual, Release v2.2

(continued from previous page)

color='blue'
)

plt.xlim(0.005,0.3)
plt.ylim(0.006,25)
plt.xticks([0.05,0.15,0.25])
plt.yticks([1e-2,0.1,1,1e1])
plt.axes().set_xlabel("Arrival Times (s)")
plt.axes().set_ylabel("Density (s$^{-1}$)")
plt.show()

Finally, we can extract the capture rate (1/𝜏) from the optimal fit parameters.

np.round([1/popt[1]], decimals=1)

array([27.9])

80 Chapter 11. Advanced Analysis

CHAPTER 12

Addons

The output of MOSAIC is often processed further to generate plots or performe more sophisticated analysis. We
facilitate this process by providing addon packages that make it easy to import the SQLite database generated by
a MOSAIC analysis into mathematica-addons-sec, matlab-addons-sec or igor-addons-sec. The interfaces for these
programs are described in more detail in this section.

12.1 Mathematica

12.1.1 Installation

The analysis output generated by MOSAIC can be imported into Mathematica for further processing. This accom-
plished with two packages: the low level mathematicaMosaicutilsSec and mathematica-mosaicanalysis-sec, which
contains additional analysis routines. The addon package must first be installed to one of the locations in the Math-
ematica path. Alternatively, the required package files can be installed to the Applications folder using setuptools on
Mac OS X and Linux by issuing the command below in the root folder of the MOSAIC code. Instructions for installing
the package files for Windows are available here.

python setup.py mosaic_addons --mathematica

12.1.2 MosaicUtils

MosaicUtils provides low level functions to interact with a database output by MOSAIC. MosaicUtils can use a native
Mathematica (slower, default) or Python (faster, but experimental) backend to query databases output by MOSAIC.

Note: To select the Python backend, please call the SetQueryBackend function as described below. If you use a
virtual environment with Python, please call the SetVirtualEnv function after you install this addon.

SetQueryBackend[backend]

Args

81

http://www.sqlite.org/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
http://reference.wolfram.com/language/tutorial/ConfigurationFiles.html

MOSAIC Manual, Release v2.2

• backend : select the Mathematica (default) or Python (faster, experimental) backend to run
SQLite queries.

Returns None

ReadQueryBackend[]

Args None

Returns

• The backend used to run SQLite queries.

SetVirtualEnv[virtualenv]

Args

• virtualenv : name of the virtual environment configured for use with MOSAIC

Returns None

PrintMDKeys[dbfile]

Returns a list of column headings from the metadata table.

Args

• dbfile : full path to the database file

Returns A list of column names in the table metadata.

PrintMDTypes[dbfile]

Returns a list of column types from the metadata table.

Args

• dbfile : full path to the database file

Returns A list of column types in the table metadata.

QueryDB[dbfile, query]

Queries the metadata table using the supplied SQL query.

Args

• dbfile : full path to the database file

• query : a SQL query

Returns A nested list of query results.

PlotEvents[dbfile, FsKHz, nEvents]

Plot the event-time series if stored in the database (see the Settings File section for details on saving time-series to the
analysis output).

Args

• dbfile : full path to the database file

• FsKHz : sampling frequency in kHz.

• nEvents : (optional) limit the plot to the first n entries in the database

Returns A dynamic object that allows the user to browse event time-series and fits.

GetAnalysisAlgorithm[db]

Returns the analysis algorithm used to process the current data set.

82 Chapter 12. Addons

MOSAIC Manual, Release v2.2

Args

• db : full path to a database file

Returns Algorithm used to analyze data.

MosaicUtils Examples

Once installed as described above, MosaicUtils must be imported as shown below.

In[1]= <<MosaicUtils`

SQL queries require the exact column names when querying data from a table (see Database Structure and Query
Syntax). Column names in the metadata table, which stores the main results from the analaysis can be retrieved using
the PrintMDKeys function as shown below. In this example, the column names returned correspond to an analysis
performed using the adept2State algorithm.

In[2]= PrintMDKeys["<mosaicroot>/data/eventMD-PEG29-Reference.sqlite"]

Out[2]= {"recIDX", "ProcessingStatus", "OpenChCurrent",
"BlockedCurrent", "EventStart", "EventEnd",
"BlockDepth", "ResTime", "RCConstant", "AbsEventStart",
"ReducedChiSquared", "TimeSeries"
}

The MosaicUtils package allows the output of MOSAIC to be queried just like from Python. This accomplished using
the QueryDB function. In the example below, we retrieve a column that returns the start time of the first 10 entries in
the metadata table that have their ProcessingStatus set to normal. The results are then returned in a standard list. Note
that QueryDB accepts a standard SQL query as described in more detail in the Database Structure and Query Syntax
section.

In[3]= QueryDB[
"<mosaicroot>/data/eventMD-PEG29-Reference.sqlite",
"select AbsEventStart from metadata where ProcessingStatus='normal' limit 10"
]

Out[3]= {
{1.84376}, {4.54439}, {5.26933}, {6.01253}, {6.80369},
{8.48988}, {10.841}, {11.2246}, {13.2892}, {16.3983}
}

Finally, the addon package allows us to plot individual events if time-series data was stored in the database. This
is accomplished using the PlotEvents function, and provides a convenient tool to visually inspect the output of a
MOSAIC analysis. In the example below, we inspect the events stored in the reference PEG28 data set included with
MOSAIC. PlotEvents returns a dynamic object that allows the user to inspect all the events in a database. An event
that was properly characterized by the code is plotted with blue markers (left). The plot is overlaid with the optimized
fit function (black) and an idealized pulse (red dashed). Events that were not properly fit are plotted with red markers
(right).

In[4]= PlotEvents["<mosaicroot>/data/eventMD-PEG29-Reference.sqlite", 500]

12.1. Mathematica 83

https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL

MOSAIC Manual, Release v2.2

12.1.3 MosaicAnalysis

Mosaic-
Analysis
builds on
the Mo-
saicUtils
package
and
provides
basic
analysis
func-
tions

such as estimating the capture rate of molecules partitioning into a channel, or the mean residence time. Additionally,
new functionality can be created by combining the functions defined below.

ScaledS-
in-
gle-
Ex-
po-
nen-
tial-
Fit[hist,
lambda,
lambda0]

Scale
the his-
togram
with the
number
of counts
in the
first bin.
Fit a
single
expo-
nential

of the form a exp(-t/tau) to the scaled histogram.

Args

•
hist
:
a
his-
togram
with
for-
mat
{{bin1,
counts1},
{bin2,

84 Chapter 12. Addons

MOSAIC Manual, Release v2.2

counts2}, . . . , {binN,countsN}}

• lambda
: param-
eter of
the dis-
tribution.
This
symbol
must be
passed
from the
calling
function.

• lambda0
: initial
guess for
lambda.

PlotScaledS-
ingle-
Expo-
nential-
Fit[hist,
ftfunc,
plotopts]

Args

•
hist
:
a
his-
togram
with
for-
mat
{{bin1,
counts1},
{bin2,

counts2}, . . . , {binN,countsN}}

• ftfunc :
an op-
timized
fit, de-
fined as
a virtual
function.

• plotopts:
a list
of op-
tions to
control

12.1. Mathematica 85

MOSAIC Manual, Release v2.2

the plot
output.

Cap-
tur-
eRate[arrtimes,
stime,
etime,
nbins,
plotopts]

Es-
ti-
mate
the
cap-
ture
rate
of
molecules
by a
channel
by ana-

lyzing the arrival times of individual molecules. The arrival times of a stochastic process follow a single exponential
distribution. This function first calculate a histogram of arrival times and then fits a single exponential function to the
data.

Args

• arrtimes
: a list of
absolute
start
times
(AbsEv-
entStart)
queried
from a
database.

• stime :
lower
limit
of the
arrival
times
distribu-
tion

• etime :
upper
limit
of the
arrival
times
distribu-
tion

86 Chapter 12. Addons

MOSAIC Manual, Release v2.2

• nbins :
number
of bins

• plotopts
: a list
of op-
tions to
control
the plot
output.

Returns The
mean
capture
rate,
a plot
of the
under-
lying
distribu-
tion of
arrival
times,

the arrival times distribution and the optimized fit function.

Ar-
rival-
Times[abseventstart]

Calcu-
late the
arrival
times
from a
list of
the abso-
lute start
time of
each
event in
a data

set.

Args

• absev-
entstart
: a list of
absolute
start
times
(AbsEv-
entStart)
queried
from a
database.

12.1. Mathematica 87

MOSAIC Manual, Release v2.2

Returns A
list of
arrival
times.

Mosaic-
Analysis
Exam-
ples

In[1]=
→˓

→˓<
→˓<MosaicUtils`
In[2]=
→˓

→˓<
→˓<MosaicAnalysis`

In the
fol-
lowing
example,
we esti-
mate the
capture
rate of
PEG28
from
the ref-
erence

data set included with the MOSAIC source. The first argument fo CaptureRate is a list of the absolute start time of
each event in the database. This data can be obtained using the query shown below. The remaining arguments to
CaptureRate define the parameters of the arrival times distribution, the lower and upper limit of the arrival times and
the number of bins. The function returns the mean capture rate and standard error, a plot that shows the underlying
arrival times distribution, raw data used to generate the capture rate histogram, and a pure best-fit function.

In[3]=
→˓CaptureRate[

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓QueryDB[

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓"
→˓<mosaicroot>
→˓/

→˓data/eventMD-PEG29-Reference.sqlite",

(continues on next page)

88 Chapter 12. Addons

MOSAIC Manual, Release v2.2

(continued from previous page)

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓"select
→˓AbsEventStart
→˓from

→˓metadata where

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓ProcessingStatus='normal' and ResTime > 0.01"

→˓

→˓],
→˓0.0,
→˓ 0.
→˓05,
→˓ 50
]

The capture rate plot above can be formatted by supply-
ing the optional plotopts argument, which uses standard
Mathematica plot options, as seen in the example below.
This is particulary helpful to customize the output of the
plot„ for example for publication ready graphics.

In[4]= CaptureRate[
QueryDB[
"<mosaicroot>/data/eventMD-PEG29-Reference.sqlite",
"select AbsEventStart from metadata where

ProcessingStatus='normal' and ResTime > 0.01"
], 0.0, 0.05, 50,
{Frame -> True, FrameLabel -> {Style["t (ms)", 16], ""},

FrameTicks -> {{{0.05, 0.1, 0.5, 1}, None}, {{0.005, 0.015, 0.025},
None}}, FrameTicksStyle -> 14, PlotStyle -> {Black, Thick},

ImageSize -> 400}
]

12.1. Mathematica 89

https://www.wolfram.com/mathematica/

MOSAIC Manual, Release v2.2

12.2 Matlab

The SQLite database output by MOSAIC can be further
processed using MATLAB. The data can then be stored
in an array in the MATLAB Workspace, and then manip-
ulated as desired.

The features, of opening, querying, and storing as an ar-
ray, are made available in the MATLAB script openand-
query.m. The script does not use the MATLAB Database
Manager GUI, a part of the Database Toolbox, which re-

quires a paid license. Instead, an open-source alternative, mksqlite, an interface between MATLAB and SQLite is
used.

This section of the manual provides information on how
to set up the mksqlite- package for use with MATLAB,
and how to use the openandquery.m script.

All code has been successfully tested with MATLAB
2013a, MATLAB 2014a, G++ 4.7 in Ubuntu 14.04 LTS,
and Windows Visual C++ 2010. Also, SQLite must be
installed prior to performing the following steps.

12.2.1 mksqlite Documentation

Information about mksqlite, such as function calls and
examples, is available in the MKSQLITE: A MATLAB
Interface to SQLite documentation.

12.2.2 Installing mksqlite in Ubuntu
14.04 LTS

Download the latest mksqlite source files from Source-
Forge Unzip the files to a folder, and note the path to that
folder (e.g., /home/mksqlitefolder) Open MATLAB, and
change the current path to that of the mksqlite folder In

the Command Window, type buildit, and press Enter to build mksqlite (this will run the buildit.m script). If the MEX
files do not build, one of the following two problems may be why: i) a compiler may not be installed – see the
MathWorks page on Supported and Compatible Compilers to select and install a compiler, or ii) errors are generated
during compilation of mksqlite.cpp. In the latter case, see the “How to build mksqlite MEX file mksqlite.mexa64 in
Linux?” thread in the MathWorks MATLAB Answers forum. If the build proceeds without errors, you will first see
the notification “compiling release version of mksqlite. . . ” in the Command Window, followed by “completed.”

Note: GCC/G++ Version (in Linux)

You may have to install a version of GCC/G++ that is
compatible with with your specific MATLAB release. If
so, check out the linked discussion thread on MATLAB
Central on how to set up a MEX Compiler.

90 Chapter 12. Addons

https://www.mathworks.com/products/matlab/
https://www.mathworks.com/products/matlab/
https://www.mathworks.com/products/matlab/
https://www.mathworks.com/products/matlab/
https://sourceforge.net/projects/mksqlite/
https://www.mathworks.com/products/matlab/
http://www.sqlite.org/
https://www.mathworks.com/products/matlab/
http://www.sqlite.org/
https://sourceforge.net/projects/mksqlite/
https://www.mathworks.com/products/matlab/
https://sourceforge.net/projects/mksqlite/
http://sourceforge.net/projects/mksqlite/files/
http://sourceforge.net/projects/mksqlite/files/
https://www.mathworks.com/products/matlab/
http://www.mathworks.com/support/compilers/R2014b/index.html
http://www.mathworks.com/matlabcentral/answers/86590-how-to-build-mksqlite-mex-file-mksqlite-mexa64-in-linux
http://www.mathworks.com/matlabcentral/answers/137228-setup-mex-compiler-for-r2014a-for-linux

MOSAIC Manual, Release v2.2

12.2.3 Installing mksqlite in Windows 7

The installation steps are essentially the same as for
Ubuntu, except a different compiler (e.g, contained in
Windows SDK 7) may instead have to be installed. If
the SDK installer say it cannot proceed, quit the installa-

tion, uninstall previous instances of Microsoft Visual C++ 2010, and then install Windows SDK 7 again.

