Navigation

  • index
  • modules |
  • next |
  • masskit_ai 1.2.0 documentation »
  • Welcome to masskit_ai’s documentation!

Welcome to masskit_ai’s documentation!¶

Contents:

  • Masskit_ai use and architecture
    • Setup for training peptide prediction models
      • Running training
        • Running training on a local linux machine
        • Output models
      • Creating predictions
        • Creating predictions on a local linux machine
    • Configuration
    • Using checkpoints and transfer learning
      • Checkpoints
      • Transfer learning
      • Bayesian networks
    • Creating models, losses, and new inputs or outputs to models
      • Software architecture
      • Custom models
      • Adding fields to the model input
      • Adding fields to the model output
      • Custom losses
      • Custom metrics
      • Custom sampler
    • Miscellaneous settings
  • Recipes
    • Spectral library generation
      • Peptide library to spectral library
        • Example set of commands to predict spectra from a fasta file uniprot.fasta
    • Predicting RI values using AIRI
      • Example set of commands to calculate AIRI values from a CSV file my_csv.csv with SMILES in the molecules column
      • Example set of commands to calculate AIRI values from an SDF molfile my_sdf.sdf

Indices and tables¶

  • Index

  • Module Index

  • Search Page

Table of Contents

  • Welcome to masskit_ai’s documentation!
  • Indices and tables

Next topic

Masskit_ai use and architecture

This Page

  • Show Source

Quick search

Navigation

  • index
  • modules |
  • next |
  • masskit_ai 1.2.0 documentation »
  • Welcome to masskit_ai’s documentation!