Model for heat capacity¶
- Description: This is a benchmark to evaluate how accurately an AI model can predict the heat capacity using the JARVIS-DFT (dft_3d) dataset. The dataset contains different types of chemical formula and atomic structures. Here we use mean absolute error (MAE) to compare models with respect to DFT accuracy.
Reference(s): https://www.nature.com/articles/s41524-020-00440-1, https://www.nature.com/articles/s41524-023-01012-9;https://hackingmaterials.lbl.gov/matminer, https://doi.org/10.48550/arXiv.2305.11842, https://www.nature.com/articles/s41524-021-00650-1, https://github.com/aimat-lab/gcnn_keras
Model benchmarks
Model name | Dataset | MAE | Team name | Dataset size | Date submitted | Notes |
---|---|---|---|---|---|---|
kgcnn_coNGN | dft_3d | 7.8127 | kgcnn | 12054 | 05-06-2023 | CSV, JSON, run.sh, Info |
kgcnn_cgcnn | dft_3d | 12.9364 | kgcnn | 12054 | 09-26-2023 | CSV, JSON, run.sh, Info |
matminer_rf | dft_3d | 5.2757 | UofT | 12054 | 05-22-2023 | CSV, JSON, run.sh, Info |
kgcnn_dimenetPP | dft_3d | 23.3618 | kgcnn | 12054 | 05-06-2023 | CSV, JSON, run.sh, Info |
alignn_model | dft_3d | 9.6064 | ALIGNN | 12054 | 01-14-2023 | CSV, JSON, run.sh, Info |
kgcnn_megnet | dft_3d | 6.0443 | kgcnn | 12054 | 05-06-2023 | CSV, JSON, run.sh, Info |
matminer_xgboost | dft_3d | 5.47 | UofT | 12054 | 05-22-2023 | CSV, JSON, run.sh, Info |
kgcnn_coGN | dft_3d | 6.1125 | kgcnn | 12054 | 05-06-2023 | CSV, JSON, run.sh, Info |
kgcnn_schnet | dft_3d | 17.7707 | kgcnn | 12054 | 09-26-2023 | CSV, JSON, run.sh, Info |