12.2.4 Opening, Querying, and Closing
the MOSAIC Output Database

The MATLAB script openandquery.m contains all of
the commands to: Open a MOSAIC database (e.g.,
eventMD-PEG29-Reference.sqlite) Query the database
Save queried data elements into a structure Close the

database Convert the structure into a multi-dimensional array, that can be easily manipulated in MATLAB

Two changes must be made to the openandquery m-file
by the end-user: The path to the database file must be
changed for each database you wish to access. An ex-
ample path in Linux would be /home/Data/eventMD-

PEG29-Reference.sqlite, and in Windows C:\Data\eventMD-PEG29-Reference.sqlite. The query string can be
changed as needed. More information about queries in available in the Database Structure and Query Syntax sec-
tion.

12.2.5 Example

The reference database file provided with MOSAIC is
eventMD-PEG29-Reference.sqlite, located in the data
folder of the source code root directory. This database
contains the results of an analysis performed using the

adept2State and consists of the data fields:

{recIDX, ProcessingStatus, OpenChCurrent,
→˓ BlockedCurrent, EventStart, EventEnd,
→˓ BlockDepth, ResTime, RCConstant,
→˓ AbsEventStart, ReducedChiSquared, and

→˓TimeSeries}

In the openandquery script modify line 20 by typing in,
within the quotes, the correct path to the database file.

dbname = '/home/
→˓Data/eventMD-PEG29-Reference.sqlite';

The query in line 23 is to read the names of all fields
in the database. The names, along with column ID,
and data type, are stored in the structure fieldnames.
You may double-click on the variable fieldnames in the

Workspace, which will open the structure for you to read the field names in which you are interested.

fieldnames = mksqlite(
→˓'PRAGMA table_info(metadata)');

12.2. Matlab 91

https://www.mathworks.com/products/matlab/

MOSAIC Manual, Release v2.2

Next, modify line 24 to include the query. In this ex-
ample we want to select (and later manipulate) the data
stored in the fields AbsEventStart and BlockDepth. This
is where mksqlite comes in: the query are arguments to

the mksqlite() function. For more information about using the mksqlite.m function check out the mksqlite documen-
tation.

querytemp
→˓= mksqlite('select AbsEventStart,
→˓ BlockDepth from metadata');

No other changes are required. Run the script. The
queried data are stored in the variable data, seen in the
MATLAB Workspace (with value 418x2 double). This
variable is a 2-column matrix. The first column contains

all 418 data elements of the field AbsEventStart, and the second column contains all elements of the field BlockDepth.
Note that the query above can be replaced with any standard SQL query as outlined in the Work with SQLite section.

12.3 IGOR

Data extraction in IGOR is a work in progress, but a
number of users have found a successful route to query-
ing the data and manipulating it in the IGOR environ-
ment. The installation and setup for these features re-

quires an understanding of setup and use of ODBC drivers as well as rudimentary programming within the IGOR
environment. To date, this has been tested on Mac OS X 10.9. Details may vary for other systems.

12.3.1 Activating SQL Database Access
in IGOR

Database functionality in IGOR is preloaded, but not ac-
tivated for use in the standard installation of SQL.xop.
To activate this feature follow the instructions detailed
in the “Igor Pro Folder/More Extensions/utilities/SQL

Help.ihf”. The next few steps are reproduced from the IGOR instructions. First, activate the step in the activation
process is open the folder, “Igor Pro Folder/More Extensions/utilities” and create an alias for SQL.xop. Then move
the alias to “Igor Pro/Igor Extensions” or a similar folder that is in the search path for IGOR. It may be necessary to
delete the “alias” text from the file name for functionality. Restart IGOR to activate.

IGOR relies on an external ODBC driver for database
access. Depending on the operating system, it may be
necessary to install a stand alone ODBC driver adminis-
trator package. First check your machine for the ODBC

administrator.app in the ~/Applications/Utilities folder. If not present ODBC administrator can be downloaded directly
from the Apple support pages. To test the functionality, it is useful to follow the Installing MySQL ODBC Driver. . .
instructions on the IGOR help page. The MySQL drivers are not necessary for functionally within MOSAIC.

With the ODBC administrator program installed, the
next step is to install the SQLite driver for IGOR nec-
essary to interface with the database. Once downloaded
run the installation package in “sqlite3-odbc-0.93.dmg”

and follow the setup instructions within the disk image. The driver should be ready to use within IGOR.

92 Chapter 12. Addons

https://www.wavemetrics.com/products/igorpro/igorpro.htm
https://www.wavemetrics.com/products/igorpro/igorpro.htm
https://www.wavemetrics.com/products/igorpro/igorpro.htm
http://www.wavemetrics.com/products/igorpro/dataaccess/sql.htm
https://www.wavemetrics.com/products/igorpro/igorpro.htm
http://www.wavemetrics.com/products/igorpro/dataaccess/sql.htm
https://www.wavemetrics.com/products/igorpro/igorpro.htm
https://www.wavemetrics.com/products/igorpro/igorpro.htm
https://www.wavemetrics.com/products/igorpro/igorpro.htm
https://support.apple.com/kb/DL895
https://www.wavemetrics.com/products/igorpro/igorpro.htm
https://www.ch-werner.de/sqliteodbc/
https://www.wavemetrics.com/products/igorpro/igorpro.htm

MOSAIC Manual, Release v2.2

Hint: The IGOR addon installation (described above) can be activated automatically on Mac OS X by issuing the
command python setup.py mosaic_addons --igor from the MOSAIC root directory. Note that adminis-
trator privileges are required.

12.3.2 Simple Database Query in IGOR

IGOR operates on databases with a single High Level
operation command. This one command handles the
database connection, query, export of data and closing
of the database in one simple function or macro. To ac-

cess this functionality, first open the procedure window and create the following function:

#include <SQLUtils>

Function QuerySQLData()

→˓String connectionStr= "DRIVER={SQLite3
→˓Driver};DATABASE='database path';"

String statement = "select
→˓Blockdepth, ResTime from metadata
→˓where ProcessingStatus ='normal'"

→˓ SQLHighLevelOp/CSTR={connectionStr,
→˓ SQL_Driver_COMPLETE}/O/E=1 statement
End

Running this function will extract all normal events and
create two waves containing the Blockade depth and
Residence time of the events in sequence for further pro-
cessing in IGOR. Two IGOR functions are included in

the /addon/IGOR/ folder that import the data into IGOR waves for further processing. To open these functions to run,
simply double click the file and the procedures will be opened in a new IGOR project. Once open, the procedure file
can be compiled within IGOR to enable the code. A new menu “Mosaic” should then appear in the title bar within
IGOR. A function “Fetch SQL data” will bring up a dialog box to manually enter a search string. After entering
the string and clicking continue, you will be prompted to locate the database file you wish to access. The data will
be imported into waves with the name automatically imported from the database. Warning: this will overwrite any
existing data that is called by identical wave names.

12.3. IGOR 93

https://www.wavemetrics.com/products/igorpro/igorpro.htm
https://www.wavemetrics.com/products/igorpro/igorpro.htm
https://www.wavemetrics.com/products/igorpro/igorpro.htm
https://www.wavemetrics.com/products/igorpro/igorpro.htm
https://www.wavemetrics.com/products/igorpro/igorpro.htm
https://www.wavemetrics.com/products/igorpro/igorpro.htm
https://www.wavemetrics.com/products/igorpro/igorpro.htm
https://www.wavemetrics.com/products/igorpro/igorpro.htm

MOSAIC Manual, Release v2.2

94 Chapter 12. Addons

CHAPTER 13

Developer Tools

We provide several tools to simplify developing and extending MOSAIC including debug information logging and
function timing and profiling tools. Developer settings can be modified from mosaic/_globals.py. The master
switch to turn on developer mode is the DeveloperMode attribute. NOTE: When DeveloperMode=False, all
remaining attributes in mosaic/_globals.py are ignored.

Control global settings
DeveloperMode=True # Turn on developer options.

CodeProfiling='summary' # Either 'summary' to print a summary at the end of a
→˓run,

'none' for no timing, or
'all' to print timing of every function call

→˓profiled.
LogProperties=False # Log all class properties defined with mosaic_
→˓property.
LogSizeBytes=int(2<<20) # 2 MB

13.1 Debug Logs

When DeveloperMode is active, logs are simultaneously saved the SQLite database, the console, and to a file using
the Python logging module as described below. Details of the logging module can be found here. The logging facility
provides different classes of messages with increasing severity, ranging from debug to help trace problems with code,
info to provide feedback, warn to generate warnings, and error for error messages.

By default log messages in MOSAIC with a level of info and higher are saved to the console and to the SQLite
database. On the other hand, debug messages are saved to a log file (see table below for log file locations). Since
debug output can be verbose, the log file size is limited to the LogSizeBytes attribute in mosaic/_globals.
py. The default value for this attribute is 2 MB. The log file is implemented with a rotating file structure, where only
the previous five log files are saved to conserve disk space.

95

http://www.sqlite.org/
https://www.python.org/
https://docs.python.org/2/library/logging.html
http://www.sqlite.org/

MOSAIC Manual, Release v2.2

Platform Log File Location
macOS ~/Library/Logs/MOSAIC/mosaic.log
linux ~/mosaic.log
linux (with sudo) /var/logs/mosaic.log
Windows <user home>/mosaic.log

Log messages can be added by first creating a logger instance and then logging a message as seen in the code sample
below. For debug logs, the helper functions _d() or _dprop(), defined in the mosaicLogFormat module should
be used. The helper functions append stack information to debug logs, allowing users to trace the calling function and
its location in the source code.

1 import mosaic.utilities.mosaicLogging as mlog
2 from mosaic.utilities.mosaicLogFormat import _d
3

4

5 queryString="select ProcessingStatus, TimeSeries, RCConstant, EventDelay, CurrentStep,
→˓ OpenChCurrent from metadata limit 10000"

6 logger=mlog.mosaicLogging().getLogger(name=__name__, dbHnd=self.mdioDBHnd)
7

8 logger.debug(_d("{0}", queryString))

The above code results in the following log message.

2016-06-18 12:58:11 DEBUG mosaic.sqlite3MDIO:
select ProcessingStatus, TimeSeries, RCConstant, EventDelay, CurrentStep,

→˓OpenChCurrent from metadata limit 10000
(queryDB:_updatequery:mosaic/mosaicgui/fiteventsview/fiteventsview.py:295)

2016-06-17 13:36:30 WARNING mosaic.metaEventPartition:
WARNING: Automatic open channel state estimation has been disabled.

96 Chapter 13. Developer Tools

MOSAIC Manual, Release v2.2

2016-06-20 22:56:38 CRITICAL mosaic.utilities.mosaicLogging:
Traceback (most recent call last):

File "mosaic/utilities/mosaicTiming.py", line 180, in <module>
raise NotImplementedError("Feature not implemented.")

NotImplementedError: Feature not implemented.

13.2 Function Timing and Profiling

1 import mosaic.utilities.mosaicTiming as mosaicTiming
2

3 partitionTimer=mosaicTiming.mosaicTiming()
4

5 class metaEventPartition(object):
6
7

8 @metaEventPartition.partitionTimer.FunctionTiming
9 def _processEvent(self, eventobj):

10
11

12 def Stop(self):
13
14

15 partitionTimer.PrintStatistics()
16

17

1 import mosaic.utilities.mosaicTiming as mosaicTiming
2

3 with mosaicTiming.mosaicTiming() as funcTimer:
4 @funcTimer.FunctionTiming
5 def someFunc():
6
7

8 do something
9

10

2016-06-18 12:58:16 DEBUG mosaic.utilities.mosaicTiming:
Summary timing for "_processEvent": iterations=582, total=13475.599 ms,

→˓maximum=296.641 ms, average=23.154 ms
(PrintStatistics:Stop:mosaic/metaEventPartition.py:171)

13.2. Function Timing and Profiling 97

MOSAIC Manual, Release v2.2

98 Chapter 13. Developer Tools

CHAPTER 14

API Documentation

MOSAIC is designed using object oriented tools, which makes it easy to extend. The API documentation provides
class level descriptions of the different modules that can be used in customized code. Meta-Classes (blue) define
interfaces to five key parts of MOSAIC: time-series IO (metaTrajIO), time-series filtering (metaIOFilter),
analysis output (metaMDIO), event partition and segmenting (metaEventPartition), and event processing
(metaEventProcessor). Sub-classing any of these meta classes and implementing their interface functions al-
lows one to extend MOSAIC, while maintaining compatibility with other parts of the program. The diagram below
shows the class inheritence in MOSAIC, with top-level classes in gray.

99

MOSAIC Manual, Release v2.2

object

mosaic.ConvertToCSV.Convert
ToCSV

mosaic.metaEventPartition.meta
EventPartition

mosaic.metaEventProcessor.meta
EventProcessor

mosaic.metaIOFilter.meta
IOFilter

mosaic.metaMDIO.metaMDIO

mosaic.metaTrajIO.metaTrajIO

mosaic.SingleChannelAnalysis.
SingleChannelAnalysis

mosaic.eventSegment.event
Segment

mosaic.adept.adept

mosaic.cusumPlus.cusumPlus

mosaic.adept2State.adept2State

mosaic.besselLowpassFilter.bessel
LowpassFilter

mosaic.convolutionFilter.convolution
Filter

mosaic.waveletDenoiseFilter.wavelet
DenoiseFilter

mosaic.sqlite3MDIO.sqlite3MDIO

mosaic.abfTrajIO.abfTrajIO

mosaic.binTrajIO.binTrajIO

mosaic.qdfTrajIO.qdfTrajIO

mosaic.tsvTrajIO.tsvTrajIO

14.1 MOSAIC Modules

14.1.1 Top-Level Interfaces

mosaic.apps.SingleChannelAnalysis module

Top level module to run a single channel analysis.

Created 05/15/2014

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

3/25/17 AB Allow an optional argument to pass a database name.
5/15/14 AB Initial version

100 Chapter 14. API Documentation

mailto:arvind.balijepalli@nist.gov

MOSAIC Manual, Release v2.2

class mosaic.apps.SingleChannelAnalysis.SingleChannelAnalysis(dataPath, tra-
jDataHnd,
dataFilterHnd,
eventParti-
tionHnd,
eventProcHnd,
**kwargs)

Bases: object

Run a single channel analysis. This is the entry point class for the analysis.

Parameters

• dataPath : full path to the data directory

• trajDataHnd : a handle to an implementation of metaTrajIO

• dataFilterHnd : a handle to an impementation of metaIOFilter

• eventPartitionHnd : a handle to a sub-class of metaEventPartition

• eventProcHnd : a handle to a sub-class of metaEventProcessor

• dbFilename : explicitly set the database name (optional kwarg).

Run(forkProcess=False)
Start an analysis.

Parameters

• forkProcess : start the analysis in a separate process if True. This option is useful when
the main thread is used for other processing (e.g. GUI implementations).

Stop()
Stop a running analysis.

mosaic.apps.ConvertTrajIO module

Top level module to convert any data file readble by TrajIO objects into a comma separated value text file.

Created 10/13/2014

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ConvertTrajIO._filename()
Return a output filename that contains the data file prefix and and the block index.

ConvertTrajIO._creategenerator()
Create a new filename generator if the file prefix has changed. The generator returns a filename incremented by
a counter each time its next() function is called.

class mosaic.apps.ConvertTrajIO.ConvertTrajIO(trajDataObj, outdir=None, exten-
sion='csv')

Bases: object

Convert data from a sub-class of metaTrajIO to either a delimited text file or binary file format.

Parameters

• trajDataObj : a trajIO data object

• outdir : the output directory. Default is None, which causes the output to be saved in the
same directory as the input data.

14.1. MOSAIC Modules 101

https://docs.python.org/3/library/functions.html#object
mailto:arvind.balijepalli@nist.gov
https://docs.python.org/3/library/functions.html#object

MOSAIC Manual, Release v2.2

• extension : ‘csv’ for comma separated values (default), ‘tsv’ for tab separated values, or
‘bin’ for 64-bit double precision binary.

Convert(blockSize)
Start converting data

Parameters

• blockSize : number of data points to convert.

14.1.2 Meta-Classes

mosaic.partition.metaEventPartition module

class mosaic.partition.metaEventPartition.metaEventPartition(trajDataObj, event-
ProcHnd, event-
PartitionSettings,
eventProcSettings,
settingsString,
**kwargs)

Bases: object

Warning: This metaclass must be sub-classed. All abstract methods within this metaclass must be imple-
mented.

A class to abstract partitioning individual events. Once a single molecule event is identified, it is handed off to
to an event processor. If parallel processing is requested, detailed event processing will commence immediately.
If not, detailed event processing is performed after the event partition has completed.

Parameters

• trajDataObj [properly initialized object instantiated from a sub-class] of metaTrajIO.

• eventProcHnd [handle to a sub-class of metaEventProcessor. Objects of] this class are
initialized as necessary

• eventPartitionSettings : settings dictionary for the partition algorithm.

• eventProcSettings : settings dictionary for the event processing algorithm.

• settingsString : settings dictionary in JSON format

Common algorithm parameters from settings file (.settings in the data path or current working directory)

• writeEventTS : Write event current data to file. (default: 1, write data to file)

• parallelProc : Process events in parallel using the pproc module. (default: 1, Yes)

• reserveNCPU : Reserve the specified number of CPUs and exclude them from the parallel pool.

• driftThreshold [Trigger a drift warning when the mean open channel current deviates by ‘driftThresh-
old’*] SD from the baseline open channel current (default: 2)

• maxDriftRate [Trigger a warning when the open channel conductance changes at a rate faster] than that
specified. (default: 2 pA/s)

• minBaseline : Minimum value for the ionic current baseline.

• maxBaseline : Maximum value for the ionic current baseline.

102 Chapter 14. API Documentation

https://docs.python.org/3/library/functions.html#object

MOSAIC Manual, Release v2.2

abstract _init(trajDataObj, eventProcHnd, eventPartitionSettings, eventProcSettings)

Important: Abstract method: This method must be implemented by a sub-class.

This function is called at the end of the class constructor to perform additional initialization specific to
the algorithm being implemented. The arguments to this function are identical to those passed to the class
constructor.

abstract _stop()

Important: Abstract method: This method must be implemented by a sub-class.

Stop partitioning events froma time-series

abstract _eventsegment()

Important: Abstract method: This method must be implemented by a sub-class.

An implementation of this function should separate individual events of interest from a time-series of ionic
current recordings. The data pertaining to each event is then passed to an instance of metaEventProcessor
for detailed analysis. The function will collect the results of this analysis.

PartitionEvents()
Partition events within a time-series.

Stop()
Stop processing data.

abstract formatoutputfiles()

Important: Abstract method: This method must be implemented by a sub-class.

Return a formatted string of output files.

abstract formatsettings()

Important: Abstract method: This method must be implemented by a sub-class.

Return a formatted string of settings for display

abstract formatstats()

Important: Abstract method: This method must be implemented by a sub-class.

Return a formatted string of statistics for display

14.1. MOSAIC Modules 103

MOSAIC Manual, Release v2.2

mosaic.process.metaEventProcessor module

class mosaic.process.metaEventProcessor.metaEventProcessor(icurr, icurrU, Fs,
**kwargs)

Bases: object

Warning: This metaclass must be sub-classed. All abstract methods within this metaclass must be imple-
mented.

Defines the interface for specific event processing algorithms. Each event processing algorithm must sub-class
metaEventProcessor and implement the following abstract functions:

• processEvent [process raw event data and populate event meta-data. Store each] piece of processed event
data in a class attribute starting with ‘md’. For example, the blockade depth meta-data can be defined
as ‘mdBlockadeDepth’

• printMetadata : print meta-data set by event processing in a human readable format.

Parameters

• icurr : ionic current in pA

• icurrU: ionic current in pA with unfiltered event padding

• Fs : sampling frequency in Hz

Keyword Args

• eventstart : the event start point

• eventend : the event end point

• baselinestats : baseline conductance statistics: a list of [mean, sd, slope] for the baseline
current

• algosettingsdict : settings for event processing algorithm as a dictionary

• absdatidx : index of data start. This arg can allow arrival time estimation.

• datafilehnd : reference to an metaMDIO object for meta-data IO

__mdformat(dat)
Round a float to 3 decimal places. Leave ints and strings unchanged

abstract _init(**kwargs)

Important: Abstract method: This method must be implemented by a sub-class.

abstract _mdHeadingDataType()

Important: Abstract method: This method must be implemented by a sub-class.

Return a list of meta-data tags data types.

104 Chapter 14. API Documentation

https://docs.python.org/3/library/functions.html#object

MOSAIC Manual, Release v2.2

abstract _mdHeadings()

Important: Abstract method: This method must be implemented by a sub-class.

Return a list of meta-data tags for display purposes.

abstract _mdList()

Important: Abstract method: This method must be implemented by a sub-class.

Return a list of meta-data set by event processing.

abstract _processEvent()

Important: Abstract method: This method must be implemented by a sub-class.

flagEvent(status)
Set a warning status that starts with ‘w’ for non-critical errors. Metadata for these events is preserved and
the user can be warned (e.g., in the GUI.)

abstract mdAveragePropertiesList()

Important: Abstract method: This method must be implemented by a sub-class.

Return a list of meta-data properties that will be averaged and displayed at the end of a run. This function
must be overridden by sub-classes of metaEventProcessor. As a failsafe, an empty list is returned.

mdHeadingDataType()
Return a list of meta-data tags data types.

mdHeadings()
Return a list of meta-data tags for display purposes.

processEvent()
This is the equivalent of a pure virtual function in C++.

rejectEvent(status)
Set an event as rejected if it doesn’t pass tests in processing. The status is assigned to mdProcessingStatus.

writeEvent()
Write event meta data to a metaMDIO object.

14.1. MOSAIC Modules 105

MOSAIC Manual, Release v2.2

mosaic.filters.metaIOFilter module

class mosaic.filters.metaIOFilter.metaIOFilter(**kwargs)
Bases: object

Warning: This metaclass must be sub-classed. All abstract methods within this metaclass must be imple-
mented.

Defines the interface for specific filter implementations. Each filtering algorithm must sub-class metaIOFilter
and implement the following abstract function:

• filterData : apply a filter to self.eventData

Parameters

• decimate : sets the downsampling ratio of the filtered data (default:1, no decimation).

Properties

• filteredData : list of filtered and decimated data

• filterFs : sampling frequency after filtering and decimation

abstract _init(**kwargs)

Important: Abstract method: This method must be implemented by a sub-class.

abstract filterData(icurr, Fs)

Important: Abstract method: This method must be implemented by a sub-class.

This is the equivalent of a pure virtual function in C++.

Implementations of this method MUST store (1) a ref to the raw event data in self.eventData AND (2) the
sampling frequency in self.Fs.

Parameters

• icurr : ionic current in pA

• Fs : original sampling frequency in Hz

filterFs
Return the sampling frequency of filtered data.

filteredData
Return filtered data

abstract formatsettings()

Important: Abstract method: This method must be implemented by a sub-class.

Return a formatted string of filter settings

106 Chapter 14. API Documentation

https://docs.python.org/3/library/functions.html#object

MOSAIC Manual, Release v2.2

mosaic.mdio.metaMDIO module

class mosaic.mdio.metaMDIO.metaMDIO
Bases: object

Warning: This metaclass must be sub-classed. All abstract methods within this metaclass must be imple-
mented.

This class provides the skeleton for storing metadata generated by algorithms. It also provides an interface to
query metadata, for example in a SQL database.

Properties

• dbColumnNames : a list of database column names

abstract _opendb(dbname, **kwargs)

Important: Abstract method: This method must be implemented by a sub-class.

abstract _initdb(**kwargs)

Important: Abstract method: This method must be implemented by a sub-class.

abstract _colnames(table=None)

Important: Abstract method: This method must be implemented by a sub-class.

abstract closeDB()

Important: Abstract method: This method must be implemented by a sub-class.

initDB(**kwargs)
Initialize a new database file.

Parameters

The arguments passed to init change based on the method of file IO selected, in addition to the common
args below:

• dbPath : directory to store the MD database (‘<full path to data directory>’)

• colNames : list of text names for the columns in the tables

• colNames_t : list of data types for each column.

openDB(dbname, **kwargs)
Open an existing database file.

Parameters

14.1. MOSAIC Modules 107

https://docs.python.org/3/library/functions.html#object

MOSAIC Manual, Release v2.2

• dbname : directory to store the MD database (‘<full path to data directory>’)

See also:

The arguments passed to init change based on the method of file IO selected, in addition to the common
args.

abstract queryDB(query)

Important: Abstract method: This method must be implemented by a sub-class.

Query a database. :Parameters:

• query : query string

See also:

See specific implementations of metaMDIO for query syntax.

abstract readAnalysisInfo()

Important: Abstract method: This method must be implemented by a sub-class.

Read analysis information from the database.

abstract readAnalysisLog()

Important: Abstract method: This method must be implemented by a sub-class.

Read the analysis log from the database.

abstract readSettings()

Important: Abstract method: This method must be implemented by a sub-class.

Read JSON settings from the database.

abstract writeAnalysisInfo(infolist)

Important: Abstract method: This method must be implemented by a sub-class.

Write analysis information to the database. Note that subsequent calls to this method will overwrite the
analysis inoformation entry in the table.

Args

• infolist [A list of strings in the following order [datPath, dataType, partitionAlgorithm,
processingAlgorithm, filteringAlgorithm].] datPath : full path to the data directory

dataType : type of data processed (e.g. ABF, QDF, etc.)

108 Chapter 14. API Documentation

MOSAIC Manual, Release v2.2

partitionAlgorithm : name of partition algorithm (e.g. eventSegment)

processingAlgorithm : name of event processing algorithm (e.g. multStateAnalysis)

filteringAlgorithm : name of filtering algorithm (e.g. waveletDenoiseFilter) or None if
no filtering was performed.

abstract writeAnalysisLog(analysislog)

Important: Abstract method: This method must be implemented by a sub-class.

Write the analysis log string to the database. Note that subsequent calls to this method will overwrite the
analysis log entry.

Args

• analysislog : analysis log string to save

abstract writeRecord(data, table=None)

Important: Abstract method: This method must be implemented by a sub-class.

Write data to a specified table. By default table is None. In this case sub-classes should fall back to writing
data to a default table.

abstract writeSettings(settingsstring)

Important: Abstract method: This method must be implemented by a sub-class.

Write the settings JSON object to the database.

Args

• settingsstring : a JSON_ formatted settings string.

mosaic.trajio.metaTrajIO module

class mosaic.trajio.metaTrajIO.metaTrajIO(**kwargs)
Bases: object

Warning: This metaclass must be sub-classed. All abstract methods within this metaclass must be imple-
mented.

Initialize a TrajIO object. The object can load all the data in a directory, N files from a directory or from
an explicit list of filenames. In addition to the arguments defined below, implementations of this meta class
may require the definition of additional arguments. See the documentation of those classes for what those may
be. For example, the qdfTrajIO implementation of metaTrajIO also requires the feedback resistance (Rfb) and
feedback capacitance (Cfb) to be passed at initialization.

Parameters

• dirname : all files from a directory (‘<full path to data directory>’)

14.1. MOSAIC Modules 109

https://docs.python.org/3/library/functions.html#object

MOSAIC Manual, Release v2.2

• nfiles : if requesting N files (in addition to dirname) from a specified directory

• fnames : explicit list of filenames ([file1, file2,. . .]). This argument cannot be used in con-
juction with dirname/nfiles. The filter argument is ignored when used in combination with
fnames.

• filter : ‘<wildcard filter>’ (optional, filter is ‘*’ if not specified)

• start : Data start point in seconds.

• end : Data end point in seconds.

• datafilter : Handle to the algorithm to use to filter the data. If no algorithm is specified,
datafilter is None and no filtering is performed.

• dcOffset : Subtract a DC offset from the ionic current data.

• filtersettings: Dict containing low pass filter settings (optional: if not provided filter settings
will be loaded from the settings file. If no settings are found, datafilter will be turned off.)

Properties

• FsHz : sampling frequency in Hz. If the data was decimated, this property will hold the
sampling frequency after decimation.

• LastFileProcessed : return the data file that was last processed.

• ElapsedTimeSeconds : return the analysis time in sec.

Errors

• IncompatibleArgumentsError : when conflicting arguments are used.

• EmptyDataPipeError : when out of data.

• FileNotFoundError : when data files do not exist in the specified path.

• InsufficientArgumentsError : when incompatible arguments are passed

abstract _init(**kwargs)

Important: Abstract method: This method must be implemented by a sub-class.

This function is called at the end of the class constructor to perform additional initialization specific to
the algorithm being implemented. The arguments to this function are identical to those passed to the class
constructor.

abstract _formatsettings()
Log settings strings

DataLengthSec

Important: Property

Return the approximate length of data that will be processed. If the data are in multiple files, this property
assumes that each file contains an equal amount of data.

ElapsedTimeSeconds

110 Chapter 14. API Documentation

MOSAIC Manual, Release v2.2

Important: Property

Return the elapsed time in the time-series in seconds.

property FsHz

Important: Property

Return the sampling frequency in Hz.

LastFileProcessed

Important: Property

Return the last data file that was processed

ProcessedFiles

Important: Property

Return a list of processed data filenames.

formatsettings()
Return a formatted string of settings for display

popfnames()
Pop a single filename from the start of self.dataFiles. If self.dataFiles is empty, raise an
EmptyDataPipeError error.

Parameters

• None

Returns A single filename if successful.

Errors

• EmptyDataPipeError : when the filename list is empty.

previewdata(n)
Preview data points in self.currDataPipe. This function is identical in behavior to popdata, except it does
not remove data point from the queue. Like popdata, it uses recursion to automatically read data files
when the queue length is shorter than the requested data points. When all data files are read, an Empty-
DataPipeError is thrown.

Parameters n : number of requested data points

Returns

• Numpy array with requested data

Errors

• EmptyDataPipeError : if the queue has fewer data points than requested.

14.1. MOSAIC Modules 111

MOSAIC Manual, Release v2.2

abstract readdata(fname)

Important: Abstract method: This method must be implemented by a sub-class.

Return raw data from a single data file. Set a class attribute Fs with the sampling frequency in Hz.

Parameters

• fname : fileame to read

Returns An array object that holds raw (unscaled) data from fname

Errors None

scaleData(data)

Important: Abstract method: This optional interface method can be overridden by a sub-class to modify
functionality.

Scale the raw data loaded with readdata(). Note this function will not necessarily receive the entire
data array loaded with readdata(). Transformations must be able to process partial data chunks.

Parameters

• data : partial chunk of raw data loaded using readdata().

Returns

• Array containing scaled data.

Default Behavior

• If not implemented by a sub-class, the default behavior is to return data to the calling
function without modifications.

Example Assuming the amplifier scale and offset values are stored in the class variables
AmplifierScale and AmplifierOffset, the raw data read using readdata() can
be transformed by scaleData(). We can also use this function to change the array data
type.

def scaleData(self, data):
return np.array(data*self.AmplifierScale-self.AmplifierOffset, dtype=

→˓'f8')

14.1.3 Time-Series IO

112 Chapter 14. API Documentation

MOSAIC Manual, Release v2.2

mosaic.trajio.abfTrajIO module

abfTrajIO.abfTrajIOmetaTrajIO.metaTrajIO

A TrajIO class that supports
ABF1 and ABF2 file formats via abf/abf.py. Currently, only gap-free mode and single channel recordings are sup-
ported.

Created 5/23/2013

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

9/13/15 AB Updated logging to use mosaicLogFormat class
3/28/15 AB Updated file read code to match new metaTrajIO API.
5/23/13 AB Initial version

class mosaic.trajio.abfTrajIO.abfTrajIO(**kwargs)
Bases: mosaic.trajio.metaTrajIO.metaTrajIO

Read ABF1 and ABF2 file formats. Currently, only gap-free mode and single channel recordings are supported.

A typical settings section to read ABF files is shown below.

"abfTrajIO" : {
"filter" : "*.abf",
"start" : 0.0,
"dcOffset" : 0.0
}

Parameters

In addition to metaTrajIO args, None

readdata(fname)
Read one or more files and append their data to the data pipeline. Set a class attribute Fs with the sampling
frequency in Hz.

Parameters

• fname : fileame to read

Returns

• An array object that holds raw (unscaled) data from fname

Errors

• SamplingRateChangedError : if the sampling rate for any data file differs from previous

14.1. MOSAIC Modules 113

mailto:arvind.balijepalli@nist.gov

MOSAIC Manual, Release v2.2

mosaic.trajio.qdfTrajIO module

metaTrajIO.metaTrajIO qdfTrajIO.qdfTrajIO

QDF implementation of meta-
TrajIO. Uses the readqdf module from EBS to read individual qdf files.

Created 7/18/2012

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

9/13/15 AB Updated logging to use mosaicLogFormat class
3/28/15 AB Updated file read code to match new metaTrajIO API.
7/18/12 AB Initial version
2/11/14 AB Support qdf files that save the current in pA. This needs

format=’pA’ argument.

class mosaic.trajio.qdfTrajIO.qdfTrajIO(**kwargs)
Bases: mosaic.trajio.metaTrajIO.metaTrajIO

Use the readqdf module from EBS to read individual QDF files.

In addition to metaTrajIO args, check if the feedback resistance (Rfb) and feedback capacitance (Cfb) are
defined to convert qdf binary data into pA.

A typical settings section to read QDF files is shown below. Note, that the values for Rfb and Cfb are specific
to the amplifier used.

"qdfTrajIO": {
"Rfb" : 9.1e+12,
"Cfb" : 1.07e-12,
"dcOffset" : 0.0,
"filter" : "*.qdf",
"start" : 0.0
}

Parameters

In addition to metaTrajIO.__init__ args,

• Rfb : feedback resistance of amplifier

• Cfb : feedback capacitance of amplifier

• format : ‘V’ for voltage or ‘pA’ for current. Default is ‘V’

Returns None

114 Chapter 14. API Documentation

mailto:arvind.balijepalli@nist.gov

MOSAIC Manual, Release v2.2

Errors

• InsufficientArgumentsError : if the mandatory arguments Rfb and Cfb are not set.

readdata(fname)
Read one or more files and append their data to the data pipeline. Set a class attribute Fs with the sampling
frequency in Hz.

Parameters

• fname : list of data files to read

Returns None

Errors

• SamplingRateChangedError : if the sampling rate for any data file differs from previous

mosaic.trajio.binTrajIO module

binTrajIO.InvalidDataColumnError

binTrajIO.binTrajIOmetaTrajIO.metaTrajIO

Binary file imple-
mentation of metaTrajIO. Read raw binary files with specified record sizes

Created 4/22/2013

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

9/13/15 AB Updated logging to use mosaicLogFormat class
3/28/15 AB Updated file read code to match new metaTrajIO API.
1/27/15 AB Memory map files on read.
1/26/15 AB Refactored code to read interleaved binary data.
7/27/14 AB Update interface to specify python PythonStructCode instead of

RecordSize. This will allow any binary file to be decoded
The AmplifierScale and AmplifierOffset are set to 1 and 0
respectively if PythonStructCode is an integer or short.

4/22/13 AB Initial version

exception mosaic.trajio.binTrajIO.InvalidDataColumnError
Bases: Exception

14.1. MOSAIC Modules 115

mailto:arvind.balijepalli@nist.gov
https://docs.python.org/3/library/exceptions.html#Exception

MOSAIC Manual, Release v2.2

class mosaic.trajio.binTrajIO.binTrajIO(**kwargs)
Bases: mosaic.trajio.metaTrajIO.metaTrajIO

Read a file that contains interleaved binary data, ordered by column. Only a single column that holds ionic cur-
rent data is read. The current in pA is returned after scaling by the amplifier scale factor (AmplifierScale)
and removing any offsets (AmplifierOffset) if provided.

Usage and Assumptions Binary data is interleaved by column. For three columns (a, b, and c) and
N rows, binary data is assumed to be of the form:

[a_1, b_1, c_1, a_2, b_2, c_2, , a_N, b_N, c_N]

The column layout is specified with the ColumnTypes parameter, which accepts a list of
tuples. For the example above, if column a is the ionic current in a 64-bit floating point format,
column b is the ionic current representation in 16-bit integer format and column c is an index
in 16-bit integer format, the ColumnTypes paramter is a list with three tuples, one for each
column, as shown below:

[(‘curr_pA’, ‘float64’), (‘AD_V’, ‘int16’), (‘index’, ‘int16’)]

The first element of each tuple is an arbitrary text label and the second element is a valid Numpy
type.

Finally, the IonicCurrentColumn parameter holds the name (text label defined above) of
the column that holds the ionic current time-series. Note that if an integer column is selected, the
AmplifierScale and AmplifierOffset parameters can be used to convert the voltage
from the A/D to a current.

Assuming that we use a floating point representation of the ionic current, and a sampling rate of
50 kHz, a settings section that will read the binary file format defined above is:

"binTrajIO": {
"AmplifierScale" : "1",
"AmplifierOffset" : "0",
"SamplingFrequency" : "50000",
"ColumnTypes" : "[('curr_pA', 'float64'), ('AD_V', 'int16'), (

→˓'index', 'int16')]",
"IonicCurrentColumn" : "curr_pA",
"dcOffset": "0.0",
"filter": "*.bin",
"start": "0.0",
"HeaderOffset": 0

}

Settings Examples Read 16-bit signed integers (big endian) with a 512 byte header offset. Set the
amplifier scale to 400 pA, sampling rate to 200 kHz.

"binTrajIO": {
"AmplifierOffset": "0.0",
"SamplingFrequency": 200000,
"AmplifierScale": "400./2**16",
"ColumnTypes": "[('curr_pA', '>i2')]",
"dcOffset": 0.0,
"filter": "*.dat",
"start": 0.0,
"HeaderOffset": 512,
"IonicCurrentColumn": "curr_pA"

}

116 Chapter 14. API Documentation

http://docs.scipy.org/doc/numpy/user/basics.types.html
http://docs.scipy.org/doc/numpy/user/basics.types.html

MOSAIC Manual, Release v2.2

Read a two-column file: 64-bit floating point and 64-bit integers, and no header offset. Set the
amplifier scale to 1 and sampling rate to 200 kHz.

"binTrajIO": {
"AmplifierOffset": "0.0",
"SamplingFrequency": 200000,
"AmplifierScale": "1.0",
"ColumnTypes" : "[('curr_pA', 'float64'), ('AD_V',

→˓'int64')]",
"dcOffset": 0.0,
"filter": "*.bin",
"start": 0.0,
"HeaderOffset": 0,
"IonicCurrentColumn": "curr_pA"

}

Parameters

In addition to metaTrajIO args,

• AmplifierScale : Full scale of amplifier (pA/2^nbits) that varies with the gain (default:
1.0).

• AmplifierOffset : Current offset in the recorded data in pA (default: 0.0).

• SamplingFrequency : Sampling rate of data in the file in Hz.

• HeaderOffset : Ignore first n bytes of the file for header (default: 0 bytes).

• ColumnTypes : A list of tuples with column names and types (see Numpy types). Note
only integer and floating point numbers are supported.

• IonicCurrentColumn : Column name that holds ionic current data.

Returns None

Errors None

readdata(fname)
Return raw data from a single data file. Set a class attribute Fs with the sampling frequency in Hz.

Parameters

• fname : fileame to read

Returns

• An array object that holds raw (unscaled) data from fname

Errors None

scaleData(data)
See mosaic.metaTrajIO.metaTrajIO.scaleData().

14.1. MOSAIC Modules 117

http://docs.scipy.org/doc/numpy/user/basics.types.html

MOSAIC Manual, Release v2.2

mosaic.trajio.chimeraTrajIO module

chimeraTrajIO.InvalidDataColumnError

chimeraTrajIO.chimeraTrajIOmetaTrajIO.metaTrajIO

Chimera VC100 concatenated file format implementation of metaTrajIO. Read concatenated chimera files with
specified amplifier settings.

Created 7/11/2016

Author Kyle Briggs <kbrig035@uottawa.ca>

License See LICENSE.TXT

ChangeLog

5/12/21 AB Update Chimera settings from MAT files generated during data collection.
7/29/16 KB Miscelleneous bugfixes
7/11/16 KB Initial version

exception mosaic.trajio.chimeraTrajIO.InvalidDataColumnError
Bases: Exception

class mosaic.trajio.chimeraTrajIO.chimeraTrajIO(**kwargs)
Bases: mosaic.trajio.metaTrajIO.metaTrajIO

Read a file generated by the Chimera VC100. The current in pA is returned after scaling by the amplifier scale
factors.

Usage and Assumptions Binary data is in a single column of unsigned 16 bit integers:

The column layout is specified with the ColumnTypes parameter, which accepts a list of
tuples.

[(‘curr_pA’, ‘<u2’)]

The option is left in in case of future changes to the platform, but can be left alone in the settings
file for now. The first element of each tuple is an arbitrary text label and the second element is a
valid Numpy type.

Chimera gain settings are used to convert the integers stored by the ADC to current values. These
values are automatically read in from matched MAT files generated by the Chimera software.

"chimeraTrajIO": {
"filter": "*.log",
"start": "0.0",
"HeaderOffset": "0"

}

118 Chapter 14. API Documentation

mailto:kbrig035@uottawa.ca
https://docs.python.org/3/library/exceptions.html#Exception
http://docs.scipy.org/doc/numpy/user/basics.types.html

MOSAIC Manual, Release v2.2

Parameters In addition to metaTrajIO args,

• HeaderOffset : Ignore first n bytes of the file for header (currently fixed at: 0 bytes).

Returns None

Errors None

readdata(fname)
Return raw data from a single data file. Set a class attribute Fs with the sampling frequency in Hz.

Parameters

• fname : fileame to read

Returns

• An array object that holds raw (unscaled) data from fname

Errors None

mosaic.trajio.tsvTrajIO module

metaTrajIO.metaTrajIO tsvTrajIO.tsvTrajIO

An implementation of metaTra-
jIO that reads tab separated valued (TSV) files

Created 7/31/2012

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

11/30/15 AB Assumes timeCol is specified in seconds.
11/30/15 AB Added a new keyword scale to allow scaling TSV data.
3/28/15 AB Updated file read code to match new metaTrajIO API.
6/30/13 AB Added the ‘seprator’ kwarg to the class initializer to allow any delimited

files to be read. e.g. ‘”"t’ (default), ‘,’, etc.
7/31/12 AB Initial version

class mosaic.trajio.tsvTrajIO.tsvTrajIO(**kwargs)
Bases: mosaic.trajio.metaTrajIO.metaTrajIO

Read tab separated valued (TSV) files.

Parameters

In addition to metaTrajIO args,

• headers : If True, the first row is ignored (default: True)

14.1. MOSAIC Modules 119

mailto:arvind.balijepalli@nist.gov

MOSAIC Manual, Release v2.2

• separator : set the data separator (defualt: ‘”"t’)

• scale : set the data scale (default: 1). For example to convert from to pA set
scale=1e12.

Either:

• Fs : Sampling frequency in Hz. If set, all other options are ignored and the first column
in the file is assumed to be the current in pA.

Or:

• nCols : number of columns in TSV file (default:2, first column is time in ms and second
is current in pA)

• timeCol : explicitly set the time column (default: 0, first col)

• currCol : explicitly set the position of the current column (default: 1)

If neither Fs nor {nCols, timeCol, currCol} are set then the latter is assumed with the
listed default values.

readdata(fname)
Read a single TSV file and return raw (unscaled) data contained within it. Set/update a class attribute Fs
with the sampling frequency in Hz.

Parameters

• fname : fileame to read

Returns

• An array object that holds raw (unscaled) data from fname

Errors

• SamplingRateChangedError : if the sampling rate for any data file differs from previous

scaleData(data)

Important: Abstract method: This optional interface method can be overridden by a sub-class to modify
functionality.

Scale the raw data loaded with readdata(). Note this function will not necessarily receive the entire
data array loaded with readdata(). Transformations must be able to process partial data chunks.

Parameters

• data : partial chunk of raw data loaded using readdata().

Returns

• Array containing scaled data.

Default Behavior

• If not implemented by a sub-class, the default behavior is to return data to the calling
function without modifications.

Example Assuming the amplifier scale and offset values are stored in the class variables
AmplifierScale and AmplifierOffset, the raw data read using readdata() can

120 Chapter 14. API Documentation

MOSAIC Manual, Release v2.2

be transformed by scaleData(). We can also use this function to change the array data
type.

def scaleData(self, data):
return np.array(data*self.AmplifierScale-self.AmplifierOffset, dtype=

→˓'f8')

14.1.4 Time-Series Filters

mosaic.filters.waveletDenoiseFilter module

metaIOFilter.metaIOFilter waveletDenoiseFilter.waveletDenoiseFilter

Im-
plementation of a wavelet based denoising filter

Created 8/31/2014

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

Author Arvind Balijepalli

ChangeLog

9/13/15 AB Updated logging to use mosaicLogFormat class
8/31/14 AB Initial version

class mosaic.filters.waveletDenoiseFilter.waveletDenoiseFilter(**kwargs)
Bases: mosaic.filters.metaIOFilter.metaIOFilter

Keyword Args

In addition to metaIOFilter args,

• wavelet : the type of wavelet

• level : wavelet level

• threshold : threshold type

filterData(icurr, Fs)
Denoise an ionic current time-series and store it in self.eventData

Parameters

• icurr : ionic current in pA

• Fs : original sampling frequency in Hz

formatsettings()
Return a formatted string of filter settings

14.1. MOSAIC Modules 121

mailto:arvind.balijepalli@nist.gov

MOSAIC Manual, Release v2.2

mosaic.filters.besselLowpassFilter module

besselLowpassFilter.besselLowpassFiltermetaIOFilter.metaIOFilter

Im-
plementation of an ‘N’ order Bessel filter

Created 7/1/2013

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

11/2/16 KB changed Bessel filter implementation to match expected rise time
9/27/16 AB Control phase delay
9/13/15 AB Updated logging to use mosaicLogFormat class
7/1/13 AB Initial version

class mosaic.filters.besselLowpassFilter.besselLowpassFilter(**kwargs)
Bases: mosaic.filters.metaIOFilter.metaIOFilter

Keyword Args

In addition to metaIOFilter.__init__ args,

• filterOrder : the filter order

• filterCutoff : filter cutoff frequency in Hz

filterData(icurr, Fs)
Denoise an ionic current time-series and store it in self.eventData

Parameters

• icurr : ionic current in pA

• Fs : original sampling frequency in Hz

formatsettings()
Populate logObject with settings strings for display

122 Chapter 14. API Documentation

mailto:arvind.balijepalli@nist.gov

MOSAIC Manual, Release v2.2

mosaic.filters.convolutionFilter module

convolutionFilter.convolutionFiltermetaIOFilter.metaIOFilter

Implementa-
tion of a weighted moving average (tap delay line) filter

Created 8/16/2013

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

9/13/15 AB Updated logging to use mosaicLogFormat class
8/16/13 AB Initial version

class mosaic.filters.convolutionFilter.convolutionFilter(**kwargs)
Bases: mosaic.filters.metaIOFilter.metaIOFilter

Keyword Args

In addition to metaIOFilter.__init__ args,

• filterCoeff : filter coefficients (default is a 10 point uniform moving average)

filterData(icurr, Fs)
Denoise an ionic current time-series and store it in self.eventData

Parameters

• icurr : ionic current in pA

• Fs : original sampling frequency in Hz

formatsettings()
Return a formatted string of filter settings

14.1.5 Event Partition and Segment

14.1. MOSAIC Modules 123

mailto:arvind.balijepalli@nist.gov

MOSAIC Manual, Release v2.2

mosaic.partition.eventSegment module

eventSegment.eventSegmentmetaEventPartition.metaEventPartition

Partition a trajectory into individual events and pass each event to an implementation of eventProcessor

Created 7/17/2012

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

10/28/18 AB Fix spurious shallow events as outlined in https://github.com/usnistgov/mosaic/issues/102
9/25/17 AB Save unfiltered event padding by default.
1/18/17 AB Fix pre event baseline.
6/17/16 AB Log function timing in developer mode.
5/17/14 AB Delete plotting support
5/17/14 AB Add metaMDIO support for meta-data and time-series storage
2/14/14 AB Pass absdatidx argument to event processing to track absolute time of

event start for capture rate estimation.
6/22/13 AB Use plotting hooks in metaEventPartition to plot blockade depth histogram in

real-time using matplotlib.
4/22/13 AB Rewrote this class as an implementation of the base class metaEventPartition.

Included event processing parallelization using ZMQ.
9/26/12 AB Allowed automatic open channel state calculation to be overridden.

To do this the settings “meanOpenCurr”,”sdOpenCurr” and “slopeOpenCurr”
must be set manually. If all three settings are absent or
set to 01, they are autuomatically estimated.
Added “writeEventTS” boolean setting to control whether raw
events are written to file. Default is ON (1)

8/24/12 AB Settings are now read from a settings file that
is located either with the data or in the working directory
that the program is run from. Each class that relies on the
settings file will fallback to default values if the file
is not found.

7/17/12 AB Initial version

class mosaic.partition.eventSegment.eventSegment(trajDataObj, eventProcHnd, event-
PartitionSettings, eventProcSettings,
settingsString, **kwargs)

Bases: mosaic.partition.metaEventPartition.metaEventPartition

124 Chapter 14. API Documentation

mailto:arvind.balijepalli@nist.gov
https://github.com/usnistgov/mosaic/issues/102

MOSAIC Manual, Release v2.2

Implement an event partitioning algorithm by sub-classing the metaEventPartition class

Settings In addition to the parameters described in metaEventPartition, the following param-
eters from are read from the settings file (.settings in the data path or current working directory):

• blockSizeSec [Functions that perform block processing use this value to set the size of
] their windows in seconds. For example, open channel conductance is processed for
windows with a size specified by this parameter. (default: 1 second)

• eventPad : Number of points to include before and after a detected event. (default: 500)

• minEventLength : Minimum number points in the blocked state to qualify as an event (de-
fault: 5)

• eventThreshold [Threshold, number of SD away from the open channel mean. If the
abs(curr) is less] than ‘abs(mean)-(eventThreshold*SD)’ a new event is registered (de-
fault: 6)

• meanOpenCurr [Explicitly set mean open channel current. (pA) (default: -1, to] calculate
automatically)

• sdOpenCurr [Explicitly set open channel current SD. (pA) (default: -1, to] calculate auto-
matically)

• slopeOpenCurr [Explicitly set open channel current slope. (default: -1, to] calculate auto-
matically)

formatoutputfiles()

Important: Abstract method: This method must be implemented by a sub-class.

Return a formatted string of output files.

formatsettings()
Return a formatted string of settings for display in the output log.

formatstats()
Return a formatted string of statistics for display in the output log.

14.1.6 Event Processing

mosaic.process.adept2State module

adept2State.adept2StatemetaEventProcessor.metaEventProcessor

adept2State.datblock

A
class that extends metaEventProcessing to implement the step response algorithm from [Balijepalli:2014]

14.1. MOSAIC Modules 125

MOSAIC Manual, Release v2.2

Created 4/18/2013

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

06/28/16 AB Upgrade lmfit to > 0.9 (https://lmfit.github.io/lmfit-py/whatsnew.html#whatsnew-090-label)
03/30/16 AB Change UnlinkRCConst to LinkRCConst to avoid double negatives.
12/09/15 KB Added Windows specific optimizations
8/24/15 AB Rename algorithm to ADEPT 2 State.
7/23/15 JF Added a new test to reject RC Constants <=0
6/24/15 AB Added an option to unlink the RC constants in stepResponseAnalysis.
11/7/14 AB Error codes describing event rejection are now more specific.
11/5/14 AB Fixed a bug in the event fitting logic that prevented

long events from being correctly analyzed.
5/17/14 AB Modified md interface functions for metaMDIO support
2/16/14 AB Added new metadata field, ‘AbsEventStart’ to track

global time of event start to allow capture rate estimation.
6/20/13 AB Added an additional check to reject events

with blockade depths > BlockRejectRatio (default: 0.8)
4/18/13 AB Initial version

class mosaic.process.adept2State.adept2State(icurr, icurrU, Fs, **kwargs)
Bases: mosaic.process.metaEventProcessor.metaEventProcessor

Analyze an event that is characteristic of PEG blockades. This method includes system information in the anal-
ysis, specifically the filtering effects (throught the RC constant) of either amplifiers or the membrane/nanopore
complex. The analysis generates several parameters that are stored as metadata including:

1. Blockade depth: the ratio of the open channel current to the blocked current

2. Residence time: the time the molecule spends inside the pore

3. Tau: the RC constant of the response to a step input (e.g. the entry or exit of the molecule into or out of
the nanopore).

Keyword Args

In addition to metaEventProcessor args,

• FitTol : Tolerance value for the least squares algorithm that controls the convergence of
the fit (Default: 1e-7).

• FitIters : Maximum number of iterations before terminating the fit (Default: 50000).

• LinkRCConst : When True, the RC constants associated with each state in the fit function
are varied together. (Default: True)

Errors When an event cannot be analyzed, the blockade depth, residence time and rise time are set
to -1.

formatsettings()
Return a formatted string of settings for display

126 Chapter 14. API Documentation

mailto:arvind.balijepalli@nist.gov
https://lmfit.github.io/lmfit-py/whatsnew.html#whatsnew-090-label

MOSAIC Manual, Release v2.2

mdAveragePropertiesList()
Return a list of meta-data properties that will be averaged and displayed at the end of a run.

mosaic.process.adept module

adept.InvalidEvent

adept.adeptmetaEventProcessor.metaEventProcessor

Analyze a multi-
step event

Created 4/18/2013

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

06/28/16 AB Upgrade lmfit to > 0.9 (https://lmfit.github.io/lmfit-py/whatsnew.html#whatsnew-090-label)
05/27/16 AB Added warnings when the reduced chi squared is not a number and if the fit parameters are unchanged
from the initial guess values.
05/22/16 JF Added new test to reject BD < 0 or BD > 1, improved readability of error tests.
03/30/16 AB Change UnlinkRCConst to LinkRCConst to avoid double negatives.
3/16/16 AB Migrate InitThreshold setting to CUSUM StepSize.
2/22/16 AB Use CUSUM to estimate intial guesses in ADEPT for long events.
2/20/16 AB Format settings log.
12/09/15 KB Added Windows specific optimizations
8/24/15 AB Rename algorithm to ADEPT.
8/02/15 JF Added a new test to reject RC Constants <=0
4/12/15 AB Refactored code to improve reusability.
3/20/15 AB Added a maximum event length setting (MaxEventLength) that automatically rejects events longer than
the specified value.
3/20/15 AB Added a new metadata column (mdStateResTime) that saves the residence time of each state to the
database.
3/6/15 AB Added a new test for negative event delays
3/6/15 JF Added MinStateLength to output log
3/5/15 AB Updated initial state determination to include a minumum state length parameter (MinStateLength).

Initial state estimates now utilize gradient information for improved state identification.
1/7/15 AB Save the number of states in an event to the DB using the mdNStates column
12/31/14 AB Changed multi-state function to include a separate tau for

each state following Balijepalli et al, ACS Nano 2014.
12/30/14 JF Removed min/max constraint on tau

14.1. MOSAIC Modules 127

mailto:arvind.balijepalli@nist.gov
https://lmfit.github.io/lmfit-py/whatsnew.html#whatsnew-090-label

MOSAIC Manual, Release v2.2

11/7/14 AB Error codes describing event rejection are now more specific.
11/6/14 AB Fixed a bug in the event fitting logic that prevents the

analysis of long states.
8/21/14 AB Added AbsEventStart and BlockDepth (constructed from mdCurrentStep

and mdOpenChCurrent) metadata.
5/17/14 AB Modified md interface functions for metaMDIO support
9/26/13 AB Initial version

exception mosaic.process.adept.InvalidEvent
Bases: Exception

class mosaic.process.adept.adept(icurr, icurrU, Fs, **kwargs)
Bases: mosaic.process.metaEventProcessor.metaEventProcessor

Analyze a multi-step event that contains two or more states. This method includes system information in
the analysis, specifically the filtering effects (through the RC constant) of either amplifiers or the mem-
brane/nanopore complex. The analysis generates several parameters that are stored as metadata including:

1. Blockade depth: the ratio of the open channel current to the blocked current

2. Residence time: the time the molecule spends inside the pore

3. Tau: the RC constant of the response to a step input (e.g. the entry or exit of the molecule into or out of
the nanopore).

Keyword Args

In addition to metaEventProcessor args,

• StepSize : The multiple of the standard deviations considered significant to dtecting an
event (default: 3.0).

• MinStateLength : minimum number of data points required to assign a state within an
event (default: 4)

• MaxEventLength : maximum length (in data points) of events that will be processed
(default: 10000)

• FitTol : fit tolerance for convergence (default: 1.e-7)

• FitIters : maximum fit iterations (default: 5000)

• LinkRCConst : When True, the RC constants associated with each state in the fit function
are varied together. (Default: True)

Errors When an event cannot be analyzed, all metadata are set to -1.

formatsettings()
Return a formatted string of settings for display

mdAveragePropertiesList()
Return a list of meta-data properties that will be averaged and displayed at the end of a run.

128 Chapter 14. API Documentation

https://docs.python.org/3/library/exceptions.html#Exception

MOSAIC Manual, Release v2.2

mosaic.process.cusumPlus module

cusumPlus.InvalidEvent

cusumPlus.cusumPlusmetaEventProcessor.metaEventProcessor

cusumPlus.datblock

Ana-
lyze a multi-step event with the CUSUM+ algorithm. Implements a modified version of the CUSUM algorithm (used
by OpenNanopore for example) in MOSAIC. This approach sacrifices including system information in the analysis in
favor of much faster fitting of single- and multi-level events.

Created 2/10/2015

Author Kyle Briggs <kbrig035@uottawa.ca>

License See LICENSE.TXT

ChangeLog

11/15/19 JR Updated output: calculates adn includes blockade standard deviation; simplified tab in code
6/3/17 AB Updated docstring.
8/24/15 AB Rename algorithm to CUSUM+
3/20/15 AB Added a new metadata column (mdStateResTime) that saves the residence time of each state to the
database.
3/18/15 KB Implemented rise time skipping
3/17/15 KB Implemented adaptive threshold
2/12/15 AB Updated metadata representation to be consistent with stepResponseAnalysis and multiStateAnalysis
2/10/15 KB Initial version

exception mosaic.process.cusumPlus.InvalidEvent
Bases: Exception

class mosaic.process.cusumPlus.cusumPlus(icurr, icurrU, Fs, **kwargs)
Bases: mosaic.process.metaEventProcessor.metaEventProcessor

CUSUM+ will detect jumps that are smaller than StepSize, but they will have to be sustained longer. Threshold
can be thought of, very roughly, as proportional to the length of time a subevent must be sustained for it to be
detected. The algorithm will adjust the actual threshold used on a per-event basis in order to minimize false
positive detection of current jumps This algorithm is based on code used in OpenNanopore, which you can read
about here: http://pubs.rsc.org/en/Content/ArticleLanding/2012/NR/c2nr30951c#!divAbstract

Some known issues with CUSUM+:

1. If the duration of a sub-event is shorter than than the MinLength parameter, CUSUM+ will be
unable to detect it. CUSUM+ will not detect events within MinLength of a previous event.

14.1. MOSAIC Modules 129

mailto:kbrig035@uottawa.ca
https://docs.python.org/3/library/exceptions.html#Exception
http://pubs.rsc.org/en/Content/ArticleLanding/2012/NR/c2nr30951c#!divAbstract

MOSAIC Manual, Release v2.2

2. CUSUM assumes an instantaneous transition between current states. As a result, if the RC
rise time of the system is large, CUSUM+ can trigger and detect intermediate states during the
change time. This can be avoided by choosing a number of samples to skip equal to about
2-5RC.

3. As a consequence of using a statistical t-test, CUSUM can have false positives. The algorithm
has an adaptive threshold that tries to minimize the chances of this happening while maintaining
good sensitivity (expected number of false positives within an event is less than 1).

Keyword Args

In addition to metaEventProcessor args,

• StepSize : The number of baseline standard deviations are considered significant (3 is
usually a good starting point).

• MinThreshold : One of two sensitivity parameters (lower is more sensitive). A good
starting point is to set MinThreshold equal to StepSize.

• MaxThreshold : One of two sensitivity parameters (lower is more sensitive). Set Max-
Threshold about 3x higher than MinThreshold.

• MinLength : The number of samples to skip after detecting a jump, in order to avoid
triggering during the rise time and returning an artificially high number of states. This
number of points is also skipped when averaging levels. About 4 times the RC constant
of the system is a good starting value.

Errors When an event cannot be analyzed, all metadata are set to -1.

To use it requires four settings:

"cusumPlus": {
"StepSize": 3.0,
"MinThreshold": 3.0,
"MaxThreshold": 10.0,
"MinLength" : 10,

}

formatsettings()
Return a formatted string of settings for display

mdAveragePropertiesList()
Return a list of meta-data properties that will be averaged and displayed at the end of a run.

14.1.7 Data Output

130 Chapter 14. API Documentation

MOSAIC Manual, Release v2.2

mosaic.mdio.sqlite3MDIO module

metaMDIO.metaMDIO sqlite3MDIO.sqlite3MDIO

sqlite3MDIO.data_record

A class that extends
metaMDIO to implement SQLite support for metadata storage.

Created 9/28/2014

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

3/25/17 AB Allow an optional argument to pass a database name.
12/6/15 AB Add sampling frequency to analysis info table
8/5/15 AB Added a function to export database tables to CSV
8/5/15 AB Misc bug fixes
4/1/15 AB Added an estimate of data length to the DB
3/23/15 AB Added a raw query function that does not automatically decode column data.
11/9/14 AB Implemented the analysis log I/O interface for sqlite3 databases.
9/28/14 AB Initial version

class mosaic.mdio.sqlite3MDIO.data_record(data_label, data, data_t)
Bases: dict

Smart data record structure that automatically encodes/decodes data for storage in a sqlite3 DB.

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

class mosaic.mdio.sqlite3MDIO.sqlite3MDIO
Bases: mosaic.mdio.metaMDIO.metaMDIO

closeDB()

Important: Abstract method: This method must be implemented by a sub-class.

csvString(query)
Return database records that match the specified query as a CSV formatted string.

exportToCSV(query)
Export database records that match the specified query to a CSV flat file.

14.1. MOSAIC Modules 131

mailto:arvind.balijepalli@nist.gov
https://docs.python.org/3/library/stdtypes.html#dict

MOSAIC Manual, Release v2.2

queryDB(query)

Important: Abstract method: This method must be implemented by a sub-class.

Query a database. :Parameters:

• query : query string

See also:

See specific implementations of metaMDIO for query syntax.

readAnalysisInfo()

Important: Abstract method: This method must be implemented by a sub-class.

Read analysis information from the database.

readAnalysisLog()

Important: Abstract method: This method must be implemented by a sub-class.

Read the analysis log from the database.

readSettings()

Important: Abstract method: This method must be implemented by a sub-class.

Read JSON settings from the database.

writeAnalysisInfo(infolist)

Important: Abstract method: This method must be implemented by a sub-class.

Write analysis information to the database. Note that subsequent calls to this method will overwrite the
analysis inoformation entry in the table.

Args

• infolist [A list of strings in the following order [datPath, dataType, partitionAlgorithm,
processingAlgorithm, filteringAlgorithm].] datPath : full path to the data directory

dataType : type of data processed (e.g. ABF, QDF, etc.)

partitionAlgorithm : name of partition algorithm (e.g. eventSegment)

processingAlgorithm : name of event processing algorithm (e.g. multStateAnalysis)

filteringAlgorithm : name of filtering algorithm (e.g. waveletDenoiseFilter) or None if
no filtering was performed.

132 Chapter 14. API Documentation

MOSAIC Manual, Release v2.2

writeAnalysisLog(analysislog)

Important: Abstract method: This method must be implemented by a sub-class.

Write the analysis log string to the database. Note that subsequent calls to this method will overwrite the
analysis log entry.

Args

• analysislog : analysis log string to save

writeRecord(data, table=None)

Important: Abstract method: This method must be implemented by a sub-class.

Write data to a specified table. By default table is None. In this case sub-classes should fall back to writing
data to a default table.

writeSettings(settingsstring)

Important: Abstract method: This method must be implemented by a sub-class.

Write the settings JSON object to the database.

Args

• settingsstring : a JSON_ formatted settings string.

14.1.8 Miscellaneous

mosaic.settings module

Load analysis settings from a JSON file.

Created 8/24/2012

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

5/13/21 AB Include chimeraTrajio in default settings.
4/19/19 AB Added an option (trackBaseline) to continuously track the opent channel baseline current during an
analysis.
9/22/17 AB Removed the filterEventPadding option to eventSegment.
7/15/17 AB Add the filterEventPadding option to eventSegment.
3/16/16 AB Replaced InitThreshold with StepSize in default settings for ADEPT and warn users when InitThreshold
is used.
8/24/15 AB Updated algorithm names.

14.1. MOSAIC Modules 133

mailto:arvind.balijepalli@nist.gov

MOSAIC Manual, Release v2.2

6/24/15 AB Added an option to unlink the RC constants in stepResponseAnalysis.
3/20/15 AB Added MaxEventLength to multiStateAnalysis settings
3/6/15 JF Corrected formatting on cusumLevelAnalysis and multiStateAnalysis dictionary file
3/6/15 AB Added MinStateLength parameter for multiStateAnalysis to dictionary
2/14/15 AB Added default settings for cusumLevelAnalysis.
8/20/14 AB Changed precedence of settings file search to datpath/.settings,

datpath/settings, coderoot/.settings and coderoot/settings
8/6/14 AB Add a function to parse a settings string.
9/5/13 AB Check for either .settings or settings in data directory

and code root. Warn when using default settings
8/24/12 AB Initial version

class mosaic.settings.settings(datpath, defaultwarn=True)
Bases: object

Initialize a settings object.

Args

• datpath : Specify the location of the settings file. If a settings file is not found, return default
settings.

• defaultwarn : If True warn the user if a settings file was not found in the path specified by
datpath.

getSettings(section)
Return settings for a specified section as a Python dict.

Args

• section : specifies the section for which settings are requested. Returns an empty dictio-
nary if the settings file doesn’t exist the section is not found.

mosaic.utilities.ionic_current_stats module

Created 10/30/2014

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

5/24/19 AB Python 3.7 port
7/29/16 KB Added weights to histogram fitting
15/12/15 KB Added error checking and limits to baseline calculations
10/30/14 AB Initial version

mosaic.utilities.ionic_current_stats.OpenCurrentDist(dat, limit, minBaseline=- 1,
maxBaseline=- 1)

Calculate the mean and standard deviation of a time-series.

Args

• dat : time-series data

134 Chapter 14. API Documentation

https://docs.python.org/3/library/functions.html#object
mailto:arvind.balijepalli@nist.gov

MOSAIC Manual, Release v2.2

• limit : limit the calculation to the top 50% (+0.5) of the range, bottom 50% (-0.5) or the
entire range (0). Any other value of limit will cause it to be reset to 0 (i.e. full range).

mosaic.utilities.util module

A collection of utility functions

mosaic.utilities.util.avg(dat)
Calculate the average of a list of reals

mosaic.utilities.util.commonest(dat)
Return the most common element in a list.

mosaic.utilities.util.decimate(dat, size)
Decimate dat for a specified window size.

mosaic.utilities.util.filter(dat, windowSz)
Filter the data using a convolution. Returns an array of size len(dat)-windowSz+1 if dat is longer than windowSz.
If len(dat) < windowSz, raise WindowSizeError

mosaic.utilities.util.flat2(dat)
Flatten a 2D array to a list

mosaic.utilities.util.partition(dat, size)
Partition a list into sub-lists, each of length size. If the number of elements in dat does not partition evenly, the
last sub-list will have fewer elements.

mosaic.utilities.util.sd(dat)
Wrapper for numpy std

mosaic.utilities.util.selectS(dat, nSigma, mu, sd)
Select and return data from a list that lie within nSigma * SD of the mean.

mosaic.utilities.mosaicLogFormat module

An object that allows arbitrary formatting of log text.

Created 09/12/2015

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

06/14/16 AB Added a new Python property class mimic to add log property set, get and del.
06/13/16 AB Remove mosaicLogFormat class
09/12/15 AB Initial version

mosaic.utilities.mosaicLogFormat._d(msg, *args)
Format a debug log message. This function will automatically append calling function name and file/line num-
ber.

Parameters

• msg : Log message formatted using the Python formatter class.

• args : Message arguments.

14.1. MOSAIC Modules 135

mailto:arvind.balijepalli@nist.gov
https://docs.python.org/2/library/string.html#custom-string-formatting

MOSAIC Manual, Release v2.2

Usage Log an integer or a float variable.

_d("Var x has value {0}", x)

_d("Var y is a float with value {0:0.2f} to 2 decimal places.", y)

mosaic.utilities.mosaicLogFormat._dprop(msg, *args)
Format a debug log message for a class property. This function will automatically append calling function name
and file/line number.

Parameters

• msg : Log message formatted using the Python formatter class.

• args : Message arguments.

Usage Log a property that returns an integer or a float.

_dprop("Var x has value {0}", x)

_dprop("Var y is a float with value {0:0.2f} to 2 decimal places.", y)

class mosaic.utilities.mosaicLogFormat.mosaic_property(fget=None, fset=None,
fdel=None, doc=None)

Bases: object

Emulate Python property. Add support to the getter and setter methods to automatically log properties in debug
mode. The new class can be used exactly as the built-in Python property class, for example as a decorator

class foo:
def __init__(self):

self.x=100

@mosaic_property
def x(self):

return self.x

@x.setter
def x(self, val):

self.x=val

Adapted from: https://docs.python.org/2/howto/descriptor.html#properties.

mosaic.utilities.mosaicLogging module

An implementation of Python logging heavily adapted from http://stackoverflow.com/questions/15727420/
using-python-logging-in-multiple-modules.

Created 5/29/2016

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

5/30/16 AB Strip whitespace from rotating file handler messages.
5/29/16 AB Initial version

136 Chapter 14. API Documentation

https://docs.python.org/2/library/string.html#custom-string-formatting
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/2/howto/descriptor.html#properties
http://stackoverflow.com/questions/15727420/using-python-logging-in-multiple-modules
http://stackoverflow.com/questions/15727420/using-python-logging-in-multiple-modules
mailto:arvind.balijepalli@nist.gov

MOSAIC Manual, Release v2.2

class mosaic.utilities.mosaicLogging.MessageFormatter(fmt=None, datefmt=None,
style='%')

Bases: logging.Formatter

format(record)
Format the specified record as text.

The record’s attribute dictionary is used as the operand to a string formatting operation which yields the
returned string. Before formatting the dictionary, a couple of preparatory steps are carried out. The mes-
sage attribute of the record is computed using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is called to format the event time. If there is
exception information, it is formatted using formatException() and appended to the message.

class mosaic.utilities.mosaicLogging.mosaicLogging(*args, **kwargs)
Bases: object

A custom logging class that uses the Python logging facility. Logs are automatically saved to a metaMDIO
instance, and to a file log when DeveloperMode is active.

static getLogger(name=None, dbHnd=None)
Get a logger instance.

Parameters

• name : Logger name

• dbHnd : MetaMDIO handle to allow logs to be saved to the database.

Usage In this example, we get an instance of a logger with the module name and log a debug
message.

logger=mosaicLogging().getLogger(__name__)

logger.debug("Test debug message")

mosaic.utilities.mosaicTiming module

A class that provides platform independent timing and function profiling utilities.

Created 4/10/2016

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

4/14/21 AB Windows fixes
6/17/16 AB Only profile functions in DeveloperMode. Log timing output.
4/10/16 AB Initial version

class mosaic.utilities.mosaicTiming.mosaicTiming
Bases: object

Profile code by attaching an instance of this class to any function. All the methods in this class are valid for the
function being profiled.

14.1. MOSAIC Modules 137

https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.python.org/3/library/functions.html#object
mailto:arvind.balijepalli@nist.gov
https://docs.python.org/3/library/functions.html#object

MOSAIC Manual, Release v2.2

FunctionTiming(func)
Pass the function to be profiled as an argument. Alternatively with python 2.4+, attach a decorator to the
function being profiled.

Parameters

• func : function to be profiled

Usage

funcTimer=mosaicTiming.mosaicTiming()

@funcTimer.FunctionTiming
def someFunc():

print 'doing something'

summarize the profiling results for someFunc
funcTimer.PrintStatistics()

PrintCurrentTime()
Print timing results of the most recent function call

PrintStatistics()
Print average timing results of the function call

Reset(funcname=None)
Reset all profiling data collected for a specified function or all stored functions.

time()
A platform independent timing function.

mosaic.utilities.fit_funcs module

Fit functions used in processing algorithms.

Created 10/30/2014

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

12/09/15 KB Added a wrapper for multiStateFunc
6/24/15 AB Relaxed stepResponseFunc to include different RC constants

for up and down states.
12/31/14 AB Changed multi-state function to include a separate tau for

each state following Balijepalli et al, ACS Nano 2014.
11/19/14 AB Initial version

138 Chapter 14. API Documentation

mailto:arvind.balijepalli@nist.gov

MOSAIC Manual, Release v2.2

14.1.9 MOSAIC Script Repository

mosaicscripts.plots.timeseries module

Plot an ionic current time-series.

Created 11/19/2015

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

ChangeLog

12/12/15 AB Generalized plot function to allow different data types
11/19/15 AB Initial version

mosaicscripts.plots.timeseries.PlotTimeseries(dir, data_type, t0, t1, Fs, **kwargs)
Generate publication quality time-series plots.

Args

• dir : directory containing data files

• data_type : One of “abf”, “qdf”, “bin” or “tsv”.

• t0 : start time.

• t1 : end time.

• Fs : Sampling rate in Hz.

• labels : Axes text labels. For example `["t (s)", "-i (pA)"]` for a current vs.
time plot.

Keyword Args

• data_args : (optional) For “qdf”, “bin” or “tsv”, settings to read in data. See Settings File
for details.

• axes : (optional) Show axes (Default: True)

• highlights [(optional) Highlight segments of the time-series with a different style (Default:
None). For example:]

highlights=[[[0.282, 0.293], {‘color’ : ‘#3F50A0’, ‘marker’ : ‘.’, ‘markersize’ : 0.1}],
[[0.584, 0.597], {‘color’ : ‘#D42324’, ‘marker’ : ‘.’, ‘markersize’ : 0.1}], [[0.685,
0.695], {‘color’ : ‘#EB751A’, ‘marker’ : ‘.’, ‘markersize’ : 0.1}]

]

Highlight three events at specied location (arg 1: start, end) with specified styles. - plotopts
: (optional) Specify plot style. See http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.
plot for details. - figname : (optional) figure name if saving an image. File extension determines
format. - dpi : (optional) figure resolution

14.1. MOSAIC Modules 139

mailto:arvind.balijepalli@nist.gov
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot

MOSAIC Manual, Release v2.2

mosaicscripts.plots.histogram module

1-D Histogram plot.

Created 12/13/2015

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

12/13/15 AB Initial version

mosaicscripts.plots.histogram.histogram_plot(dat, nbins, x_range, **kwargs)

Generate publication quality contour plots using the `contour_plot` function. The function
expects a two-dimensional array of data (typically blockade depth and residence time) and several
options as listed below:

Args

• dat : 2-D array with format [[x1,y1], [x2,y2], [xn,yn]]

• nbinx : number of bins.

• x_range : list with min and max in X. If None, min and max values of the data set
the range.

Keyword Args

• density : (optional) If True, display the probability density function. Default is False

• color : (optional) Plot color. Default is #4155A3.

• fill_alpha : (optional) Fill transperancy. 0 turns off fill. Default is 0.25.

• xticks : (optional) specify ticks for the X-axis. List of format [(tick, label), . . .]

• yticks : (optional) specify ticks for the X-axis. List of format [(tick, label), . . .]

• figname : (optional) figure name if saving an image. File extension determines for-
mat.

• dpi : (optional) figure resolution.

• show : (optional) if True (default) call the show() function to display the plot.

• return_histogram : (optional) if True, return the histogram values and bins. Default
is False.

• advanced_opts : (optional) a Python dictionary that supplies advanced plotting op-
tions. See `Matplotlib plot documentation

<http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot>`_ for details.

140 Chapter 14. API Documentation

mailto:arvind.balijepalli@nist.gov
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot

MOSAIC Manual, Release v2.2

mosaicscripts.plots.contour module

Contour plot overlaid on top of an image.

Created 11/11/2015

Author Arvind Balijepalli <arvind.balijepalli@nist.gov>

License See LICENSE.TXT

ChangeLog

02/05/16 AB Add options to scale z-axis
01/10/15 AB Rename custom colormaps
11/11/15 AB Initial version

mosaicscripts.plots.contour.contour_plot(dat2d, x_range, y_range, bin_size, contours, col-
ormap, img_interpolation, **kwargs)

Generate publication quality contour plots using the `contour_plot` function. The function expects a two-
dimensional array of data (typically blockade depth and residence time) and several options as listed below:

Args

• dat2d : 2-D array with format [[x1,y1], [x2,y2], [xn,yn]]

• x_range : list with min and max in X

• y_range : list with min and max in Y

• bin_size : bin size

• contours : number of contours

• colormap : Colormap to use. Expects a colormap object. See http://matplotlib.org/
examples/color/colormaps_reference.html.

• img_interpolation : interpolation to use for image

Keyword Args

• zscale : (optional) plot the probability density if set to density or scale to the max count if
set to unity.

• xticks : (optional) specify ticks for the X-axis. List of format [(tick, label), . . .]

• yticks : (optional) specify ticks for the X-axis. List of format [(tick, label), . . .]

• figname : (optional) figure name if saving an image. File extension determines format.

• dpi : (optional) figure resolution

• colorbar_num_ticks : (optional) number of ticks in the colorbar

• cb_round_digits : (optional) round colorbar ticks to multiple of cb_round_digits. For exam-
ple, -2 rounds to 100. See python docs.

• min_count_pct : (optional) set bins with < min_count_pct of the maximum to 0

• axes_type : (optional) set linear or log axis. Expects a list for X and Y. For example [‘linear’,
‘log’].

14.1. MOSAIC Modules 141

mailto:arvind.balijepalli@nist.gov
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html

MOSAIC Manual, Release v2.2

142 Chapter 14. API Documentation

Python Module Index

m
mosaic.apps.ConvertTrajIO, 101
mosaic.apps.SingleChannelAnalysis, 100
mosaic.filters.besselLowpassFilter, 122
mosaic.filters.convolutionFilter, 123
mosaic.filters.waveletDenoiseFilter, 121
mosaic.mdio.sqlite3MDIO, 131
mosaic.partition.eventSegment, 124
mosaic.process.adept, 127
mosaic.process.adept2State, 125
mosaic.process.cusumPlus, 129
mosaic.settings, 133
mosaic.trajio.abfTrajIO, 113
mosaic.trajio.binTrajIO, 115
mosaic.trajio.chimeraTrajIO, 118
mosaic.trajio.qdfTrajIO, 114
mosaic.trajio.tsvTrajIO, 119
mosaic.utilities.fit_funcs, 138
mosaic.utilities.ionic_current_stats,

134
mosaic.utilities.mosaicLogFormat, 135
mosaic.utilities.mosaicLogging, 136
mosaic.utilities.mosaicTiming, 137
mosaic.utilities.util, 135
mosaicscripts.plots.contour, 141
mosaicscripts.plots.histogram, 140
mosaicscripts.plots.timeseries, 139

143

MOSAIC Manual, Release v2.2

144 Python Module Index

Index

Symbols
__mdformat() (mo-

saic.process.metaEventProcessor.metaEventProcessor
method), 104

_colnames() (mosaic.mdio.metaMDIO.metaMDIO
method), 107

_creategenerator() (mo-
saic.apps.ConvertTrajIO.ConvertTrajIO
method), 101

_d() (in module mosaic.utilities.mosaicLogFormat), 135
_dprop() (in module mo-

saic.utilities.mosaicLogFormat), 136
_eventsegment() (mo-

saic.partition.metaEventPartition.metaEventPartition
method), 103

_filename() (mosaic.apps.ConvertTrajIO.ConvertTrajIO
method), 101

_formatsettings() (mo-
saic.trajio.metaTrajIO.metaTrajIO method),
110

_init() (mosaic.filters.metaIOFilter.metaIOFilter
method), 106

_init() (mosaic.partition.metaEventPartition.metaEventPartition
method), 102

_init() (mosaic.process.metaEventProcessor.metaEventProcessor
method), 104

_init() (mosaic.trajio.metaTrajIO.metaTrajIO
method), 110

_initdb() (mosaic.mdio.metaMDIO.metaMDIO
method), 107

_mdHeadingDataType() (mo-
saic.process.metaEventProcessor.metaEventProcessor
method), 104

_mdHeadings() (mo-
saic.process.metaEventProcessor.metaEventProcessor
method), 104

_mdList() (mosaic.process.metaEventProcessor.metaEventProcessor
method), 105

_opendb() (mosaic.mdio.metaMDIO.metaMDIO

method), 107
_processEvent() (mo-

saic.process.metaEventProcessor.metaEventProcessor
method), 105

_stop() (mosaic.partition.metaEventPartition.metaEventPartition
method), 103

A
abfTrajIO (class in mosaic.trajio.abfTrajIO), 37, 113
adept (class in mosaic.process.adept), 128
adept2State (class in mosaic.process.adept2State),

126
avg() (in module mosaic.utilities.util), 135

B
besselLowpassFilter (class in mo-

saic.filters.besselLowpassFilter), 122
binTrajIO (class in mosaic.trajio.binTrajIO), 38, 115

C
chimeraTrajIO (class in mo-

saic.trajio.chimeraTrajIO), 39, 118
closeDB() (mosaic.mdio.metaMDIO.metaMDIO

method), 107
closeDB() (mosaic.mdio.sqlite3MDIO.sqlite3MDIO

method), 131
commonest() (in module mosaic.utilities.util), 135
contour_plot() (in module mosaic-

scripts.plots.contour), 141
Convert() (mosaic.apps.ConvertTrajIO.ConvertTrajIO

method), 102
ConvertTrajIO (class in mo-

saic.apps.ConvertTrajIO), 101
convolutionFilter (class in mo-

saic.filters.convolutionFilter), 123
csvString() (mosaic.mdio.sqlite3MDIO.sqlite3MDIO

method), 131
cusumPlus (class in mosaic.process.cusumPlus), 129

145

MOSAIC Manual, Release v2.2

D
data_record (class in mosaic.mdio.sqlite3MDIO),

131
DataLengthSec (mo-

saic.trajio.metaTrajIO.metaTrajIO attribute),
110

decimate() (in module mosaic.utilities.util), 135

E
ElapsedTimeSeconds (mo-

saic.trajio.metaTrajIO.metaTrajIO attribute),
110

eventSegment (class in mo-
saic.partition.eventSegment), 124

exportToCSV() (mo-
saic.mdio.sqlite3MDIO.sqlite3MDIO method),
131

F
filter() (in module mosaic.utilities.util), 135
filterData() (mo-

saic.filters.besselLowpassFilter.besselLowpassFilter
method), 122

filterData() (mo-
saic.filters.convolutionFilter.convolutionFilter
method), 123

filterData() (mo-
saic.filters.metaIOFilter.metaIOFilter method),
106

filterData() (mo-
saic.filters.waveletDenoiseFilter.waveletDenoiseFilter
method), 121

filteredData (mo-
saic.filters.metaIOFilter.metaIOFilter at-
tribute), 106

filterFs (mosaic.filters.metaIOFilter.metaIOFilter at-
tribute), 106

flagEvent() (mosaic.process.metaEventProcessor.metaEventProcessor
method), 105

flat2() (in module mosaic.utilities.util), 135
format() (mosaic.utilities.mosaicLogging.MessageFormatter

method), 137
formatoutputfiles() (mo-

saic.partition.eventSegment.eventSegment
method), 125

formatoutputfiles() (mo-
saic.partition.metaEventPartition.metaEventPartition
method), 103

formatsettings() (mo-
saic.filters.besselLowpassFilter.besselLowpassFilter
method), 122

formatsettings() (mo-
saic.filters.convolutionFilter.convolutionFilter
method), 123

formatsettings() (mo-
saic.filters.metaIOFilter.metaIOFilter method),
106

formatsettings() (mo-
saic.filters.waveletDenoiseFilter.waveletDenoiseFilter
method), 121

formatsettings() (mo-
saic.partition.eventSegment.eventSegment
method), 125

formatsettings() (mo-
saic.partition.metaEventPartition.metaEventPartition
method), 103

formatsettings() (mosaic.process.adept.adept
method), 128

formatsettings() (mo-
saic.process.adept2State.adept2State method),
126

formatsettings() (mo-
saic.process.cusumPlus.cusumPlus method),
130

formatsettings() (mo-
saic.trajio.metaTrajIO.metaTrajIO method),
111

formatstats() (mo-
saic.partition.eventSegment.eventSegment
method), 125

formatstats() (mo-
saic.partition.metaEventPartition.metaEventPartition
method), 103

FsHz() (mosaic.trajio.metaTrajIO.metaTrajIO prop-
erty), 111

FunctionTiming() (mo-
saic.utilities.mosaicTiming.mosaicTiming
method), 137

G
getLogger() (mosaic.utilities.mosaicLogging.mosaicLogging

static method), 137
getSettings() (mosaic.settings.settings method),

134

H
histogram_plot() (in module mosaic-

scripts.plots.histogram), 140

I
initDB() (mosaic.mdio.metaMDIO.metaMDIO

method), 107
InvalidDataColumnError, 115, 118
InvalidEvent, 128, 129

L
LastFileProcessed (mo-

saic.trajio.metaTrajIO.metaTrajIO attribute),

146 Index

MOSAIC Manual, Release v2.2

111

M
mdAveragePropertiesList() (mo-

saic.process.adept.adept method), 128
mdAveragePropertiesList() (mo-

saic.process.adept2State.adept2State method),
126

mdAveragePropertiesList() (mo-
saic.process.cusumPlus.cusumPlus method),
130

mdAveragePropertiesList() (mo-
saic.process.metaEventProcessor.metaEventProcessor
method), 105

mdHeadingDataType() (mo-
saic.process.metaEventProcessor.metaEventProcessor
method), 105

mdHeadings() (mo-
saic.process.metaEventProcessor.metaEventProcessor
method), 105

MessageFormatter (class in mo-
saic.utilities.mosaicLogging), 137

metaEventPartition (class in mo-
saic.partition.metaEventPartition), 102

metaEventProcessor (class in mo-
saic.process.metaEventProcessor), 104

metaIOFilter (class in mosaic.filters.metaIOFilter),
106

metaMDIO (class in mosaic.mdio.metaMDIO), 107
metaTrajIO (class in mosaic.trajio.metaTrajIO), 36,

109
module

mosaic.apps.ConvertTrajIO, 101
mosaic.apps.SingleChannelAnalysis,

100
mosaic.filters.besselLowpassFilter,

122
mosaic.filters.convolutionFilter,

123
mosaic.filters.waveletDenoiseFilter,

121
mosaic.mdio.sqlite3MDIO, 131
mosaic.partition.eventSegment, 124
mosaic.process.adept, 127
mosaic.process.adept2State, 125
mosaic.process.cusumPlus, 129
mosaic.settings, 133
mosaic.trajio.abfTrajIO, 113
mosaic.trajio.binTrajIO, 115
mosaic.trajio.chimeraTrajIO, 118
mosaic.trajio.qdfTrajIO, 114
mosaic.trajio.tsvTrajIO, 119
mosaic.utilities.fit_funcs, 138

mosaic.utilities.ionic_current_stats,
134

mosaic.utilities.mosaicLogFormat,
135

mosaic.utilities.mosaicLogging, 136
mosaic.utilities.mosaicTiming, 137
mosaic.utilities.util, 135
mosaicscripts.plots.contour, 141
mosaicscripts.plots.histogram, 140
mosaicscripts.plots.timeseries, 139

mosaic.apps.ConvertTrajIO
module, 101

mosaic.apps.SingleChannelAnalysis
module, 100

mosaic.filters.besselLowpassFilter
module, 122

mosaic.filters.convolutionFilter
module, 123

mosaic.filters.waveletDenoiseFilter
module, 121

mosaic.mdio.sqlite3MDIO
module, 131

mosaic.partition.eventSegment
module, 124

mosaic.process.adept
module, 127

mosaic.process.adept2State
module, 125

mosaic.process.cusumPlus
module, 129

mosaic.settings
module, 133

mosaic.trajio.abfTrajIO
module, 113

mosaic.trajio.binTrajIO
module, 115

mosaic.trajio.chimeraTrajIO
module, 118

mosaic.trajio.qdfTrajIO
module, 114

mosaic.trajio.tsvTrajIO
module, 119

mosaic.utilities.fit_funcs
module, 138

mosaic.utilities.ionic_current_stats
module, 134

mosaic.utilities.mosaicLogFormat
module, 135

mosaic.utilities.mosaicLogging
module, 136

mosaic.utilities.mosaicTiming
module, 137

mosaic.utilities.util
module, 135

Index 147

MOSAIC Manual, Release v2.2

mosaic_property (class in mo-
saic.utilities.mosaicLogFormat), 136

mosaicLogging (class in mo-
saic.utilities.mosaicLogging), 137

mosaicscripts.plots.contour
module, 141

mosaicscripts.plots.histogram
module, 140

mosaicscripts.plots.timeseries
module, 139

mosaicTiming (class in mo-
saic.utilities.mosaicTiming), 137

O
OpenCurrentDist() (in module mo-

saic.utilities.ionic_current_stats), 134
openDB() (mosaic.mdio.metaMDIO.metaMDIO

method), 107

P
partition() (in module mosaic.utilities.util), 135
PartitionEvents() (mo-

saic.partition.metaEventPartition.metaEventPartition
method), 103

PlotTimeseries() (in module mosaic-
scripts.plots.timeseries), 139

popfnames() (mosaic.trajio.metaTrajIO.metaTrajIO
method), 111

previewdata() (mo-
saic.trajio.metaTrajIO.metaTrajIO method),
111

PrintCurrentTime() (mo-
saic.utilities.mosaicTiming.mosaicTiming
method), 138

PrintStatistics() (mo-
saic.utilities.mosaicTiming.mosaicTiming
method), 138

ProcessedFiles (mo-
saic.trajio.metaTrajIO.metaTrajIO attribute),
111

processEvent() (mo-
saic.process.metaEventProcessor.metaEventProcessor
method), 105

Q
qdfTrajIO (class in mosaic.trajio.qdfTrajIO), 37, 114
queryDB() (mosaic.mdio.metaMDIO.metaMDIO

method), 108
queryDB() (mosaic.mdio.sqlite3MDIO.sqlite3MDIO

method), 132

R
readAnalysisInfo() (mo-

saic.mdio.metaMDIO.metaMDIO method),

108
readAnalysisInfo() (mo-

saic.mdio.sqlite3MDIO.sqlite3MDIO method),
132

readAnalysisLog() (mo-
saic.mdio.metaMDIO.metaMDIO method),
108

readAnalysisLog() (mo-
saic.mdio.sqlite3MDIO.sqlite3MDIO method),
132

readdata() (mosaic.trajio.abfTrajIO.abfTrajIO
method), 113

readdata() (mosaic.trajio.binTrajIO.binTrajIO
method), 117

readdata() (mosaic.trajio.chimeraTrajIO.chimeraTrajIO
method), 119

readdata() (mosaic.trajio.metaTrajIO.metaTrajIO
method), 111

readdata() (mosaic.trajio.qdfTrajIO.qdfTrajIO
method), 115

readdata() (mosaic.trajio.tsvTrajIO.tsvTrajIO
method), 120

readSettings() (mo-
saic.mdio.metaMDIO.metaMDIO method),
108

readSettings() (mo-
saic.mdio.sqlite3MDIO.sqlite3MDIO method),
132

rejectEvent() (mo-
saic.process.metaEventProcessor.metaEventProcessor
method), 105

Reset() (mosaic.utilities.mosaicTiming.mosaicTiming
method), 138

Run() (mosaic.apps.SingleChannelAnalysis.SingleChannelAnalysis
method), 101

S
scaleData() (mosaic.trajio.binTrajIO.binTrajIO

method), 117
scaleData() (mosaic.trajio.metaTrajIO.metaTrajIO

method), 112
scaleData() (mosaic.trajio.tsvTrajIO.tsvTrajIO

method), 120
sd() (in module mosaic.utilities.util), 135
selectS() (in module mosaic.utilities.util), 135
settings (class in mosaic.settings), 134
SingleChannelAnalysis (class in mo-

saic.apps.SingleChannelAnalysis), 100
sqlite3MDIO (class in mosaic.mdio.sqlite3MDIO),

131
Stop() (mosaic.apps.SingleChannelAnalysis.SingleChannelAnalysis

method), 101
Stop() (mosaic.partition.metaEventPartition.metaEventPartition

method), 103

148 Index

MOSAIC Manual, Release v2.2

T
time() (mosaic.utilities.mosaicTiming.mosaicTiming

method), 138
tsvTrajIO (class in mosaic.trajio.tsvTrajIO), 40, 119

U
update() (mosaic.mdio.sqlite3MDIO.data_record

method), 131

W
waveletDenoiseFilter (class in mo-

saic.filters.waveletDenoiseFilter), 121
writeAnalysisInfo() (mo-

saic.mdio.metaMDIO.metaMDIO method),
108

writeAnalysisInfo() (mo-
saic.mdio.sqlite3MDIO.sqlite3MDIO method),
132

writeAnalysisLog() (mo-
saic.mdio.metaMDIO.metaMDIO method),
109

writeAnalysisLog() (mo-
saic.mdio.sqlite3MDIO.sqlite3MDIO method),
132

writeEvent() (mo-
saic.process.metaEventProcessor.metaEventProcessor
method), 105

writeRecord() (mo-
saic.mdio.metaMDIO.metaMDIO method),
109

writeRecord() (mo-
saic.mdio.sqlite3MDIO.sqlite3MDIO method),
133

writeSettings() (mo-
saic.mdio.metaMDIO.metaMDIO method),
109

writeSettings() (mo-
saic.mdio.sqlite3MDIO.sqlite3MDIO method),
133

Index 149

	Introduction
	Data Processing Algorithms in MOSAIC
	ADEPT 2-State
	ADEPT
	CUSUM+

	Getting Started
	Binary Installation
	Source Installation
	Docker Installation

	MOSAIC GUI
	Interface Overview
	Panels A & B: Analysis Setup and Trajectory Viewer
	Panels C,D, & E: Blockade Depth Histogram, Statistics, and Event Viewer

	MOSAIC WEB
	Interface Overview
	Data Source Path
	Analysis Settings
	Analysis Results

	Settings File
	Settings Layout
	Trajectory Settings
	Optimizing Settings
	Default Settings

	Database Structure and Query Syntax
	Metadata Table
	Analysis Settings Table
	Work with SQLite
	Export to CSV

	Scripting and Advanced Features
	Import Data and Run an Analysis
	Advanced Scripting

	Extend MOSAIC
	Read Arbitrary Binary Data Files
	Define Top-Level Functionality

	Publication Quality Figures
	Timeseries Plots
	Histogram Plots
	Contour Plots

	Advanced Analysis
	Capture Rate

	Addons
	Mathematica
	Matlab
	IGOR

	Developer Tools
	Debug Logs
	Function Timing and Profiling

	API Documentation
	MOSAIC Modules

	Python Module Index
	Index

